Digital hydraulic multi-pressure actuator – the concept, simulation study and first experimental results

Citation

Year
2017

Version
Publisher’s PDF (version of record)

Link to publication
TUTCRIS Portal (http://www.tut.fi/tutcris)

Published in
International Journal of Fluid Power

DOI
10.1080/14399776.2017.1302775

Copyright
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

License
CC BY-NC-ND

Take down policy
If you believe that this document breaches copyright, please contact cris.tau@tuni.fi, and we will remove access to the work immediately and investigate your claim.
Digital hydraulic multi-pressure actuator – the concept, simulation study and first experimental results

Mikko Huova, Arttu Aalto, Matti Linjama, Kalevi Huhtala, Tapio Lantela & Matti Pietola

To cite this article: Mikko Huova, Arttu Aalto, Matti Linjama, Kalevi Huhtala, Tapio Lantela & Matti Pietola (2017): Digital hydraulic multi-pressure actuator – the concept, simulation study and first experimental results, International Journal of Fluid Power, DOI: 10.1080/14399776.2017.1302775

To link to this article: http://dx.doi.org/10.1080/14399776.2017.1302775

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

Published online: 29 Mar 2017.

Submit your article to this journal

Article views: 76

View related articles

View Crossmark data
Digital hydraulic multi-pressure actuator – the concept, simulation study and first experimental results

Mikko Huovaa, Arttu Aaltoa, Matti Linjamaa, Kalevi Huhtala, Tapio Lantela and Matti Pietolab

ARTICLE HISTORY
Received 29 October 2015
Accepted 2 March 2017

ABSTRACT
The decentralisation of hydraulic systems is a recent trend in industrial hydraulics. Speed variable drive is one concept where an actuator is driven by an integrated pump, thus removing the need for control valves or complex centralised variable displacement hydraulic units and long pipelines. The motivation for the development is the need to improve the energy efficiency and flexibility of drives. A similar solution to mobile hydraulics is not currently available. This paper studies a digital hydraulic approach, which includes a local hydraulic energy storage located together with the actuator, the means to convert efficiently energy from the storage to mechanical work and a small start-/stop-type pump unit sized according to mean power. The simulation results and first experimental results show that the approach has remarkable energy saving potential compared to traditional valve controlled systems, but further research is needed to improve the controllability.

Introduction

Many traditional hydraulic systems are based on a centralised layout, where a single supply unit feeds a set of control valves, which in turn control the movement of multiple actuators. The supply unit is dimensioned so that the peak power requirements of simultaneously operating actuators are fulfilled. These systems have unique layouts and are specifically designed for a single purpose.

The flexibility and ease of commissioning in industrial and mobile hydraulic systems would improve greatly if the actuators and their supply systems were integrated into one unit with interfaces that are simple to work with. In such a system the change of a single actuator or addition of an actuator would not compromise the functionality or efficiency of the rest of the system. Industrial hydraulics is moving towards this direction through the introduction of speed-variable drives. However, mobile hydraulic systems, which are often characterised by high inertia loads, overrunning loadings and diesel engine as the prime mover, are still waiting for a practical solution.

In typical mobile application, there is a centralised hydraulic supply unit as presented in the left side of Figure 1. In a typical valve controlled system, the control valves are located close to the supply unit. The hydraulic power is supplied to the actuators via long hoses and pipelines, which are sized according to the peak flow rates of the actuators. In many mobile hydraulic systems, there are a number of actuators and numerous parallel hoses located in the boom of the machine. The hydraulic capacitance of the hoses reduces the controllability of the actuators and the hoses are a frequent point of failure in the system. Another disadvantage of a traditional load sensing mobile hydraulic system is the way it loads the diesel engine: in many load cycles, the peak powers taken from the diesel engine are many times higher than the mean power (Linjama et al. 2015). Furthermore, the power taken by the supply pump fluctuates rapidly, which increases the fuel consumption and particle emissions significantly.

