Angleraud, Alexandre et al. "Human-robot interactive learning architecture using ontologies and symbol manipulation". RO-MAN 2018 - 27th IEEE International Symposium on Robot and Human Interactive Communication: August 27-31, 2018, Nanjing, China.. IEEE RO-MAN. IEEE. 2018, 384-389.

Angleraud, Alexandre, Quentin Houbre, ja Roel Pieters. "Teaching semantics and skills for human-robot collaboration". Paladyn. 2019, 10(1). 318-329.

Bron, Esther E. et al. "Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge". NeuroImage. 2015, 111. 562-579.

Chen, Ke ja Zhaoxiang Zhang. "A Primal Neural Network for Online Equality-Constrained Quadratic Programming". Cognitive Computation. 2018, 10(2). 381–388.

Faisal, Ali et al. "Transfer learning using a nonparametric sparse topic model". Neurocomputing. 2013, 112. 124-137.

Gavas, Rahul D. et al. "Cognitive load and metacognitive confidence extraction from pupillary response". Cognitive Systems Research. 2018, 52. 325-334.

Iantovics, Laszlo Barna, Frank Emmert-Streib ja Sabri Arik. "MetrIntMeas a novel metric for measuring the intelligence of a swarm of cooperating agents". Cognitive Systems Research. 2017, 45. 17-29.

Iosifidis, Alexandros, Anastasios Tefas ja Ioannis Pitas. "Distance-based human action recognition using optimized class representations". Neurocomputing. 2015, 161. 47-55.

Iosifidis, Alexandros, Anastasios Tefas ja Ioannis Pitas. "DropELM: Fast neural network regularization with Dropout and DropConnect". Neurocomputing. 2015, 162. 57-66.

Iosifidis, Alexandros, Anastasios Tefas ja Ioannis Pitas. "Regularized extreme learning machine for multi-view semi-supervised action recognition". Neurocomputing. 2014, 145. 250-262.

Iosifidis, Alexandros. "Extreme learning machine based supervised subspace learning". Neurocomputing. 2015, 167. 158–164.

Iosifidis, Alexandros, Anastasios Tefas ja Ioannis Pitas. "Learning sparse representations for view-independent human action recognition based on fuzzy distances". Neurocomputing. 2013, 121. 344-353.

Lolicato, Fabio et al. "Membrane-Dependent Binding and Entry Mechanism of Dopamine into Its Receptor". ACS Chemical Neuroscience. 2020, 11(13). 1914–1924.

Miinalainen, Tuuli et al. "A realistic, accurate and fast source modeling approach for the EEG forward problem". NeuroImage. 2019, 184(1). 56-67.

Mokkila, Sini et al. "Calcium Assists Dopamine Release by Preventing Aggregation on the Inner Leaflet of Presynaptic Vesicles". ACS Chemical Neuroscience. 2017, 8(6). 1242-1250.

Moradi, Elaheh et al. "Predicting symptom severity in autism spectrum disorder based on cortical thickness measures in agglomerative data". NeuroImage. 2017, 144(A). 128–141.

Möttönen, T. et al. "Defining the anterior nucleus of the thalamus (ANT) as a deep brain stimulation target in refractory epilepsy: Delineation using 3 T MRI and intraoperative microelectrode recording". NeuroImage: Clinical. 2015, 7. 823-829.

Pajarinen, Joni, Jaakko Peltonen ja Mikko A. Uusitalo. "Fault tolerant machine learning for nanoscale cognitive radio". Neurocomputing. 2011, 74(5). 753-764.

Rimpiläinen, Ville et al. "Improved EEG source localization with Bayesian uncertainty modelling of unknown skull conductivity". NeuroImage. 2019, 188. 252-260.

Sciacca, Michele F.M. et al. "Inhibition of Aβ Amyloid Growth and Toxicity by Silybins: The Crucial Role of Stereochemistry". ACS Chemical Neuroscience. 2017, 8(8). 1767-1778.

Sun, Lihua et al. "Human anterior thalamic nuclei are involved in emotion-attention interaction". NEUROPSYCHOLOGIA. 2015, 78. 88-94.

Tran, Dat Thanh, Alexandros Iosifidis, ja Moncef Gabbouj. "Improving efficiency in convolutional neural networks with multilinear filters". Neural Networks. 2018, 105. 328-339.

Waris, Muhammad Adeel, Alexandros Iosifidis, ja Moncef Gabbouj. "CNN-based edge filtering for object proposals". Neurocomputing. 2017, 266. 631-640.

Wortha, Silke M. et al. "Neurofunctional plasticity in fraction learning: An fMRI training study". Trends in Neuroscience and Education. 2020. 21.

Xiao, Lin et al. "Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations". Neural Networks. 2018, 98. 102-113.