Wortha, S. M., Bloechle, J., Ninaus, M.
, Kiili, K., Lindstedt, A., Bahnmueller, J., ... Klein, E. (2020).
Neurofunctional plasticity in fraction learning: An fMRI training study.
Trends in Neuroscience and Education,
21, [100141].
https://doi.org/10.1016/j.tine.2020.100141 Lolicato, F., Juhola, H., Zak, A., Postila, P. A., Saukko, A., Rissanen, S., ... Róg, T. (2020).
Membrane-Dependent Binding and Entry Mechanism of Dopamine into Its Receptor.
ACS Chemical Neuroscience,
11(13), 1914–1924.
https://doi.org/10.1021/acschemneuro.9b00656 Rimpiläinen, V.
, Koulouri, A., Lucka, F., Kaipio, J. P., & Wolters, C. H. (2019).
Improved EEG source localization with Bayesian uncertainty modelling of unknown skull conductivity.
NeuroImage,
188, 252-260.
https://doi.org/10.1016/j.neuroimage.2018.11.058 Miinalainen, T.
, Rezaei, A., Us, D., Nüßing, A., Engwer, C., Wolters, C. H.
, & Pursiainen, S. (2019).
A realistic, accurate and fast source modeling approach for the EEG forward problem.
NeuroImage,
184(1), 56-67.
https://doi.org/10.1016/j.neuroimage.2018.08.054 Gavas, R. D.
, Tripathy, S. R., Chatterjee, D., & Sinha, A. (2018).
Cognitive load and metacognitive confidence extraction from pupillary response.
Cognitive Systems Research,
52, 325-334.
https://doi.org/10.1016/j.cogsys.2018.07.021 Angleraud, A., Houbre, Q., Kyrki, V.
, & Pieters, R. (2018).
Human-robot interactive learning architecture using ontologies and symbol manipulation. teoksessa
RO-MAN 2018 - 27th IEEE International Symposium on Robot and Human Interactive Communication: August 27-31, 2018, Nanjing, China. (Sivut 384-389). (IEEE RO-MAN). IEEE.
https://doi.org/10.1109/ROMAN.2018.8525580 Xiao, L., Liao, B., Li, S., & Chen, K. (2018).
Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations.
Neural Networks,
98, 102-113.
https://doi.org/10.1016/j.neunet.2017.11.011 Iantovics, L. B.
, Emmert-Streib, F., & Arik, S. (2017).
MetrIntMeas a novel metric for measuring the intelligence of a swarm of cooperating agents.
Cognitive Systems Research,
45, 17-29.
https://doi.org/10.1016/j.cogsys.2017.04.006 Sciacca, M. F. M., Romanucci, V., Zarrelli, A., Monaco, I., Lolicato, F., Spinella, N., ... Milardi, D. (2017).
Inhibition of Aβ Amyloid Growth and Toxicity by Silybins: The Crucial Role of Stereochemistry.
ACS Chemical Neuroscience,
8(8), 1767-1778.
https://doi.org/10.1021/acschemneuro.7b00110 Mokkila, S., Postila, P. A., Rissanen, S., Juhola, H., Vattulainen, I., & Róg, T. (2017).
Calcium Assists Dopamine Release by Preventing Aggregation on the Inner Leaflet of Presynaptic Vesicles.
ACS Chemical Neuroscience,
8(6), 1242-1250.
https://doi.org/10.1021/acschemneuro.6b00395 Moradi, E., Khundrakpam, B., Lewis, J. D., Evans, A. C., & Tohka, J. (2017).
Predicting symptom severity in autism spectrum disorder based on cortical thickness measures in agglomerative data.
NeuroImage,
144(A), 128–141.
https://doi.org/10.1016/j.neuroimage.2016.09.049 Sun, L., Peräkylä, J., Polvivaara, M., Öhman, J., Peltola, J., Lehtimäki, K., ... Hartikainen, K. M. (2015).
Human anterior thalamic nuclei are involved in emotion-attention interaction.
NEUROPSYCHOLOGIA,
78, 88-94.
https://doi.org/10.1016/j.neuropsychologia.2015.10.001 Bron, E. E., Smits, M., van der Flier, W. M., Vrenken, H., Barkhof, F., Scheltens, P., ... Klein, S. (2015).
Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge.
NeuroImage,
111, 562-579.
https://doi.org/10.1016/j.neuroimage.2015.01.048 Möttönen, T., Katisko, J., Haapasalo, J., Tähtinen, T., Kiekara, T., Kähärä, V., ... Lehtimäki, K. (2015).
Defining the anterior nucleus of the thalamus (ANT) as a deep brain stimulation target in refractory epilepsy: Delineation using 3 T MRI and intraoperative microelectrode recording.
NeuroImage: Clinical,
7, 823-829.
https://doi.org/10.1016/j.nicl.2015.03.001 Iosifidis, A., Tefas, A., & Pitas, I. (2013).
Learning sparse representations for view-independent human action recognition based on fuzzy distances.
Neurocomputing,
121, 344-353.
https://doi.org/10.1016/j.neucom.2013.05.021