The goal of the concept studied in this paper is to realise an energy-efficient digital hydraulic actuator capable of storing hydraulic energy locally and charging the energy storage from the mean power supply line. Furthermore, the system should be capable of converting the hydraulic energy efficiently to mechanical work, which includes significantly higher power peaks than the mean hydraulic input power (the idea of the concept presented in Linjama et al. 2015). Therefore, the centralised supply pump could be sized according to the mean power of the actuators, which are connected via a single medium-sized high pressure line and a single return line as presented in the right side of Figure 1. In such a system, the power taken from the diesel engine is no longer directly coupled to the output power of the actuators. Thus, the emissions and fuel consumption of
the diesel engine could be significantly decreased. In addition, the size of the diesel engine could be decreased in certain applications, yielding lower costs and further improved fuel economy.

Energy-efficient operation is an important goal often sought after in system design and is crucial in the target system, where flow rates to the actuators are small and thus the heat is not effectively conducted to a tank or a cooler. This paper studies one approach to realise an integrated digital hydraulic actuator which can be utilised in the target system layout presented and strives to achieve as small energy losses as possible.

At the time of writing, there are a number of approaches towards energy-efficient hydraulic systems, which are being studied and developed in different institutes and companies: displacement controlled actuators in mobile hydraulic systems is a topic investigated in Purdue University (Williamson et al. 2008, Sprengler and Ivantysynova 2012). Both digital and analogue hydraulic transformers are being researched. The analogue transformer developed by Innas BV is based on a floating cup principle (Achten and van den Brink 2012). One example of a digital hydraulic transformer is the buck converter studied in Johannes Kepler University Linz and the University of Bath. The idea of a buck converter has its roots in electrical engineering and it relies on fast switching valves and hydraulic inductance (Scheidl et al. 2008, Kogler and Scheidl 2012, Pan et al. 2014). Another digital hydraulic approach is the linear digital hydraulic transformer studied by Bishop (2009, 2010). The key idea of the transformer is to use discretely variable cylinder chamber areas to efficiently transform the supply pressure to load pressure. The use of discretely variable cylinder chamber areas is not only restricted to transformers, but the same principle can be applied to actuators themselves. Linjama et al. (2009) introduced a secondary controlled digital hydraulic multi-chamber cylinder. The concept basically enables the selection of the effective chamber area of the actuator according to the constant supply pressure and current loading of the actuator. Despite being a promising concept Linjama et al. report power losses related to the recurring pressurisation and de-pressurisation of the cylinder chambers. This is due to the fact that power is lost when a hydraulic capacitance (cylinder chamber) is charged from a low pressure to high pressure state by feeding fluid from a high pressure source (HP). Similarly, power is lost when a cylinder chamber charged to a high pressure state is relieved to a low pressure source (LP). The power lost is converted to heat in the on/off-valves. Furthermore, improving the control resolution of the concept by increasing the number of cylinder chambers is difficult from the mechanical design point of view.

Figure 1. Typical mobile hydraulic system layout (left) and target hydraulic system layout (right).

Idea of a multi-pressure actuator

Energy efficiency of a typical mobile hydraulic system is compromised due to the heavy throttling required to match the supply pressure to the load pressure in multi-actuator operation or in load lowering situations. To avoid the throttling losses Linjama et al. (2009) introduced a secondary controlled digital hydraulic multi-chamber cylinder. The concept basically enables the selection of the effective chamber area of the actuator according to the constant supply pressure and current loading of the actuator. Despite being a promising concept Linjama et al. report power losses related to the recurring pressurisation and de-pressurisation of the cylinder chambers. This is due to the fact that power is lost when a hydraulic capacitance (cylinder chamber) is charged from a low pressure to high pressure state by feeding fluid from a high pressure source (HP). Similarly, power is lost when a cylinder chamber charged to a high pressure state is relieved to a low pressure source (LP). The power lost is converted to heat in the on/off-valves. Furthermore, improving the control resolution of the concept by increasing the number of cylinder chambers is difficult from the mechanical design point of view.
Figure 2. Simplified hydraulic diagram of the principle idea.

