TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Sound event detection using spatial features and convolutional recurrent neural network

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Otsikko2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
KustantajaIEEE
Sivut771-775
ISBN (elektroninen)978-1-5090-4117-6
DOI - pysyväislinkit
TilaJulkaistu - 2017
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING -
Kesto: 1 tammikuuta 19001 tammikuuta 2000

Julkaisusarja

Nimi
ISSN (elektroninen)2379-190X

Conference

ConferenceIEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING
Ajanjakso1/01/001/01/00

Tiivistelmä

This paper proposes to use low-level spatial features extracted from multichannel audio for sound event detection. We extend the convolutional recurrent neural network to handle more than one type of these multichannel features by learning from each of them separately in the initial stages. We show that instead of concatenating the features of each channel into a single feature vector the network learns sound events in multichannel audio better when they are presented as separate layers of a volume. Using the proposed spatial features over monaural features on the same network gives an absolute F-score improvement of 6.1% on the publicly available TUT-SED 2016 dataset and 2.7% on the TUT-SED 2009 dataset that is fifteen times larger.

Julkaisufoorumi-taso

Latausten tilastot

Ei tietoja saatavilla