Liquid Flame Spray—A Hydrogen-Oxygen Flame Based Method for Nanoparticle Synthesis and Functional Nanocoatings†

Jyrki M. Mäkelä *, Janne Haapanen, Juha Harra, Paxton Juuti and Sonja Kujanpää

* Aerosol Physics Laboratory, Department of Physics, Tampere University of Technology, Finland

Abstract

In this review article, a specific flame spray pyrolysis method, Liquid Flame Spray (LFS), is introduced to produce nanoparticles using a coflow type hydrogen-oxygen flame utilizing pneumatically sprayed liquid precursor. This method has been widely used in several applications due to its characteristic features, from producing nanopowders and nanostructured functional coatings to colouring of art glass and generating test aerosols. These special characteristics will be described via the example applications where the LFS has been applied in the past 20 years.

Keywords: nanopowder, nanoparticle, functional coatings, flame spray pyrolysis, aerosol

1. Introduction

Nanoparticle powder materials are widely used in the modern industry, they have a variety of technological applications, they are commercially available but frequently custom made for each application using various fabrication methods (Kruis et al., 1998). Thermal gas phase synthesis and particularly aerosol techniques, offer ways to generate nanoparticles via dry industrial processes (Ulrich, 1971; Kruis et al., 1998). Especially flame methods are considered to be optimal for up-scaling (Kammler et al., 2001a; Stark and Pratsinis, 2002; Mueller et al., 2003). Thorough reviews on the flame spray pyrolysis (FSP) techniques for producing nanopowder have been made previously (Pratsinis, 1998; Mädler, 2004; Teoh et al., 2010). The FSP method generates well-defined nanoparticulate material which can be collected as a powder from the exhaust aerosol of the flame (Stepuk et al., 2013; Park and Park, 2015) or sprayed on a surface (Mishra et al., 2014). Apart from nanopowder production, recently the FSP and related techniques have also been used fairly efficiently in various types of coating applications (Mädel et al., 2006a; Tricoli et al., 2008; Pimenoff et al., 2009). With moderately high production rate (ca. g/min), the method is also applicable for covering large surface areas with thin nanoparticle coating. One of the most recent applications is coating of a heat-sensitive flexible roll-to-roll material, such as paper or paperboard, by a direct deposition of flame-generated nanoparticles in order to e.g. adjust the wetting properties of the substrate (Mäkelä et al., 2011; Haapanen et al., 2015).

In this review article, we introduce a distinct FSP technique, Liquid Flame Spray (LFS), which is based on a coflow type hydrogen-oxygen flame. It utilizes pneumatic spraying of a liquid precursor in the burner. Most often hydrogen is used as the atomizing gas, which having a high speed leads to a highly turbulent flame. The turbulent flame in the LFS is steady and robust, it does not require additional side flamelets and, due to the hydrogen, the precursor liquid itself does not need to be a fuel. The LFS has been widely used in several applications due to its characteristic features. Additionally to powder generation and coating applications, the LFS is also feasible as a test aerosol generator, since the utilization of hydrogen as the fuel, the exhaust gas does not contain excessive amounts of carbon containing components. In this review article, these special characteristics will be described via the example applications in which the LFS has been applied in the past 20 years.

2. Method description

Flame spray pyrolysis (FSP), or liquid feed flame spray pyrolysis, is usually defined as a method consisting of a spray of micron-sized liquid precursor droplets and a
flame reactor where the liquid precursor is assumed to evaporate, react and nucleate into nanoparticulate form, as described by e.g. Ulrich (1984), Pratsinis (1998) and Teoh et al. (2010). The history of the FSP has recently been described on a more general level by e.g. Purwanto et al. (2011) and Trommer and Bergmann (2015). The several alternative reaction schemes and particle formation mechanisms occurring in the FSP reactor when fabricating, e.g., metal oxide powder, has been discussed on a general level by Mädler (2004).

We define Liquid Flame Spray (LFS) as one certain type of flame spray pyrolysis, where the combustion gas and oxidizing gas are hydrogen and oxygen, respectively. It is specific, that the combustion gas is also acting as an atomizing gas and no other gaseous components are necessarily needed in the process. It is notable that hydrogen driven flames have also been widely used and studied elsewhere, and utilized by e.g. Sokolowski et al. (1977), Chung and Katz (1985), Cho and Choi (2000), Lee and Choi (2000), and Katusic and Krauss (2011).

The term ‘Liquid Flame Spray’ was originally used by Tikkanen et al. (1994), Tikkanen et al. (1997) and Gross et al. (1999) in connection with an application where art glass was coloured by nanoparticles deposited from the flame onto the surface of a molten glass item. In this article, we have maintained this definition that LFS consists of a liquid precursor atomization by one of the combustion gases, favourably H$_2$. This is not an unambiguous definition but it clarifies the division within the family of several flame spray pyrolysis modifications in literature, also described by e.g. Trommer and Bergmann (2015). With this in mind, we have collected Table 1 to list up papers dealing with LFS, or a very similar technique.