If a standard asymmetric cylinder is used as an actuator, the effective cylinder chamber area is fixed and the supply pressure has to be matched to the load pressure to avoid throttling losses. This can be achieved using e.g. pump controlled actuators, but the concept requires one variable displacement pump per actuator, which leads to a large amount of installed displacement, raising cost and potentially increased idling losses compared to valve controlled systems.

Another approach and the concept studied in this paper is to introduce a number of constant pressure sources and on/off-valves. The idea is that the cylinder chambers are connected to suitable pressure sources via the on/off-valves such that there is a minimal pressure drop across the valves and therefore minimal power losses. Figure 2 presents an idealised hydraulic diagram of such a system, which enables the feeding of cylinder chambers from one hundred pressure sources, each having a unique pressure level. The concept is essentially a high resolution force actuator, with 10 000 different control combinations. The throttling losses are small as the (high capacity) on/off-valves are either completely open or closed during the operation. If velocity control is required instead of force control, e.g. secondary control with velocity feedback can be utilised to drive inertia loads.

Such a system would be highly energy efficient in theory as most of the valve throttling losses can be avoided and the concept does not require high amplitude and recurring pressurisation and depressurisation of the cylinder chambers. However, there is a challenge to produce the required number of unique pressure levels for the pressure sources efficiently. The following sections present simulation and experimental results related to the concept. The simulation work starts with a theoretical model having one hundred pressure sources and the rest of the paper studies the challenges occurring while modifying the system layout according to the practical limitations. Finally, a first prototype with experimental results is presented.

Simulation model

The simulation model is derived based on a medium-sized mobile machine boom mock-up previously studied, for example, in Linjama et al. (2009) and presented in the section Experimental Study. Simplifications are made in order to present the complete model, but the most important characteristics of the load system remain. The simulation model is presented in Figure 3.

The mechanism model is simplified and includes a simple inertia mass of 50000 kg. The external load force is set to zero in the following simulations and the piston friction force is modelled using a Strubeck curve. The zero velocity crossing is smoothed using hyperbolic tangent function. The complete mechanism model is

\[
\dot{m} \ddot{x} = p_A \dot{A}_A - p_B \dot{A}_B - \tanh(K \dot{x})
\]

\[
\times \left(F_c + (F_c - F_c) e^{-\left(\frac{\dot{x}}{\tau} \right)} \right) - b \dot{x}
\] (1)

The cylinder pressures \(p_A \) and \(p_B \) are modelled as hydraulic capacitances

\[
\dot{p}_A = B \sum \frac{Q_A - \dot{A}_A}{xA_A + V_0}
\] (2)

\[
\dot{p}_B = B \sum \frac{Q_B + \dot{A}_B}{(s-x)A_B + V_0}
\] (3)

The net flow rate to the cylinder chambers is the sum of flow rates from each supply line. A single flow rate through an on/off-valve is defined using the square root equation the derivative of which is limited to a finite value in the region around zero pressure difference (Ellman and Piché 1996):

\[
Q_A = \begin{cases}
\text{sign}(p_A - p_s) \times x_s K_s \sqrt{ |p_A - p_s|, |p_A - p_s| \geq p_u } \\
\text{sign}(p_A - p_s) \times x_s K_s \frac{3 - |p_A - p_s|}{p_u} , |p_A - p_s| < p_u
\end{cases}
\] (4)

where the valve flow coefficient is

\[
K_s = \frac{Q_N}{\sqrt{\Delta p_N}}
\] (5)

and the valve opening \(x_s \) is a value between zero and one defined by the valve dynamics. The valve dynamics are modelled as a delay and a movement time, during which the valve opening changes with a constant rate.
The force controller calculates the output force of each control combination using the equation

\[F(i) = p_s(c_{vec,A}(i))A_A - p_s(c_{vec,B}(i))A_B \]

where \(p_s \) is the four-element vector defining the pressure levels of the pressure sources and \(c_{vec} \) is the control vector. The force controller selects the control combination that minimises the absolute value of the force error \(|F_{ref} - F| \). In order to reduce the activity of the valves, the control combination of the previous sample time is held unless the new control combination decreases the force error by margin \(F_{th} \). As a final output the controller outputs a control signal to the on/off-valves. Only a single valve in the A-side and B-side is commanded open at a time.

