TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

The violent collisional history of aqueously evolved (2) Pallas

Tutkimustuotosvertaisarvioitu

Standard

The violent collisional history of aqueously evolved (2) Pallas. / Marsset, Michaël; Brož, Miroslav; Vernazza, Pierre; Drouard, Alexis; Castillo-Rogez, Julie; Hanuš, Josef; Viikinkoski, Matti; Rambaux, Nicolas; Carry, Benoît; Jorda, Laurent; Ševeček, Pavel; Birlan, Mirel; Marchis, Franck; Podlewska-Gaca, Edyta; Asphaug, Erik; Bartczak, Przemyslaw; Berthier, Jérôme; Cipriani, Fabrice; Colas, François; Dudziński, Grzegorz; Dumas, Christophe; Ďurech, Josef; Ferrais, Marin; Fétick, Romain; Fusco, Thierry; Jehin, Emmanuel; Kaasalainen, Mikko; Kryszczynska, Agnieszka; Lamy, Philippe; Le Coroller, Hervé; Marciniak, Anna; Michalowski, Tadeusz; Michel, Patrick; Richardson, Derek C.; Santana-Ros, Toni; Tanga, Paolo; Vachier, Frédéric; Vigan, Arthur; Witasse, Olivier; Yang, Bin.

julkaisussa: Nature Astronomy, Vuosikerta 4, Nro 6, 2020, s. 569–576.

Tutkimustuotosvertaisarvioitu

Harvard

Marsset, M, Brož, M, Vernazza, P, Drouard, A, Castillo-Rogez, J, Hanuš, J, Viikinkoski, M, Rambaux, N, Carry, B, Jorda, L, Ševeček, P, Birlan, M, Marchis, F, Podlewska-Gaca, E, Asphaug, E, Bartczak, P, Berthier, J, Cipriani, F, Colas, F, Dudziński, G, Dumas, C, Ďurech, J, Ferrais, M, Fétick, R, Fusco, T, Jehin, E, Kaasalainen, M, Kryszczynska, A, Lamy, P, Le Coroller, H, Marciniak, A, Michalowski, T, Michel, P, Richardson, DC, Santana-Ros, T, Tanga, P, Vachier, F, Vigan, A, Witasse, O & Yang, B 2020, 'The violent collisional history of aqueously evolved (2) Pallas', Nature Astronomy, Vuosikerta. 4, Nro 6, Sivut 569–576. https://doi.org/10.1038/s41550-019-1007-5

APA

Marsset, M., Brož, M., Vernazza, P., Drouard, A., Castillo-Rogez, J., Hanuš, J., ... Yang, B. (2020). The violent collisional history of aqueously evolved (2) Pallas. Nature Astronomy, 4(6), 569–576. https://doi.org/10.1038/s41550-019-1007-5

Vancouver

Marsset M, Brož M, Vernazza P, Drouard A, Castillo-Rogez J, Hanuš J et al. The violent collisional history of aqueously evolved (2) Pallas. Nature Astronomy. 2020;4(6):569–576. https://doi.org/10.1038/s41550-019-1007-5

Author

Marsset, Michaël ; Brož, Miroslav ; Vernazza, Pierre ; Drouard, Alexis ; Castillo-Rogez, Julie ; Hanuš, Josef ; Viikinkoski, Matti ; Rambaux, Nicolas ; Carry, Benoît ; Jorda, Laurent ; Ševeček, Pavel ; Birlan, Mirel ; Marchis, Franck ; Podlewska-Gaca, Edyta ; Asphaug, Erik ; Bartczak, Przemyslaw ; Berthier, Jérôme ; Cipriani, Fabrice ; Colas, François ; Dudziński, Grzegorz ; Dumas, Christophe ; Ďurech, Josef ; Ferrais, Marin ; Fétick, Romain ; Fusco, Thierry ; Jehin, Emmanuel ; Kaasalainen, Mikko ; Kryszczynska, Agnieszka ; Lamy, Philippe ; Le Coroller, Hervé ; Marciniak, Anna ; Michalowski, Tadeusz ; Michel, Patrick ; Richardson, Derek C. ; Santana-Ros, Toni ; Tanga, Paolo ; Vachier, Frédéric ; Vigan, Arthur ; Witasse, Olivier ; Yang, Bin. / The violent collisional history of aqueously evolved (2) Pallas. Julkaisussa: Nature Astronomy. 2020 ; Vuosikerta 4, Nro 6. Sivut 569–576.

