TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Spectral Attribute Learning for Visual Regression

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut74-81
JulkaisuPattern Recognition
Vuosikerta66
Varhainen verkossa julkaisun päivämäärä13 tammikuuta 2017
DOI - pysyväislinkit
TilaJulkaistu - 2017
OKM-julkaisutyyppiA1 Alkuperäisartikkeli

Tiivistelmä

A number of computer vision problems such as facial age estimation, crowd counting and pose estimation can be solved by learning regression mapping on low-level imagery features. We show that visual regression can be substantially improved by two-stage regression where imagery features are first mapped to an attribute space which explicitly models latent correlations across continuously-changing output. We propose an approach to automatically discover “spectral attributes” which avoids manual work required for defining hand-crafted attribute representations. Visual attribute regression outperforms direct visual regression and our spectral attribute visual regression achieves state-of-the-art accuracy in multiple applications.

Julkaisufoorumi-taso