In the following simulation study, the supply pressures are equally spaced between 2 and 20 MPa. An example of the functionality is presented in Figure 4. The position and velocity tracking results are presented in the two topmost diagrams (\(x_{ref} \) and \(v_{ref} \) are the piston position and velocity references, respectively, and \(x \) and \(v \) are simulated position and velocity). Piston-side chamber pressure \(p_A \) and rod-side chamber pressure \(p_B \) as well as target actuator force \(F_{ref} \) and the calculated force level selected by the controller \(F_{opt} \) are presented. The lowest diagram shows the input and output energy.

The pressure sources are modelled as constant values and for example the energy losses occurring in the generation of the pressure levels are omitted. All simulation parameters and controller parameters are given in Table 1.

Discrete pressure control of cylinder chambers

The control system consists of two stages. The inner control loop controls the output force of the cylinder and the outer loop generates a force reference based on the position and velocity feedbacks. The control strategy assumes that the cylinder is subject to an inertia loading. The outer control loop consists of a PI-type position controller and a P-type velocity controller as presented in Linjama et al. (2009). The controller gains and the stopping threshold values are set according to Linjama et al. (2009).

The inner force control loop is based on the following assumptions:

1. Piston friction force is negligible.
2. Pressure drop in on/off-valves is negligible.

If there are, e.g. 4 pressure sources to select from for both cylinder chambers A and B, there are \(4^2 = 16 \) unique control combinations which are defined by control vectors \(c_{vec,A} \) and \(c_{vec,B} \):

\[c_{vec,A} = [111122223333444411] \]

\[c_{vec,B} = [1122223333444411] \]

(6)

The force controller calculates the output force of each control combination using the equation

(7)

Table 1. Simulation model and controller parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective load mass (m)</td>
<td>50 000 kg</td>
</tr>
<tr>
<td>Bulk modulus of oil (B)</td>
<td>1100 MPa</td>
</tr>
<tr>
<td>Piston-side area (A_A)</td>
<td>50.27 cm²</td>
</tr>
<tr>
<td>Rod-side area (A_B)</td>
<td>37.70 cm²</td>
</tr>
<tr>
<td>Stroke (s)</td>
<td>300 mm</td>
</tr>
<tr>
<td>Dead volume (V_d)</td>
<td>2 x 10⁻⁶ m³</td>
</tr>
<tr>
<td>Static friction (F_s)</td>
<td>2 kN</td>
</tr>
<tr>
<td>Coulomb friction (F_c)</td>
<td>1.6 kN</td>
</tr>
<tr>
<td>Minimum friction vel (v_{min})</td>
<td>5 mm/s</td>
</tr>
<tr>
<td>Tanh coefficient (K)</td>
<td>5000</td>
</tr>
<tr>
<td>Nominal flow rate (Q_n)</td>
<td>100 l/min</td>
</tr>
<tr>
<td>Nominal pressure drop (\Delta p)</td>
<td>0.5 MPa</td>
</tr>
<tr>
<td>Valve delay (t_v)</td>
<td>1.5 ms</td>
</tr>
<tr>
<td>Valve movement time (t_m)</td>
<td>0.5 ms</td>
</tr>
<tr>
<td>Controller sample time (t_s)</td>
<td>2 ms</td>
</tr>
<tr>
<td>Velocity proportional gain (K_v)</td>
<td>4.5 x 10⁵ N/s/m</td>
</tr>
<tr>
<td>Position proportional gain (K_x)</td>
<td>9.5 l/s</td>
</tr>
<tr>
<td>Position integral gain (K_i)</td>
<td>4.5 l/s²</td>
</tr>
<tr>
<td>Position threshold (x_{th,on})</td>
<td>1.5 mm</td>
</tr>
<tr>
<td>Position threshold (x_{th,off})</td>
<td>1 mm</td>
</tr>
<tr>
<td>Velocity threshold (v_{th})</td>
<td>1 mm/s</td>
</tr>
</tbody>
</table>