Bibtex - Lataa

@article{ac3804836584418ea09e2c94ff8adcb4,
title = "The violent collisional history of aqueously evolved (2) Pallas",
abstract = "Asteroid (2) Pallas is the largest main-belt object not yet visited by a spacecraft, making its surface geology largely unknown and limiting our understanding of its origin and collisional evolution. Previous ground-based observational campaigns returned different estimates of its bulk density that are inconsistent with one another, one measurement1 being compatible within error bars with the icy Ceres (2.16 ± 0.01 g cm−3)2 and the other3 compatible within error bars with the rocky Vesta (3.46 ± 0.03 g cm−3)4. Here we report high-angular-resolution observations of Pallas performed with the extreme adaptive optics-fed SPHERE imager5 on the Very Large Telescope. Pallas records a violent collisional history, with numerous craters larger than 30 km in diameter populating its surface and two large impact basins that could be related to a family-forming impact. Monte Carlo simulations of the collisional evolution of the main belt correlate this cratering record to the high average impact velocity of ~11.5 km s−1 on Pallas—compared with an average of ~5.8 km s−1 for the asteroid belt—induced by Pallas’s high orbital inclination (i = 34.8°) and orbital eccentricity (e = 0.23). Compositionally, Pallas’s derived bulk density of 2.89 ± 0.08 g cm−3 (1σ uncertainty) is fully compatible with a CM chondrite-like body, as suggested by its spectral reflectance in the 3 μm wavelength region6. A bright spot observed on its surface may indicate an enrichment in salts during an early phase of aqueous alteration, compatible with Pallas’s relatively high albedo of 12–17{\%} (refs. 7,8), although alternative origins are conceivable.",
author = "Micha{\"e}l Marsset and Miroslav Brož and Pierre Vernazza and Alexis Drouard and Julie Castillo-Rogez and Josef Hanuš and Matti Viikinkoski and Nicolas Rambaux and Beno{\^i}t Carry and Laurent Jorda and Pavel Ševeček and Mirel Birlan and Franck Marchis and Edyta Podlewska-Gaca and Erik Asphaug and Przemyslaw Bartczak and J{\'e}r{\^o}me Berthier and Fabrice Cipriani and Fran{\cc}ois Colas and Grzegorz Dudziński and Christophe Dumas and Josef Ďurech and Marin Ferrais and Romain F{\'e}tick and Thierry Fusco and Emmanuel Jehin and Mikko Kaasalainen and Agnieszka Kryszczynska and Philippe Lamy and {Le Coroller}, Herv{\'e} and Anna Marciniak and Tadeusz Michalowski and Patrick Michel and Richardson, {Derek C.} and Toni Santana-Ros and Paolo Tanga and Fr{\'e}d{\'e}ric Vachier and Arthur Vigan and Olivier Witasse and Bin Yang",
year = "2020",
doi = "10.1038/s41550-019-1007-5",
language = "English",
volume = "4",
pages = "569–576",
journal = "Nature Astronomy",
issn = "2397-3366",
publisher = "Nature Publishing Group",
number = "6",

}

RIS (suitable for import to EndNote) - Lataa

TY - JOUR

T1 - The violent collisional history of aqueously evolved (2) Pallas

AU - Marsset, Michaël

AU - Brož, Miroslav

AU - Vernazza, Pierre

AU - Drouard, Alexis

AU - Castillo-Rogez, Julie

AU - Hanuš, Josef

AU - Viikinkoski, Matti

AU - Rambaux, Nicolas

AU - Carry, Benoît

AU - Jorda, Laurent

AU - Ševeček, Pavel

AU - Birlan, Mirel

AU - Marchis, Franck

AU - Podlewska-Gaca, Edyta

AU - Asphaug, Erik

AU - Bartczak, Przemyslaw

AU - Berthier, Jérôme

AU - Cipriani, Fabrice

AU - Colas, François

AU - Dudziński, Grzegorz

AU - Dumas, Christophe

AU - Ďurech, Josef

AU - Ferrais, Marin

AU - Fétick, Romain

AU - Fusco, Thierry

AU - Jehin, Emmanuel

AU - Kaasalainen, Mikko

AU - Kryszczynska, Agnieszka

AU - Lamy, Philippe

AU - Le Coroller, Hervé

AU - Marciniak, Anna

AU - Michalowski, Tadeusz

AU - Michel, Patrick

AU - Richardson, Derek C.