The basic characteristics of the LFS process have been presented by Tikkanen et al. (1997) and Aromaa et al. (2007), and the process fundamentals have been further discussed by Pitkänen et al. (2005), Keskinen et al. (2007a) and Keskinen et al. (2008). A schematic of the LFS-burner is presented in Fig. 1.

In the burner nozzle, the speed of the hydrogen flow, as an atomizing gas, is close to the speed of sound. This is advantageous for the atomizing process, as it assists in maximizing the kinetic energy input into the atomizer, where generally small precursor droplets are assumed to be favourable to facilitate evaporation from the droplets. Keskinen et al. (2008) have measured the droplet size distribution of the LFS atomizer with a conclusion that by number, the majority of the generated droplets are in the submicron size range, mass median diameter being at around 3–5 μm.

According to the data by Tikkanen et al. (1997), Pitkänen et al. (2005), Mäkelä et al. (2006) and Keskinen et al. (2007a), the maximum temperature of the LFS flame exceeds 2600 K. A temperature profile obtained with typical gas volume flow rates, ($\text{H}_2/\text{O}_2 = 20/10$ l/min) is presented in Fig. 2 (Pitkänen et al., 2005). This relatively high temperature level is, again, advantageous to facilitate precursor evaporation and decomposition. Eventually, it is apparent that the variety of feasible precursor liquids that are accessible to the LFS is fairly large.

