TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Zero-Shot Audio Classification Based On Class Label Embeddings

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Otsikko2019 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)
KustantajaIEEE
Sivut264-267
Sivumäärä4
ISBN (elektroninen)978-1-7281-1123-0
ISBN (painettu)978-1-7281-1124-7
DOI - pysyväislinkit
TilaJulkaistu - lokakuuta 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE Workshop on Applications of Signal Processing to Audio and Acoustics -
Kesto: 1 tammikuuta 1900 → …

Julkaisusarja

NimiIEEE Workshop on Applications of Signal Processing to Audio and Acoustics
ISSN (painettu)1931-1168
ISSN (elektroninen)1947-1629

Conference

ConferenceIEEE Workshop on Applications of Signal Processing to Audio and Acoustics
Ajanjakso1/01/00 → …

Tiivistelmä

This paper proposes a zero-shot learning approach for audio classification based on the textual information about class labels without any audio samples from target classes. We propose an audio classification system built on the bilinear model, which takes audio feature embeddings and semantic class label embeddings as input, and measures the compatibility between an audio feature embedding and a class label embedding. We use VGGish to extract audio feature embeddings from audio recordings. We treat textual labels as semantic side information of audio classes, and use Word2Vec to generate class label embeddings. Results on the ESC-50 dataset show that the proposed system can perform zero-shot audio classification with small training dataset. It can achieve accuracy (26 % on average) better than random guess (10 %) on each audio category. Particularly, it reaches up to 39.7 % for the category of natural audio classes.

Tutkimusalat

Julkaisufoorumi-taso