The simulation model and controller parameters are given in Table 1.
where the first term is the force error and the second term restricts the changing of pressure levels in both cylinder chambers. The change of pressure level is weighted by the chamber area and a weight coefficient W_dF, which can be adjusted to find a compromise between the switching frequency and control resolution. The switching cost term for A-side is defined as

$$C(i) = |F_{ref} - F(i)| + W_{df} (|\Delta F_A(i)| + |\Delta F_B(i)|)$$ \hspace{1cm} (11)

where the first term is the force error and the second term restricts the changing of pressure levels in both cylinder chambers. The change of pressure level is weighted by the chamber area and a weight coefficient W_{df}, which can be adjusted to find a compromise between the switching frequency and control resolution. The switching cost term for A-side is defined as

$$\Delta F_A(i) = \left(p_S(i_{opt}(k - 1)) - p_S(i_{opt}(i)) \right) A_A$$ \hspace{1cm} (12)

where $i_{opt}(k - 1)$ is the selected optimal control combination of the previous sample time $k - 1$. The improved controller calculates the cost function for each valve control combination and the control combination with the smallest cost function value is output to the on/off-valves. Figure 5 presents a response with the refined controller.

The weight coefficient W_{df} is set to 0.15 and the response shows an improved control resolution and energy loss (101 J) which is less than 4 percent of the original value.

Aspects of practical implementation

The previous simulations were carried out with 100 pressure sources, which were connected to cylinder chambers via 200 on/off-valves. This resulted in 1002 control combinations and a very good force control resolution.
The force series shows a step size of 3.8 kN for the biggest part of the force range. The minimum and maximum forces are −65 kN … 93 kN. The diagram also presents the corresponding chamber pressures. If energy losses are allowed to increase, the weight coefficient for the switching cost term can be decreased, resulting in a smoother velocity profile. Figure 7 presents the simulation results of seven pressure sources with a reduced switching weight of 0.1. The valve flow capacity is decreased to a more realistic value of 25 l/min at 0.5 MPa in this simulation. The energy loss is increased to 1.23 kJ and the velocity profile remains relatively smooth.

Experimental study

Figure 8 presents the experimental test system including one potential approach to realise multiple pressure sources. The system has one piston type high pressure accumulator integrated to the actuator. Furthermore, there are four additional small asymmetric cylinders which act as pressure converters between the high pressure source and the actuator. Thus, the concept enables six different supply pressure levels which can be connected to actuator chambers A and B via on/off-valves. Each flow path is equipped with two parallel connected Hydac WS08 W-01 valves, giving a combined flow capacity of approximately 25 l/min at 0.5 MPa according to

Such a number of pressure sources and valves is not feasible in practice by now, thus the number of pressure sources must be drastically reduced. Table 2 summarises the results of simulations with different numbers of pressure sources. The simulated energy loss is given together with integral squared error (ISE) calculated from the force error. ISE is calculated during movement only and stopping periods are discarded.

When analysing the results of ten or fewer pressure sources, the ISE of the force increases steadily from ten to seven pressure source systems. A smaller number of pressure sources increases the ISE of force drastically. Figure 6 presents all the control combinations and the resulting net forces of the actuator with seven pressure sources.

Table 2. Summary of simulation results with different numbers of pressure sources.