In most of the studies on the LFS, the ratio of hydrogen and oxygen flow rates has been typically stoichiometric, 2/1, but it can also be easily varied. In the studies by both Cho and Choi (2000) and Lee and Choi (2000) on relatively similar oxy-hydrogen flames, the amount of hydrogen was decreased well below the stoichiometric value. When hydrogen flow rate was varied in the order of 10 % of $\text{O}_2$, both the flame temperature, increasing with the fraction of $\text{H}_2$, and the crystal structure of the generated particles were changed. Similar approach with varying $\text{H}_2/\text{O}_2$ ratio have been described also by e.g. Kammler et al. (2001b), Hannebauer and Mezel (2003), Dosev et al. (2006), Goldys et al., (2006), Jang et al. (2006), Pikhitsa et al., (2007). Sheen et al. (2009) used an oxy-hydrogen...
<table>
<thead>
<tr>
<th>Reference</th>
<th>Particle compound</th>
<th>Application</th>
<th>Specific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tikkanen et al., 1997, Surface and Coatings Technol.</td>
<td>Al₂O₃</td>
<td>Process fundamentals</td>
<td></td>
</tr>
<tr>
<td>Pitkänen et al., 2005, IFRF Combustion Journal</td>
<td>SiO₂</td>
<td>Process fundamentals</td>
<td></td>
</tr>
<tr>
<td>Aromaa et al., 2007, Biomolecular Engineering</td>
<td>TiO₂</td>
<td>Process fundamentals</td>
<td></td>
</tr>
<tr>
<td>Aromaa et al., 2013, A Nanotechnol Approach, Wiley</td>
<td>Ag, TiO₂</td>
<td>Process fundamentals</td>
<td></td>
</tr>
<tr>
<td>Chung and Katz, 1985, Combustion and Flame</td>
<td>SiO₂</td>
<td>Process fundamentals</td>
<td>H₂O₂/Ar counterflow flame</td>
</tr>
<tr>
<td>Harra et al., 2015, Aerosol Science and Technol.</td>
<td>SiO₂, TiO₂</td>
<td>Process fundamentals</td>
<td>Powder form LFS</td>
</tr>
<tr>
<td>Harra et al., 2016, AIChE Journal</td>
<td>Al₂O₃</td>
<td>Process fundamentals</td>
<td>Residual particles</td>
</tr>
<tr>
<td>Keskinen et al., 2008, Atomization and Sprays</td>
<td>ZrO₂</td>
<td>Process fundamentals</td>
<td>Spray droplets</td>
</tr>
<tr>
<td>Lee and Choi, 2000, Journal of Aerosol Science</td>
<td>SiO₂</td>
<td>Process fundamentals</td>
<td>SiCl₄-precursor</td>
</tr>
<tr>
<td>Keskinen et al., 2004, Journal of Materials Res.</td>
<td>Ag, Pd</td>
<td>Powder generation</td>
<td></td>
</tr>
<tr>
<td>Sokolowski et al., 1977, Journal of Aerosol Science</td>
<td>Al₂O₃</td>
<td>Powder and aerosol generation</td>
<td></td>
</tr>
<tr>
<td>Harra et al., 2013, Powder Technology</td>
<td>FeₙOₙ</td>
<td>Powder generation</td>
<td>Photocatalysis</td>
</tr>
<tr>
<td>Hartmann et al., 1985, US Patent</td>
<td>TiO₂, SiO₂, Al₂O₃</td>
<td>Powder generation</td>
<td></td>
</tr>
<tr>
<td>Keskinen et al., 2009, Journal of Applied Physics</td>
<td>SnO₂</td>
<td>Powder generation</td>
<td>Gas sensors</td>
</tr>
<tr>
<td>Mäkelä et al., 2004, Journal of Materials Science</td>
<td>Ag, Pd, FeₙOₙ</td>
<td>Powder generation</td>
<td></td>
</tr>
<tr>
<td>Nikkanen et al., 2008, Res. Lett. Nanotechnol</td>
<td>Al₁ₓOₙ, Zr₁ₓOₙ, Fe₁ₓOₙ</td>
<td>Powder generation</td>
<td></td>
</tr>
<tr>
<td>Nikkala et al., 2014, Powder Technology</td>
<td>Al₁ₓOₙ, Zr₁ₓOₙ, Fe₁ₓOₙ</td>
<td>Powder generation</td>
<td></td>
</tr>
<tr>
<td>Dosev et al., 2006, J Aerosol Sci.</td>
<td>EuₙYₙOₙ</td>
<td>Powder generation</td>
<td>Photoluminescence</td>
</tr>
<tr>
<td>Keskinen et al., 2007b, Catalysis Letters</td>
<td>Pd, Al₂O₃, La₂O₃</td>
<td>Nanoparticle suspension</td>
<td>Catalysis</td>
</tr>
<tr>
<td>Mäkelä et al., 2006, Materials Letters</td>
<td>TiO₂</td>
<td>Deposit</td>
<td></td>
</tr>
<tr>
<td>Sainiemi et al., 2007, Nanotechnology</td>
<td>SiO₂</td>
<td>Deposit</td>
<td>Etching mask</td>
</tr>
<tr>
<td>Thybo et al., 2004, J Catalysis</td>
<td>Au/TiO₂</td>
<td>Deposit</td>
<td>Catalysis</td>
</tr>
<tr>
<td>Keskinen et al., 2007a, J. of Nanoparticle Research</td>
<td>Ag, TiO₂</td>
<td>Deposit, Aerosol</td>
<td>Binary particles</td>
</tr>
<tr>
<td>Tikkanen et al., 1994, J. of Non-Crystalline Solids</td>
<td>CuO</td>
<td>Class colouring</td>
<td>Coloured glass powder in liquid</td>
</tr>
<tr>
<td>Beneq Oy, 2016, Glass Coloration</td>
<td>CuO, CuO₄, CuO, Ag</td>
<td>Glass colouring</td>
<td></td>
</tr>
<tr>
<td>Hotoleanu et al., 2002, NOC 2002</td>
<td>SiO₂, Al₂O₃, Er₂O₃</td>
<td>Optical fiber</td>
<td></td>
</tr>
<tr>
<td>Rajala et al., 2003, Rev. Advanced Materials Sci.</td>
<td>La₂O₃, SiO₂, Er₂O₃, Al₂O₃</td>
<td>Optical fiber</td>
<td>Glass</td>
</tr>
<tr>
<td>Tammela et al., 2006, Proceedings of SPIE 6116</td>
<td>SiO₂, Al₂O₃, Er₂O₃</td>
<td>Optical fiber</td>
<td></td>
</tr>
<tr>
<td>Keskinen et al., 2006, Catalysis Letters</td>
<td>Ag, TiO₂</td>
<td>Functional coating</td>
<td>Anti-bacterial</td>
</tr>
<tr>
<td>Ejenstam et al., 2015b, Applied Surface Science</td>
<td>TiO₂</td>
<td>Functional coating</td>
<td>Corrosion protection</td>
</tr>
<tr>
<td>Piispanen et al., 2011, Applied Surface Science</td>
<td>TiO₂</td>
<td>Functional coating</td>
<td>Glass</td>
</tr>
<tr>
<td>Pimenoff et al., 2009, Thin Solid Films</td>
<td>TiO₂</td>
<td>Functional coating</td>
<td>Glass, Wetting</td>
</tr>
<tr>
<td>Stepien et al., 2013b, Wear</td>
<td>TiO₂</td>
<td>Functional coating</td>
<td>Mechanical</td>
</tr>
<tr>
<td>Stepien et al., 2013c, Nanoscale Research Letters</td>
<td>TiO₂</td>
<td>Functional coating</td>
<td>Mechanical</td>
</tr>
<tr>
<td>Valtakari et al., 2016, Nordic Pulp and Paper Res J.</td>
<td>TiO₂</td>
<td>Functional coating</td>
<td>Microfluidistics on board</td>
</tr>
<tr>
<td>Songok et al., 2014, ACS Appl. Mater. and Interfaces</td>
<td>TiO₂</td>
<td>Functional coating</td>
<td>Microfluidistics on paper</td>
</tr>
<tr>
<td>Keskinen et al., 2005, The Electrochemical Society</td>
<td>TiO₂</td>
<td>Functional coating</td>
<td>Photocatalysis</td>
</tr>
<tr>
<td>Valtakari et al., 2013, J Print Media and Technol. Res.</td>
<td>TiO₂</td>
<td>Functional coating</td>
<td>Printing</td>
</tr>
<tr>
<td>Aromaa et al., 2012, J Aerosol Science</td>
<td>TiO₂</td>
<td>Functional coating</td>
<td>Wetting</td>
</tr>
<tr>
<td>Mäkelä et al., 2011, Aerosol Science and Technology</td>
<td>TiO₂</td>
<td>Functional coating</td>
<td>Wetting</td>
</tr>
<tr>
<td>Moghaddam et al., 2015, Holzforschung</td>
<td>TiO₂</td>
<td>Functional coating</td>
<td>Wetting</td>
</tr>
<tr>
<td>Stepien et al., 2011, Applied Surface Science</td>
<td>TiO₂</td>
<td>Functional coating</td>
<td>Wetting</td>
</tr>
<tr>
<td>Stepien et al., 2013a, Langmuir</td>
<td>TiO₂</td>
<td>Functional coating</td>
<td>Wetting</td>
</tr>
<tr>
<td>Aromaa et al., 2012, J Aerosol Science</td>
<td>TiO₂</td>
<td>Functional coating</td>
<td>Wetting</td>
</tr>
<tr>
<td>Mäkelä et al., 2011, Aerosol Science and Technology</td>
<td>TiO₂</td>
<td>Functional coating</td>
<td>Wetting</td>
</tr>
<tr>
<td>Stepien et al., 2011, Applied Surface Science</td>
<td>TiO₂</td>
<td>Functional coating</td>
<td>Wetting</td>
</tr>
<tr>
<td>Stepien et al., 2013a, Langmuir</td>
<td>TiO₂</td>
<td>Functional coating</td>
<td>Wetting</td>
</tr>
<tr>
<td>Aromaa et al., 2012, J Aerosol Science</td>
<td>TiO₂</td>
<td>Functional coating</td>
<td>Wetting</td>
</tr>
<tr>
<td>Stepien et al., 2013b, Colloid and Polymer Science</td>
<td>TiO₂</td>
<td>Functional coating</td>
<td>Wetting</td>
</tr>
<tr>
<td>Stepien et al., 2014a, Nordic Pulp and Paper Res J.</td>
<td>SiO₂, TiO₂</td>
<td>Functional coating</td>
<td>Wetting</td>
</tr>
<tr>
<td>Stepien et al., 2014b, Cellulose</td>
<td>TiO₂</td>
<td>Functional coating</td>
<td>Wetting</td>
</tr>
<tr>
<td>Haapanen et al., 2015, Mater. Chem. Physics</td>
<td>SiO₂, TiO₂</td>
<td>Functional coating</td>
<td>Wetting</td>
</tr>
<tr>
<td>Teisala et al., 2012, Langmuir</td>
<td>TiO₂</td>
<td>Functional coating</td>
<td>Wetting; Surface chemistry</td>
</tr>
<tr>
<td>Stepien et al., 2012a, Surface and Coatings Technol.</td>
<td>TiO₂</td>
<td>Functional coating</td>
<td>Wetting; Surface chemistry</td>
</tr>
<tr>
<td>Stepien et al., 2012b, Applied Surface Science</td>
<td>SiO₂, TiO₂</td>
<td>Functional coating</td>
<td>Wetting; Surface chemistry</td>
</tr>
</tbody>
</table>
flame to produce coated particles of SnO$_2$, SiO$_2$ and TiO$_2$, in binary combinations. Alternatively, if an excess amount of hydrogen will be injected, then the flame will create reducing conditions. In the study by Aromaa et al. (2012), it was found out that an excess amount of hydrogen in the flame may have an effect on the surface chemistry of the generated particles, and the amount of carbon/hydrocarbons on the surface. But in their case the product Ti-compound remained still in the form of TiO$_2$. Provided that the hydrogen flow is kept constant, size and temperature of the flame can be affected also by varying the solvent feed rate (Mäkelä et al., 2011), especially for the alcohol based precursors.

