TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Variance Stabilization for Noisy+Estimate Combination in Iterative Poisson Denoising

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut1086-1090
Sivumäärä5
JulkaisuIEEE Signal Processing Letters
Vuosikerta23
Numero8
DOI - pysyväislinkit
TilaJulkaistu - 1 elokuuta 2016
OKM-julkaisutyyppiA1 Alkuperäisartikkeli

Tiivistelmä

We denoise Poisson images with an iterative algorithm that progressively improves the effectiveness of variance-stabilizing transformations (VST) for Gaussian denoising filters. At each iteration, a combination of the Poisson observations with the denoised estimate from the previous iteration is treated as scaled Poisson data and filtered through a VST scheme. Due to the slight mismatch between a true scaled Poisson distribution and this combination, a special exact unbiased inverse is designed. We present an implementation of this approach based on the BM3D Gaussian denoising filter. With a computational cost at worst twice that of the noniterative scheme, the proposed algorithm provides significantly better quality, particularly at low signal-to-noise ratio, outperforming much costlier state-of-the-art alternatives.

Tutkimusalat

Julkaisufoorumi-taso

Latausten tilastot

Ei tietoja saatavilla