<table>
<thead>
<tr>
<th>N_{ps}</th>
<th>N_{control_combinations}</th>
<th>E_{loss} (J)</th>
<th>ISE of force (kN²s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>10 000</td>
<td>101</td>
<td>0.531</td>
</tr>
<tr>
<td>50</td>
<td>2500</td>
<td>104</td>
<td>1.32</td>
</tr>
<tr>
<td>40</td>
<td>1600</td>
<td>109</td>
<td>1.85</td>
</tr>
<tr>
<td>30</td>
<td>900</td>
<td>113</td>
<td>3.31</td>
</tr>
<tr>
<td>20</td>
<td>400</td>
<td>121</td>
<td>7.44</td>
</tr>
<tr>
<td>15</td>
<td>225</td>
<td>156</td>
<td>14.43</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>231</td>
<td>44.60</td>
</tr>
<tr>
<td>9</td>
<td>81</td>
<td>247</td>
<td>56.70</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
<td>243</td>
<td>67.40</td>
</tr>
<tr>
<td>7</td>
<td>49</td>
<td>259</td>
<td>80.38</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>488</td>
<td>149.42</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>765</td>
<td>257.39</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>1232</td>
<td>411.32</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>4398</td>
<td>1370.92</td>
</tr>
</tbody>
</table>
exclude the connecting hoses. The prototype is relatively bulky and could be sized significantly smaller using a manifold type structure instead of the separate converter cylinders. A similar concept presented in Linjama et al.

The manufacturer’s datasheet. The target HP pressure is 15 MPa and the LP setting is 2 MPa. A picture of the first prototype is presented in Figure 9 and the main dimensions are given. The dimensions given in parentheses exclude the connecting hoses. The prototype is relatively bulky and could be sized significantly smaller using a manifold type structure instead of the separate converter cylinders. A similar concept presented in Linjama et al.

Figure 6. Force levels of asymmetric cylinder (Ø 80/40) and seven equally spaced pressure levels between 2 and 20 MPa.

Figure 7. Simulated response with seven pressure sources.
(2015) features high pressure gas in the rod-side chambers of the medium pressure sources. This might lead to a more significant leakage of gas over the piston seals due to the pressure difference, thus a modified layout is selected for the first prototype.

The benefit of this kind of system in comparison to one having multiple pressure accumulators each charged to unique pressure level is that no matter which pressure source is charged or discharged, the pressure levels of the sources remain equally spaced between the highest and lowest pressure. This is, of course, only true if the pistons of the medium pressure cylinders are not driven to the cylinder ends. This is achieved by refining the controller in such a way that it prevents excessive use of any of the medium pressure levels. The force controller is refined by adding two more cost terms

\[
C_{VA}(i) = \begin{cases}
\min(0, V_S(c_{vec,A}(i)))^2, & v_{ref} \geq 0 \\
\max(0, V_S(c_{vec,A}(i)))^2, & v_{ref} < 0
\end{cases} \quad (13)
\]

\[
C_{VB}(i) = \begin{cases}
\max(0, V_S(c_{vec,B}(i)))^2, & v_{ref} \geq 0 \\
\min(0, V_S(c_{vec,B}(i)))^2, & v_{ref} < 0
\end{cases} \quad (14)
\]
Hydraulic input power is calculated from the measured flow rate and the pressure of the supply pump and output power as defined by Equation (9). Their time integrals are presented in the figure as input and output energy. The measurement is repeated three times for each of the three different loadings, yielding nine measurements, each having five repetitions of the trajectory. On average, the energy loss is 2.49 kJ per trajectory. A considerable amount of energy is returned to the pressurised tank line (LP). If the system could utilise the energy of the pressurised tank line, e.g. by means of using a closed circuit pump, the average energy loss would decrease to 2.00 kJ. The energy loss of 2.00 kJ is considerably bigger than the simulated energy loss of 1.23 kJ, and the discrepancy is partly due to the measurement system having six pressure sources instead of seven. Furthermore, the measured energy loss includes thermodynamic losses of the accumulator, piston friction of the medium pressure cylinders and flow losses in the piping, which constitute a significant part of the losses and are not considered in the simulation. The first prototype was built to prove the operational characteristics of the concept without emphasis on, e.g. flow losses in the piping between the medium pressure cylinders, valves and the actuator. Therefore, the energy efficiency of the prototype could potentially be improved by, e.g. increasing the size of the flow passages. However, the energy efficiency of the system is already good when compared to systems previously measured in the same load mechanism using similar trajectory. The energy loss measured using load sensing proportional valve is on average 9.3 kJ (Linjama et al. 2007). The energy loss of the secondary controlled four-chamber cylinder is approximately 4.3 kJ without LP recovery and 3.5 kJ with LP recovery (Linjama et al. 2009). It is worth noting that in order to directly compare the energy efficiency of the four-chamber cylinder concept to the novel concept, only four pressure levels should be utilised in the multi-pressure actuator to ensure similar force resolutions. In theory, the novel concept avoids power losses related to recurring high amplitude switching of the chamber pressures, which occurs with a four-chamber cylinder fed with two pressure sources. On the other hand, there are power losses related to the converter cylinder friction. Furthermore, power losses increase due to the extra valve switchings, which are necessary to avoid driving the converter pistons to cylinder ends.