The atomization of the liquid precursor usually brings along another issue: the fate of the residue of each precursor droplet sprayed into the flame (Strobel and Pratsinis, 2011; Rosebrock et al., 2013; 2016). If the precursor liquid is sufficiently volatile, the original droplet will evaporate and a reaction in the gas phase will take place producing nanoparticles, as expected. If the precursor liquid is not volatile enough, then a liquid-to-solid reaction will take place in the droplet resulting in the formation of residual particles, as described in Fig. 3.

Depending on the properties of the liquid precursor, e.g. volatility, concentration and temperature of the decomposition, the remaining residual particles may be moderately large. In the worst case, the residual particle diameter may remain in the order of 100 nm–1 μm. This is not by any means advantageous for the nanopowder production, since the specific surface area of the powder will inevitably be decreased. The important problem has recently been solved for the case of conventional methane/oxygen FSP-flame by introducing specific chemical components in the precursor to induce droplet explosion (Strobel and Pratsinis, 2011; Rosebock et al., 2013; Rosebock et al., 2016). In their case, DEGBE (diethylene glycol monobutyl ether) or EHA (2-ethylhexanoic acid) were introduced into the precursor liquid, using concentration levels of 50 % for these chemicals. In the case of our hydrogen driven LFS, it was recently found out that already less than 5 % of EHA in the precursor solution (containing aluminum nitrate) may be sufficient to induce the desired explosion of the precursor droplets, and thereby avoiding residual particle formation (Harra et al., 2016).

