TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Target tracking via combination of particle filter and optimisation techniques

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut212-229
Sivumäärä18
JulkaisuInternational Journal of Mathematical Modelling and Numerical Optimization
Vuosikerta7
Numero2
DOI - pysyväislinkit
TilaJulkaistu - 2016
OKM-julkaisutyyppiA1 Alkuperäisartikkeli

Tiivistelmä

Particle filters (PFs) have been used for the nonlinear estimation for a number of years. However, they suffer from the impoverishment phenomenon. It is brought by resampling which intends to prevent particle degradation, and therefore becomes the inherent weakness of this technique. To solve the problem of sample impoverishment and to improve the performance of the standard particle filter we propose a modification to this method by adding a sampling mechanism inspired by optimisation techniques, namely, the pattern search, particle swarm optimisation, differential evolution and Nelder-Mead algorithms. In the proposed methods, the true state of the target can be better expressed by the optimised particle set and the number of meaningful particles can be grown significantly. The efficiency of the proposed particle filters is supported by a truck-trailer problem. Simulations show that the hybridised particle filter with Nelder-Mead search is better than other optimisation approaches in terms of particle diversity.

Tutkimusalat

Julkaisufoorumi-taso