Martins, L., Neeli-Venkata, R., Oliveira, S. M. D., Häkkinen, A., Ribeiro, A. S., & Fonseca, J. M. (2018).
SCIP: a single-cell image processor toolbox.
Bioinformatics,
34(24), 4318-4320.
https://doi.org/10.1093/bioinformatics/bty505 Hegele, L. A., Scagliarini, A., Sbragaglia, M., Mattila, K. K., Philippi, P. C., Puleri, D. F., ... Randles, A. (2018).
High-Reynolds-number turbulent cavity flow using the lattice Boltzmann method.
Physical Review E,
98(4), [043302].
https://doi.org/10.1103/PhysRevE.98.043302 Kartasalo, K., Latonen, L.
, Vihinen, J., Visakorpi, T., Nykter, M.
, & Ruusuvuori, P. (2018).
Comparative analysis of tissue reconstruction algorithms for 3D histology.
Bioinformatics,
34(17), 3013-3021.
https://doi.org/10.1093/bioinformatics/bty210 Alberucci, A., Laudyn, U. A., Piccardi, A., Kwasny, M., Klus, B., Karpierz, M. A.
, & Assanto, G. (2017).
Nonlinear continuous-wave optical propagation in nematic liquid crystals: Interplay between reorientational and thermal effects.
Physical Review E,
96(1), [012703].
https://doi.org/10.1103/PhysRevE.96.012703 Stupnikov, A., Tripathi, S., De Matos Simoes, R., McArt, D., Salto-Tellez, M., Glazko, G.
, ... Emmert-Streib, F. (2016).
SamExploreR: Exploring reproducibility and robustness of RNA-seq results based on SAM files.
Bioinformatics,
32(21), 3345-3347.
https://doi.org/10.1093/bioinformatics/btw475 Palyulin, V. V., Chechkin, A. V., Klages, R., & Metzler, R. (2016).
Search reliability and search efficiency of combined Lévy-Brownian motion: Long relocations mingled with thorough local exploration.
Journal of Physics A: Mathematical and Theoretical,
49(39), [394002].
https://doi.org/10.1088/1751-8113/49/39/394002 Luukko, P. J. J., Helske, J.
, & Räsänen, E. (2016).
Introducing libeemd: a program package for performing the ensemble empirical mode decomposition.
Computational Statistics,
31(2), 545-557.
https://doi.org/10.1007/s00180-015-0603-9 Aho, V., Mattila, K., Kühn, T., Kekäläinen, P., Pulkkinen, O., Minussi, R. B., ... Timonen, J. (2016).
Diffusion through thin membranes: Modeling across scales.
Physical Review E,
93(4), [043309].
https://doi.org/10.1103/PhysRevE.93.043309 Ropo, M., Schneider, M., Baldauf, C., & Blum, V. (2016).
First-principles data set of 45,892 isolated and cation-coordinated conformers of 20 proteinogenic amino acids.
Scientific Data,
3, [160009].
https://doi.org/10.1038/sdata.2016.9 Larjo, A., & Lähdesmäki, H. (2015).
Using multi-step proposal distribution for improved MCMC convergence in Bayesian network structure learning.
Eurasip Journal on Bioinformatics and Systems Biology,
2015(1), [6].
https://doi.org/10.1186/s13637-015-0024-7 Bencheikh, K.
, & Räsänen, E. (2015).
Hermitian one-particle density matrix through a semiclassical gradient expansion.
Journal of Physics A: Mathematical and Theoretical,
49(1), [015205].
https://doi.org/10.1088/1751-8113/49/1/015205 Mahmoudvand, R., Alehosseini, F., & Rodrigues, P. C. (2015). Forecasting mortality rate by singular spectrum analysis. REVSTAT STATISTICAL JOURNAL, 13(3), 193-206.
Safdari, H., Cherstvy, A. G., Chechkin, A. V., Thiel, F., Sokolov, I. M., & Metzler, R. (2015).
Quantifying the non-ergodicity of scaled Brownian motion.
Journal of Physics A: Mathematical and Theoretical,
48(37), [375002].
https://doi.org/10.1088/1751-8113/48/37/375002 Devassy, L., Jisha, C. P., Alberucci, A., & Kuriakose, V. C. (2015).
Parity-time-symmetric solitons in trapped Bose-Einstein condensates and the influence of varying complex potentials: A variational approach.
Physical Review E,
92(2), [022914].
https://doi.org/10.1103/PhysRevE.92.022914 Krüsemann, H., Godec, A., & Metzler, R. (2015).
Ageing first passage time density in continuous time random walks and quenched energy landscapes.
Journal of Physics A: Mathematical and Theoretical,
48(28), [285001].
https://doi.org/10.1088/1751-8113/48/28/285001 Godec, A., & Metzler, R. (2015).
Optimization and universality of Brownian search in a basic model of quenched heterogeneous media.
Physical Review E,
91(5), [052134].
https://doi.org/10.1103/PhysRevE.91.052134 Cherstvy, A. G., & Metzler, R. (2015).