3. Applications

3.1 Nanopowder generation

The most widely used application of the FSP is the generation of nanopowders (Ulrich, 1971; Ulrich, 1984). The product material is most often collected by bag filters consisting of e.g. glass fiber material (Kammler et al., 2001a; Stark and Pratsinis, 2002). A commercial process by Degussa/Evonik utilizes a hydrogen-oxygen flame, similarly to the LFS, but typically gaseous precursors, such as SiCl$_4$ and TiCl$_4$ (Hartmann et al., 1995). Still, Evonik also uses a liquid fed FSP system, with a preference of hydrogen gas as a fuel, e.g. to produce nanopowders containing lithium compounds (Katusic and Kress, 2011).

The LFS has been used in nanopowder production for e.g. single component (Tikkanen et al., 1997; Mäkelä et al., 2004), binary component (Keskinen et al., 2004; Keskinen et al., 2005) and multicomponent nanopowders (Nikkanen et al., 2008; Nikkanen et al., 2014). In these studies, the particulate matter was collected from the exhaust flow of the flame using an electrostatic precipitator.

Nikkanen et al. (2014) used collected and compacted composite nanopowder made by the LFS to fabricate carbon nanotubes within the porous powder sample. The LFS generated nanopowder has also been used for fabricating magnetic composite nanoparticles in a tube furnace (Harra et al., 2013), in order to produce photocatalytic powder for water purification, and for a study on coating of ceramic nanoparticles with silver in a tube furnace (Harra et al., 2015).

One consequence of the fuel being hydrogen is that the end product will be mostly water vapour. This fact can be utilized in the powder collection, as described by Keskinen.
The principle is illustrated in Fig. 4. By introducing a cold walled chamber around the flame, both the nanoparticles and the water vapor can be collected into a suspension via combined nanoparticle thermophoresis and vapor condensation, both of which tend to transport the material towards the cooled walls.

3.2 Test aerosol generation

Aerosol nanoparticle sources with controlled particle size and output concentration are useful for generating test aerosols for e.g. instrument calibration or filter testing (Kulkarni et al., 2011). Also, with combined aerosol measurement and modeling of flow field and aerosol particle dynamics, the data describing the evolution of the aerosol emitted from a localized emission, can be used to assess the exposure of e.g. engineered nanoparticles in a workplace in different release scenarios (Brouwer et al., 2009).

Among the many methods to generate aerosol nanoparticles (Kulkarni et al., 2011), Liquid Flame Spray can be considered an openly operating particle source in an atmospheric pressure. In this respect, the flame can be considered as an exemplary case of a nanoparticle process or potentially also an aerosol source emulating airborne engineered nanoparticle (ENP) release in the workplace. In a typical scenario of occupational health, the particles are usually emitted from the process due to leaks in the ducts or processing chambers or other unintentional release from the process line into the laboratory. Flame technique is one of the most up-scalable techniques for generating nanoparticles to fill large containers for high-volume use of ENPs, or e.g. for arranging a flow split into several exposure chambers. The in situ production of nanoparticles in large quantities with a flame, with natural suspension into the air, is a much simpler and effective way to generate a well-defined nanoaerosol than to start with a commercial nanopowder and then de-agglomerate and disperse it into an airborne suspension (Mülhopt et al., 2007).

Monsé et al. (2013; 2014) have characterized the LFS flame and its gaseous emissions in order to test and use it for exposure assessment. The CO₂-emission of the LFS flame is rather small, since the only carbon source is the precursor itself (including solvent). This is advantageous compared to the conventional flames utilizing e.g. methane or acetylene. However, a slight disadvantage in this application arises from nitrogen oxides. If the LFS flame operates normally in the free atmospheric conditions, having immediate access to ambient oxygen in the surroundings of the flame, then, due to the thermal reactions, the NOₓ level in the exhaust gas can exceed 1.5 ppm (Monsé et al., 2014). Whereas, the available excess oxygen is typically considered to be advantageous for the nanopowder generation to ensure complete oxidation of the product (Katusic and Kress, 2011), here the excess oxygen is not necessarily crucial. Monsé et al. (2014) succeeded in decreasing the NOₓ concentration level below the required 500 ppb by arranging a sheath flow of inert gas around the flame. In their case, the argon flow introduced from the outermost ring in the annular coflow burner kept the flame apart from the oxygen of the ambient air, avoiding excess NOₓ formation.

Flame generator can also be used as a test aerosol source in several other purposes such as instrument testing (Mäkelä et al., 2009; Asbach et al., 2009) or filter loading experiments. Once the nanoparticle aerosol has been generated, both large scale industrial filters and smaller scale personal gas mask filters could be considered. In two recent studies (Koivisto et al., 2012; Koivisto et al., 2015), a potential inhalation dose and performance of a loose fitting respiratory filter were evaluated using particle size distribution and concentration data obtained from a LFS generated aerosol in a test room.

