The logics taught and used at high schools are not the same
Tutkimustuotos › › vertaisarvioitu
Yksityiskohdat
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of the Fourth Russian Finnish Symposium on Discrete Mathematics |
Toimittajat | Juhani Karhumäki, Yuri Matiyasevich, Aleksi Saarela |
Julkaisupaikka | Turku |
Kustantaja | TURKU CENTRE FOR COMPUTER SCIENCE |
Sivut | 172-186 |
Sivumäärä | 15 |
ISBN (painettu) | 978-952-12-3547-4 |
Tila | Julkaistu - toukokuuta 2017 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | Fourth Russian Finnish Symposium on Discrete Mathematics - Turku, Suomi Kesto: 16 toukokuuta 2017 → 19 toukokuuta 2017 Konferenssinumero: IV http://math.utu.fi/rufidim2017/ |
Julkaisusarja
Nimi | TUCS Lecture Notes |
---|---|
Kustantaja | Turku Centre for Computer Science |
Numero | 26 |
ISSN (painettu) | 1797-8823 |
Conference
Conference | Fourth Russian Finnish Symposium on Discrete Mathematics |
---|---|
Lyhennettä | RuFiDiM |
Maa | Suomi |
Kaupunki | Turku |
Ajanjakso | 16/05/17 → 19/05/17 |
www-osoite |
Tiivistelmä
Typical treatises on propositional and predicate logic do not tell how to deal with undefined expressions, such as division by zero. However, there seems to be a sound (albeit inexplicit) reasoning system that addresses undefined expressions, because equations and inequations involving them are routinely solved in schools and universities without running into fundamental inconsistencies. In this study we discover this school logic and formalize its semantics. The need to do so arose when developing software that gives students feedback on every reasoning step of their solution, instead of just telling whether the roots that they finally report are the correct roots. The problem of undefined expressions has been addressed in computer science. However, school logic proves different from those approaches. School logic is based on a Kleene-style third “undefined” truth value and the treatment of “⇒” and “⇔” not as propositional operators but as reasoning operators.