Ergodicity breaking, ageing, and confinement in generalized diffusion processes with position and time dependent diffusivity.
Journal of Statistical Mechanics: Theory and Experiment,
2015(5), [P05010].
https://doi.org/10.1088/1742-5468/2015/05/P05010 Blavatska, V., & Metzler, R. (2015).
Conformational properties of complex polymers: Rosette versus star-like structures.
Journal of Physics A: Mathematical and Theoretical,
48(13), [135001].
https://doi.org/10.1088/1751-8113/48/13/135001 Subramaniyam, N. P.
, & Hyttinen, J. (2015).
Dynamics of intracranial electroencephalographic recordings from epilepsy patients using univariate and bivariate recurrence networks.
Physical Review E,
91(2), [022927].
https://doi.org/10.1103/PhysRevE.91.022927 Yang, Z., Peltonen, J., & Kaski, S. (2015). Majorization-minimization for manifold embedding. Journal of Machine Learning Research, 38, 1088-1097.
Rahmatallah, Y.
, Emmert-Streib, F., & Glazko, G. (2014).
Gene Sets Net Correlations Analysis (GSNCA): A multivariate differential coexpression test for gene sets.
Bioinformatics,
30(3), 360-368.
https://doi.org/10.1093/bioinformatics/btt687 Rodrigues, P. C., Moreira, E. E., Jesus, V. M., & Mexia, J. T. (2014).
Structured orthogonal families of one and two strata prime basis factorial models.
Statistical Papers,
55(3), 603-614.
https://doi.org/10.1007/s00362-013-0507-0 Peltonen, J., & Lin, Z. (2013). Information retrieval perspective to meta-visualization. Journal of Machine Learning Research, 29, 165-180.
Rahmatallah, Y.
, Emmert-Streib, F., & Glazko, G. (2012).
Gene set analysis for self-contained tests: Complex null and specific alternative hypotheses.
Bioinformatics,
28(23), 3073-3080.
https://doi.org/10.1093/bioinformatics/bts579 Pereira, D. G., Rodrigues, P. C., Mejza, S., & Mexia, J. T. (2012).
A comparison between joint regression analysis and the AMMI model: A case study with barley.
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION,
82(2), 193-207.
https://doi.org/10.1080/00949655.2011.615839 Wu, G. H. M., Auvinen, A., Yen, A. M. F., Hakama, M., Walter, S. D., & Chen, H. H. (2012).
A stochastic model for survival of early prostate cancer with adjustments for leadtime, length bias, and over-detection.
Biometrical Journal,
54(1), 20-44.
https://doi.org/10.1002/bimj.201000107 Pearlman, A., Campbell, C., Brooks, E., Genshaft, A., Shajahan, S., Ittman, M., ... Ostrer, H. (2012).
Clustering-based method for developing a genomic copy number alteration signature for predicting the metastatic potential of prostate cancer.
JOURNAL OF PROBABILITY AND STATISTICS, [873570].
https://doi.org/10.1155/2012/873570 Assanto, G., Marchant, T. R., Minzoni, A. A., & Smyth, N. F. (2011).
Reorientational versus Kerr dark and gray solitary waves using modulation theory.
Physical Review E,
84(6), [066602].
https://doi.org/10.1103/PhysRevE.84.066602 Yu, G., Zhang, B., Bova, G. S., Xu, J., Shih, I. M., & Wang, Y. (2011).
BACOM: In silico detection of genomic deletion types and correction of normal cell contamination in copy number data.
Bioinformatics,
27(11), 1473-1480. [btr183].
https://doi.org/10.1093/bioinformatics/btr183 Potapov, I., Volkov, E., & Kuznetsov, A. (2011).
Dynamics of coupled repressilators: The role of mRNA kinetics and transcription cooperativity.
Physical Review E,
83(3), [031901].
https://doi.org/10.1103/PhysRevE.83.031901 Peltonen, J., & Kaski, S. (2011). Generative modeling for maximizing precision and recall in information visualization. Journal of Machine Learning Research, 15, 579-587.
Altay, G.
, & Emmert-Streib, F. (2010).
Revealing differences in gene network inference algorithms on the network level by ensemble methods.
Bioinformatics,
26(14), 1738-1744. [btq259].
https://doi.org/10.1093/bioinformatics/btq259 Glazko, G. V.
, & Emmert-Streib, F. (2009).
Unite and conquer: Univariate and multivariate approaches for finding differentially expressed gene sets.
Bioinformatics,
25(18), 2348-2354.
https://doi.org/10.1093/bioinformatics/btp406 Emmert-Streib, F., & Dehmer, M. (2009).
Fault tolerance of information processing in gene networks.
Physica A: Statistical Mechanics and Its Applications,
388(4), 541-548.
https://doi.org/10.1016/j.physa.2008.10.032 Knuuti, M., & Länsivaara, T. (2019).
Performance of Variable Partial Factor approach in a slope design. teoksessa
13th International Conference on Applications of Statistics and Probability in Civil Engineering(ICASP13), Seoul, South Korea, May 26-30, 2019 https://doi.org/10.22725/ICASP13.475