3.3 Accumulation of particle deposit

In some applications, as in catalysis, photocatalysis, or gas measurement, granular highly porous material is needed, in order to have large surface area available for reaction to occur on. However, these materials often require that certain degree of solidity needs to be maintained. The porous material for, e.g., gas sensing can be prepared by creating a viscous paste which contains the nanopowder and then performing an appropriate heat treatment to form the final material (Keskinen et al., 2009). The material could also be accumulated by direct
deposition of the nanoparticles from the gas phase (Mädler et al., 2006a; Castillo et al., 2014; Liu et al., 2016).

In our case, the nanoparticle deposition process from the flame onto the substrate is mainly a combination of thermophoresis and diffusion through the boundary layer above the surface:

\[ J = -D \frac{dN}{dx} - \frac{0.55N_{\text{gas}}}{\rho_{\text{gas}}} \frac{dT}{dx} \]  

(1)

where \( N \) denotes the particle number concentration, \( x \) distance towards the substrate, \( \gamma \) and \( \rho \) the dynamic viscosity and density of the gas, respectively, and \( D \) denotes the diffusion coefficient of the particles.

It is convenient to categorize the arrangements of the deposited nanoparticles on the substrate, depending on the morphology of the generated porous material. Fig. 5 illustrates schematics of some main alternatives. The particles are arranged on the substrate as a sub-monolayer either clearly separate (Fig. 5a) or somewhat closer and having contact with each other (Fig. 5b). Sainiemi et al. (2007) utilized these two options to create SiO_{2}-nanoparticle mask for deep reactive ion etching of silicon wafer in order to fabricate nanopillars on the wafer surface. The particles may also form a porous layer either without sintering (Fig. 5c) or with sintering (Fig. 5d), or even form a thicker layer (Fig. 5e). Finally, the particles may also be embedded in the substrate (Fig. 5f), as may occur with softer substrates, such as e.g. polymer or molten glass. The heat of the flame assists the process keeping the substrate soft and thereby enhancing particle penetration into the substrate material. Using polymers as a deposition substrate for nanoparticles to fabricate polymer nanocomposites has a high potential for many applications. Recently e.g. plasmonic and phosphorescent-superparamagnetic actuators have been prepared by depositing nanoparticles from the flame into a polymer film (e.g. PMMA) and covering the nanoparticle film with spin coated layer of the same polymer as the substrate, resulting in a nanoparticle layer fully embedded in the polymer (Sotiriou et al., 2013). Also conductive polymer nanocomposites have been fabricated with similar process (Blattmann et al., 2015).

Of the alternatives described in Fig. 5a–f, the thin particle layers, such as shown in Fig. 5a–d, are possible to be deposited practically onto any material, since the interaction time with the flame and substrate can be very short. Two practical examples have been presented in Fig. 6a and Fig. 6b. If thicker nanoparticle layers are required, then high nanoparticle concentrations, intensive particle fluxes or longer deposition times are needed. For longer deposition time, it is often also required that the substrate stands heat of the flame relatively well.

The direct deposition process of the LFS generated nanoparticles, as described above, has been studied by Mäkelä et al. (2006), Keskinen et al. (2006) and Keskinen et al. (2007a). It is apparent that along with the accumulation of the nanoparticles, the porous material will be gradually deformed due to the heat treatment. In case of Mäkelä et al. (2006), it was observed that the collected TiO_{2}, which originally consisted mostly of anatase, had a tendency to be converted into rutile due to the heat treatment during the deposition process. In Fig. 6, a layer of deposited SiO_{2}-Al_{2}O_{3} (90 %/10 %) is shown in different
The sintering of the nanoparticles in a similar process, while fabricating nanostructured porous photocatalytic TiO₂, has been further studied by Thimsen and Biswas (2007) and Thimsen et al. (2008), with a conclusion that the eventual sintering of the porous material under the flame is governed by both the sample temperature and the primary particle size, sintering being enhanced with increasing temperature and with decreasing primary particle size.

It is notable that this deposit of our LFS flame generated particles, shown in Fig. 6e–f, has a strikingly similar structure to the one presented by Mädler et al. (2006a), where also thermophoresis is the dominating deposition mechanism, but clearly differs from the more tree-like structure presented by Castillo et al. (2014), where diffusion clearly is the dominating deposition mechanism.

The assembling of the porous nanoparticle layer is highly dependent on the deposited particle morphology and the Peclet number of the flow field. (Mädler et al. 2006; Nasiri et al., 2015) The layer thickness and porosity can be individually controlled as shown by e.g. Mädler et al. (2006b). Ballistic deposition of individual particles produces denser layers than those produced by letting agglomerates with low fractal dimension diffuse to the surface.

Comparison of the cross-sectional SEM image of LFS-made TiO₂ layer by Stepień et al. (2013c) and simulations made by Mädler et al. (2006b) indicates that the LFS-made porous TiO₂-nanoparticle layer consists of deposits of multiple agglomerates produced by flame process. Deposited agglomerates consist of several primary nanoparticles, forming thick layer of nanoparticles with high porosity.

3.4 Glass colouring and processing

In the early history of the LFS, properties of glass material were affected by the deposition of flame generated nanoparticles onto its surface. Here, both art glass colouring and amplifying optical fibre are discussed.