AU - Santana-Ros, Toni

AU - Tanga, Paolo

AU - Vachier, Frédéric

AU - Vigan, Arthur

AU - Witasse, Olivier

AU - Yang, Bin

PY - 2020

Y1 - 2020

N2 - Asteroid (2) Pallas is the largest main-belt object not yet visited by a spacecraft, making its surface geology largely unknown and limiting our understanding of its origin and collisional evolution. Previous ground-based observational campaigns returned different estimates of its bulk density that are inconsistent with one another, one measurement1 being compatible within error bars with the icy Ceres (2.16 ± 0.01 g cm−3)2 and the other3 compatible within error bars with the rocky Vesta (3.46 ± 0.03 g cm−3)4. Here we report high-angular-resolution observations of Pallas performed with the extreme adaptive optics-fed SPHERE imager5 on the Very Large Telescope. Pallas records a violent collisional history, with numerous craters larger than 30 km in diameter populating its surface and two large impact basins that could be related to a family-forming impact. Monte Carlo simulations of the collisional evolution of the main belt correlate this cratering record to the high average impact velocity of ~11.5 km s−1 on Pallas—compared with an average of ~5.8 km s−1 for the asteroid belt—induced by Pallas’s high orbital inclination (i = 34.8°) and orbital eccentricity (e = 0.23). Compositionally, Pallas’s derived bulk density of 2.89 ± 0.08 g cm−3 (1σ uncertainty) is fully compatible with a CM chondrite-like body, as suggested by its spectral reflectance in the 3 μm wavelength region6. A bright spot observed on its surface may indicate an enrichment in salts during an early phase of aqueous alteration, compatible with Pallas’s relatively high albedo of 12–17% (refs. 7,8), although alternative origins are conceivable.

AB - Asteroid (2) Pallas is the largest main-belt object not yet visited by a spacecraft, making its surface geology largely unknown and limiting our understanding of its origin and collisional evolution. Previous ground-based observational campaigns returned different estimates of its bulk density that are inconsistent with one another, one measurement1 being compatible within error bars with the icy Ceres (2.16 ± 0.01 g cm−3)2 and the other3 compatible within error bars with the rocky Vesta (3.46 ± 0.03 g cm−3)4. Here we report high-angular-resolution observations of Pallas performed with the extreme adaptive optics-fed SPHERE imager5 on the Very Large Telescope. Pallas records a violent collisional history, with numerous craters larger than 30 km in diameter populating its surface and two large impact basins that could be related to a family-forming impact. Monte Carlo simulations of the collisional evolution of the main belt correlate this cratering record to the high average impact velocity of ~11.5 km s−1 on Pallas—compared with an average of ~5.8 km s−1 for the asteroid belt—induced by Pallas’s high orbital inclination (i = 34.8°) and orbital eccentricity (e = 0.23). Compositionally, Pallas’s derived bulk density of 2.89 ± 0.08 g cm−3 (1σ uncertainty) is fully compatible with a CM chondrite-like body, as suggested by its spectral reflectance in the 3 μm wavelength region6. A bright spot observed on its surface may indicate an enrichment in salts during an early phase of aqueous alteration, compatible with Pallas’s relatively high albedo of 12–17% (refs. 7,8), although alternative origins are conceivable.

U2 - 10.1038/s41550-019-1007-5

DO - 10.1038/s41550-019-1007-5

M3 - Letter

VL - 4

SP - 569

EP - 576

JO - Nature Astronomy

JF - Nature Astronomy

SN - 2397-3366

IS - 6

ER -