To investigate the operation with all kinds of load cycles, further studies are needed. The controllability of the actuator velocity is worse than with a proportional valve. Therefore, the control resolution should
be improved, for example using slight throttle control together with the secondary control.

Conclusions

This paper has studied the fundamental features of a digital hydraulic multi-pressure actuator through simulations and experimental measurements. The idealised version enables a hydraulic actuator which requires only mean power input, generates high peak powers and produces very small energy losses. The practical implementation shows increased power losses, which are induced by the flow resistance of the on/off-valves and the piping, thermodynamic losses of the accumulator, pressurisation and relieving of the actuator chambers and the use of non-optimal pressure combinations in order to cope with limited medium pressure source volumes. Further research is needed to investigate the functionality with different load cycles and applications. Furthermore, the handling of smaller inertia loads and controllability of small velocities should be improved by means of, for example, throttle control. Additionally the
energy losses could be potentially decreased further with a refined system design including, for example, larger flow passages. However, already the first measurement results of the prototype show that highly efficient control of inertia loads is possible with a practical number of pressure sources: when compared to the measured results with a load sensing proportional valve, the losses are reduced by approximately 73%.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
This work was supported by the Academy of Finland [grant number 278464].

Notes on contributors
Mikko Huova received a DSc degree at Tampere University of Technology, Finland, in 2015. The topic of his thesis is related to energy-efficient digital hydraulic systems and he is continuing the work on this subject as a postdoctoral researcher at TUT. The areas of interest include control design, modelling, simulation and energy-efficient systems.

Arttu Aalto received his MSc from Tampere University of Technology, Finland in 2016. The topic of his master’s thesis is related to energy-efficient digital hydraulic multi-pressure actuator.

Matti Linjama obtained a D Tech degree at Tampere University of Technology, Finland in 1998. Currently, he is an adjunct professor at the Laboratory of Automation and Hydraulic Engineering (AUT). He started the study of digital hydraulics in 2000 and has focused on the topic since then. Currently, he is leader of the digital hydraulics research group in AUT and his professional interests include the study of hydraulic systems with high energy efficiency. He is also teaching digital hydraulics at AUT.

Kalevi Huhtala received his D Tech degree from Tampere University of Technology (Finland) in 1996. He is currently working as a professor in the Laboratory of Automation and Hydraulic Engineering (AUT) at the same university. He is also the head of laboratory. His primary research fields are intelligent mobile machines and diesel engine hydraulics.

Tapio Lantela is a doctoral student at Aalto University School of Engineering. He received his MSc from Aalto University in 2012. The topic of his master’s thesis was developing a pilot-operated miniature on/off valve and the topic of his doctoral studies is to create a digital valve system consisting of a number of these miniature valves. The areas of interest include fast switching valves, electromagnetic actuators and valve electronics.

Matti Pietola received his DSc in 1989 at Helsinki University of Technology (later Aalto University) and has been a professor of Mechatronics (Fluid Power Systems) there since 1997.

ORCID
Mikko Huova http://orcid.org/0000-0001-6384-7688
Matti Linjama http://orcid.org/0000-0002-4861-5624
Kalevi Huhtala http://orcid.org/0000-0003-4055-0392

References