In Fig. 7a and Fig. 7b the principle of the art glass colouring has been presented. During the high temperature process in molten glass, it is assumed that the nanoparticle will first deposit and plunge into the glass (according to Fig. 5f), and then the metal compound will be dissolved into the glass matrix, and finally the ions will be diffused inside the glass material. A typical colouring agent is CoO₃, which creates a strong blue colour within the soda-lime-silica glass due to dissolved Co³⁺ ions (Fig. 7b, Gross et al., 1999). The wavelength from the incoming light, which corresponds to the electronic transition of the metal ion, is absorbed in the glass and thus the imparting colour will be made up of the remaining wavelengths in the visible spectrum (Bamford, 1977). However, compounds such as silver (Fig. 7c–e) and gold (Fig. 7f) are known to dissolve and re-nucleate into reduced nanoparticles. There the colour effect will arise from light scattering from the nanoparticles in the glass matrix, being eventually dependent on the final size of the noble metal nanoparticles. In this application, where the LFS flame is in close contact with the glass substrate, the heat from the flame is an essential enabling feature of the process. The heat prevents the molten glass from cooling down temporarily and it also intensifies both the particle diffusion and dissolving inside the glass material. The LFS is also commercially applied in float glass colouring under the trademark nHALO© (Beneq, 2016).

There are also several other LFS applications related to optics, such as doped optical fiber fabrication (Rajala et al., 2003; Tammela et al., 2006), where one needs to be able to control the refractive index of the material (Becker et al., 1999). Here, aluminum, phosphorus and germanium are most often used as additives to silica. Furthermore, the dopant, such as erbium, which is crucial for the amplifying property, also needs to be injected to the fiber preform material. This is most conveniently arranged by a flame-driven nanoparticle deposition process according to
3.5 Functional coatings

In the past 10 years, the Liquid Flame Spray method has been applied to prepare functional coatings by utilizing direct deposition of the nanoparticles from the flame onto the substrate. One of the conventional uses of nanoparticles is catalysis, as described by e.g. Johannessen et al. (2004), where methane was used as fuel to fabricate noble metal based nanoparticles. The LFS has also been used in a somewhat similar application (Keskinen et al., 2005; Keskinen et al., 2014). Functional coatings have been fabricated by Keskinen et al. (2005) and Keskinen et al. (2006).

Recently, a slightly less conventional application of the LFS method as a functional coating process has been introduced, where TiO$_2$ or SiO$_2$ nanoparticles are deposited onto heat sensitive materials, such as paper or paperboard, in a roll-to-roll scheme, in order to control the wetting of the surface (Teisala et al., 2010; Mäkelä et al., 2011; Stepien et al., 2011; Teisala et al., 2014a; Haapanen et al., 2015). Here, a layer of nanoparticles, with structure and morphology described in Fig. 5e has been created. The feasible line speeds for the process are between 50–500 m/min. In the process, the LFS flame is directed towards the moving paperboard. From the model calculations (Aromaa et al., 2012) and from the paper surface temperature measurements using a pyrometer, the surface temperature of the paperboard has been estimated to remain below 300 °C. The nanoparticle flux from the flame (T = 600–800 °C) onto the paperboard is estimated to be caused mostly by thermophoresis. A SEM-graph of the porous layer, consisting of ca. 20 nm TiO$_2$ nanoparticles, is shown in Fig. 8. According to the analysis of Stepien et al. (2013a), the thickness of the porous coating in the as-prepared form is approximately 600 nm, but the layer can be solidified by a heavy mechanical compression.

Both superhydrophilic (Tuominen et al., 2014) and superhydrophobic (Teisala et al., 2012; Stepien et al., 2012a; Stepien et al., 2012b; Stepien et al., 2013a), coatings have been fabricated using SiO$_2$ and TiO$_2$, respectively. Additionally, their mechanical properties have been tested (Stepien et al. 2013b; Stepien et al. 2013c), and surface chemistry have been characterized (Stepien et al., 2012a; Stepien et al., 2013a). The results indicate that to achieve, e.g., a full superhydrophobicity on the coating, both surface chemistry and a hierarchical micro-nanostructure is required (Teisala et al., 2012; 2013b). Most interestingly, it is possible to convert the superhydrophobic TiO$_2$ surface reversibly into superhydrophilic with UV illumination, and back to superhydrophobic with a heat treatment (Teisala et al., 2013a; Teisala et al., 2014b). Surface analysis has shown (Stepien et al., 2013a) that when the coating has been deposited on a paper or a paperboard, there seems to be a layer of carbonaceous compounds on the TiO$_2$ nanoparticles, which will be chemically converted due to UV. The result has been interpreted so that the flame vaporises some carbonaceous material from the substrate, which will re-condense on the particles, and thereby the surface of the nanoparticles is chemically altered. This indicates that the coating process itself may play a central role in affecting the functionality of the coating.

