The violent collisional history of aqueously evolved (2) Pallas
Tutkimustuotos › › vertaisarvioitu
Standard
The violent collisional history of aqueously evolved (2) Pallas. / Marsset, Michaël; Brož, Miroslav; Vernazza, Pierre; Drouard, Alexis; Castillo-Rogez, Julie; Hanuš, Josef; Viikinkoski, Matti; Rambaux, Nicolas; Carry, Benoît; Jorda, Laurent; Ševeček, Pavel; Birlan, Mirel; Marchis, Franck; Podlewska-Gaca, Edyta; Asphaug, Erik; Bartczak, Przemyslaw; Berthier, Jérôme; Cipriani, Fabrice; Colas, François; Dudziński, Grzegorz; Dumas, Christophe; Ďurech, Josef; Ferrais, Marin; Fétick, Romain; Fusco, Thierry; Jehin, Emmanuel; Kaasalainen, Mikko; Kryszczynska, Agnieszka; Lamy, Philippe; Le Coroller, Hervé; Marciniak, Anna; Michalowski, Tadeusz; Michel, Patrick; Richardson, Derek C.; Santana-Ros, Toni; Tanga, Paolo; Vachier, Frédéric; Vigan, Arthur; Witasse, Olivier; Yang, Bin.
julkaisussa: Nature Astronomy, Vuosikerta 4, Nro 6, 2020, s. 569–576.Tutkimustuotos › › vertaisarvioitu
Harvard
APA
Vancouver
Author
Bibtex - Lataa
}
RIS (suitable for import to EndNote) - Lataa
TY - JOUR
T1 - The violent collisional history of aqueously evolved (2) Pallas
AU - Marsset, Michaël
AU - Brož, Miroslav
AU - Vernazza, Pierre
AU - Drouard, Alexis
AU - Castillo-Rogez, Julie
AU - Hanuš, Josef
AU - Viikinkoski, Matti
AU - Rambaux, Nicolas
AU - Carry, Benoît
AU - Jorda, Laurent
AU - Ševeček, Pavel
AU - Birlan, Mirel
AU - Marchis, Franck
AU - Podlewska-Gaca, Edyta
AU - Asphaug, Erik
AU - Bartczak, Przemyslaw
AU - Berthier, Jérôme
AU - Cipriani, Fabrice
AU - Colas, François
AU - Dudziński, Grzegorz
AU - Dumas, Christophe
AU - Ďurech, Josef
AU - Ferrais, Marin
AU - Fétick, Romain
AU - Fusco, Thierry
AU - Jehin, Emmanuel
AU - Kaasalainen, Mikko
AU - Kryszczynska, Agnieszka
AU - Lamy, Philippe
AU - Le Coroller, Hervé
AU - Marciniak, Anna
AU - Michalowski, Tadeusz
AU - Michel, Patrick
AU - Richardson, Derek C.
AU - Santana-Ros, Toni
AU - Tanga, Paolo
AU - Vachier, Frédéric
AU - Vigan, Arthur
AU - Witasse, Olivier
AU - Yang, Bin
PY - 2020
Y1 - 2020
N2 - Asteroid (2) Pallas is the largest main-belt object not yet visited by a spacecraft, making its surface geology largely unknown and limiting our understanding of its origin and collisional evolution. Previous ground-based observational campaigns returned different estimates of its bulk density that are inconsistent with one another, one measurement1 being compatible within error bars with the icy Ceres (2.16 ± 0.01 g cm−3)2 and the other3 compatible within error bars with the rocky Vesta (3.46 ± 0.03 g cm−3)4. Here we report high-angular-resolution observations of Pallas performed with the extreme adaptive optics-fed SPHERE imager5 on the Very Large Telescope. Pallas records a violent collisional history, with numerous craters larger than 30 km in diameter populating its surface and two large impact basins that could be related to a family-forming impact. Monte Carlo simulations of the collisional evolution of the main belt correlate this cratering record to the high average impact velocity of ~11.5 km s−1 on Pallas—compared with an average of ~5.8 km s−1 for the asteroid belt—induced by Pallas’s high orbital inclination (i = 34.8°) and orbital eccentricity (e = 0.23). Compositionally, Pallas’s derived bulk density of 2.89 ± 0.08 g cm−3 (1σ uncertainty) is fully compatible with a CM chondrite-like body, as suggested by its spectral reflectance in the 3 μm wavelength region6. A bright spot observed on its surface may indicate an enrichment in salts during an early phase of aqueous alteration, compatible with Pallas’s relatively high albedo of 12–17% (refs. 7,8), although alternative origins are conceivable.
AB - Asteroid (2) Pallas is the largest main-belt object not yet visited by a spacecraft, making its surface geology largely unknown and limiting our understanding of its origin and collisional evolution. Previous ground-based observational campaigns returned different estimates of its bulk density that are inconsistent with one another, one measurement1 being compatible within error bars with the icy Ceres (2.16 ± 0.01 g cm−3)2 and the other3 compatible within error bars with the rocky Vesta (3.46 ± 0.03 g cm−3)4. Here we report high-angular-resolution observations of Pallas performed with the extreme adaptive optics-fed SPHERE imager5 on the Very Large Telescope. Pallas records a violent collisional history, with numerous craters larger than 30 km in diameter populating its surface and two large impact basins that could be related to a family-forming impact. Monte Carlo simulations of the collisional evolution of the main belt correlate this cratering record to the high average impact velocity of ~11.5 km s−1 on Pallas—compared with an average of ~5.8 km s−1 for the asteroid belt—induced by Pallas’s high orbital inclination (i = 34.8°) and orbital eccentricity (e = 0.23). Compositionally, Pallas’s derived bulk density of 2.89 ± 0.08 g cm−3 (1σ uncertainty) is fully compatible with a CM chondrite-like body, as suggested by its spectral reflectance in the 3 μm wavelength region6. A bright spot observed on its surface may indicate an enrichment in salts during an early phase of aqueous alteration, compatible with Pallas’s relatively high albedo of 12–17% (refs. 7,8), although alternative origins are conceivable.
U2 - 10.1038/s41550-019-1007-5
DO - 10.1038/s41550-019-1007-5
M3 - Letter
VL - 4
SP - 569
EP - 576
JO - Nature Astronomy
JF - Nature Astronomy
SN - 2397-3366
IS - 6
ER -