This control of the switchable surface wetting of heat sensitive substrates, between superhydrophilic and superhydrophobic states, can be further applied in e.g. printability (Valtakari et al., 2013) and microfluidistic design on roll-to-roll materials (Songok et al., 2014; Valtakari et al., 2016). Also, hydrophobisation of the surface of wood materials is an important field (Moghaddam et al., 2013; Moghaddam et al., 2014), where direct nanoparticle deposition from the LFS has also been applied successfully (Moghaddam et al., 2015; Moghaddam et al., 2016). Superhydrophobic coatings can also be used to affect the corrosion properties of the surface (Ejenstam et al., 2013; Ejenstam et al., 2015a; Ejenstam et al., 2016), with a potential application field also for nanoparticle coatings (Ejenstam et al., 2015b).
4 Conclusion

We have presented results obtained during the past years on the several applications of the Liquid Flame Spray. As one type of a flame spray pyrolysis, it may be considered to be a conventional method for generating nanopowders from liquid precursors, even though it can utilize a wider range of available precursor compounds due to the help from the hydrogen combustion. Furthermore, due to its characteristics it can easily be applied in direct nanoparticle coating process of even a larger area, and moreover, the combustion product being water vapour instead of carbonaceous compounds gives a clear advantage in specific applications.

Acknowledgements

The authors wish to acknowledge funding from Academy of Finland, project nLABS 2014–2018, and from Finnish Funding Agency for Innovation (Tekes), project NANORATA2 (2011–2014) grant no. 40094/11. The research leading to these results has also received funding from European Union’s Seventh Framework Programme FP7/2007–2013/under REA grant agreements n° [CP-IP 211464-2] (NANODEVICE 2009–2013) and n° [280765] (BUONAPART-E 2012–2016). The article reflects only the authors’ view and that the Union is not liable for any use that may be made of the information contained therein.

References

Haapanen J., Aromaa M., Teisala H, Tuominen M., Stepien M., Saarinen J.J., Heikkilä M.J., Toivakka M., Kuusipalo J., Mäkelä J.M., Binary TiO₂/SiO₂ nanoparticle coating for...


Jyrki M. Mäkelä et al. / KONA Powder and Particle Journal No. 34 (2017) 141–154


Mäkelä J.M., Unpublished results, Department of Physics, Tam-


Sheen S., Yang S., Jun K., Choi M., One-step flame method for...


Ulrich D.G., Theory of particle formation and growth in oxide
Author's short biography

Jyrki M. Mäkelä

Dr. Jyrki M. Mäkelä is Professor at the Department of Physics, Tampere University of Technology, Finland. He graduated from University of Helsinki, Department of Physics in 1987 and took the degree of PhD at the same department in 1992. During 1992–2000 he worked in the Aerosol Physics Group at University of Helsinki on nanoparticle measurement, mainly in chamber studies and for atmospheric nanoparticle formation. In 2000 he moved to Tampere University of Technology, TUT, as a Lecturer and received a full Professorship there in 2010. Since 2000 he has been leading the Aerosol Synthesis Group at TUT, Aerosol Physics Laboratory, focusing on nanoparticle generation and fabrication of functional surfaces via aerosol synthesis. During 2014–2016 he acted as the Head of the Department of Physics at TUT.

Janne Haapanen

Janne Haapanen is currently working as a researcher and a doctoral student at Tampere University of Technology, Department of Physics, Aerosol Physics Laboratory. He has been working in Prof. Mäkelä’s Aerosol Synthesis group since 2009. He received his MSc (Tech.) degree in Technical Physics in 2010 and currently working a researcher and a doctoral student in the same research group. During 2015–2016, he worked as a visiting researcher at Danish Technological Institute, Aarhus, Denmark and at Technical University of Denmark, Kgs. Lyngby, Denmark for 7 months. Main topic of research is functional nanocoatings fabricated by Liquid Flame Spray (LFS) method. He has done research in antibacterial, photocatalytic, superhydrophobic, superhydrophilic, ice-phobic and superamphiphobic nanocoatings by combining several methods with LFS, such as plasma treatment, ALD and silanization.

Juha Harra

Dr. Juha Harra is currently a postdoctoral researcher at the Department of Physics in Tampere University of Technology. He received his Master of Science (Technology) and Doctor of Science (Technology) degrees in Technical Physics from Tampere University of Technology in 2010 and 2015, respectively. During 2016, he worked six months as a visiting scientist in SP Technical Research Institute of Sweden at the Department of Chemistry, Materials and Surfaces in Stockholm. His main research interest is in aerosol physics, including nanoparticle synthesis using gas-phase techniques, real-time measurement of aerosol particles, and particle deposition for functional nanocoatings.
**Author's short biography**

**Paxton Juuti**

Paxton Juuti is presently studying Technical Physics as a doctoral student at the Department of Physics, Tampere University of Technology, Finland. He received his BSc (Tech.) degree in 2013 on the topic of nanoparticle sintering and MSc (Tech.) degree in 2015 on real-time monitoring of aerosol synthesis. His research interests include material functionalization via aerosol routes and monitoring of aerosol processes.

**Sonja Kujanpää**

MSc (Tech.) Sonja Kujanpää graduated from Tampere University of Technology majoring in Advanced Engineering Physics in 2016. The topic of her thesis was “Determination of the mass size distribution of the industrial nanoparticle application produced aerosol”. Today she works as a teacher of mathematical subjects in comprehensive school.