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Abstract—This paper presents the development of car nav-
igation system for portable navigation devices and car telem-
atics applications. The objective was to develop a system that
can provide uninterrupted reliable navigation even when GPS
signals are not available. The approach uses digital maps, 3D
accelerometer and one gyro for directional measurements to
improve positioning availability and reliability in weak signal
environment and during short GPS signal outages. This system
does not require vehicle installation and can be easily transferred
between vehicles. Loosely coupled extended Kalman filter and
probabilistic map-matching algorithm provide optimally tuned
navigation solution and continuous auto calibration of inertial
sensors. A real-time prototype was built. The system accuracy
performance was investigated using field tests in an urban
environment.

Index Terms—land vehicle navigation, driver assistance, map-
matching, GPS, Kalman filtering

I. INTRODUCTION

Accurate and uninterrupted position calculation is a key task
for vehicle navigation and telematics applications. In most
portable car navigation and telematics devices the position is
calculated based only on GPS data. However, in urban canyons
stand-alone GPS suffers signal masking and reflections of
the signal from buildings, large vehicles, and other reflective
surfaces. Driving tests in such metropolises as Hong Kong,
Tokyo, and New York show that the chance of receiving four
GPS satellites required for navigation can be as low as twenty
percent of total driving time [1]. Even when four or more
satellites are available, strong multipath effect might cause a
positioning error of more than 100 m.

In order to obtain uninterrupted navigation data in urban
environment, GPS can be augmented with a complementary
navigation system that can work continuously in any type of
urban environment [2], [3], [4]. This is known as an integrated
navigation system. This article presents the development of
integrated GPS/DR (Dead Reckoning) navigation system. A
digital map database is used to update and verify the position
given by the GPS or integrated GPS/DR navigation system.
The process of improving navigation with the help of a map
is called map-matching.

In this article we consider a DR configuration that consists
of one gyro for directional measurements and 3D accelerome-
ter. Both the gyro and accelerometers satisfy the requirements
for mass market portable consumer devices: low cost, light
weight, small power consumption. An odometer is not used
because this requires additional car installation; our system is
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Fig. 1. Conceptual description of the navigation information sources and
data flow for a portable car navigation system. The hardware elements are
shaded (green).

intended mainly for portable devices such as mobile phones,
GPS-based peripherals and handheld GPS navigation devices.

This paper shows how GPS data can be augmented with DR
sensor data using an Extended Kalman Filter (EKF) to achieve
the required navigation performance in urban environment. In
the proposed system the DR sensors are calibrated when GPS
is available. If GPS signal is not available or GPS position
accuracy suffers from multipath, the calibrated DR sensors are
used to determine the position of the vehicle. The integrated
GPS/DR navigation solution can be further improved using
map-matching algorithm which in our case is based on particle
filtering.

Field tests with real time prototype show that the proposed
method improves vehicle positioning performance in high
multipath signal environment and during short GPS signal
outages.

II. INTEGRATION CONCEPT

The proposed car navigation system includes different types
of navigation sensors and technologies. Our concept of data
fusion from multiple sensor technologies is shown in Fig. 1.
This methodology comprises several stages of data processing:
• Inertial sensors data for stop detection
• Inertial sensor data for position, velocity and heading

computations (DR computations)



Fig. 2. Evaluation and software development kit. GPS receiver chip is on
the opposite side of the PCB.

• Calibration of inertial sensors when vehicle is stationary
• Integrated GPS/DR navigation
• Map-matching

The above concept of integrating GPS, DR and map-matching
will be explained in sections III–V.

III. DESCRIPTION OF REAL-TIME PROTOTYPE

To evaluate the performance of our integrated GPS/DR
navigation system and map-matching algorithm, a real time
prototype was built. One Analog Devices ADXRS150 yaw-
rate gyro [5], and VTI Technologies SCA3000 3D accelerome-
ter [6] were selected as the dead reckoning sensors to augment
IT03 L1 GPS receiver by Fastrax [7], which is based on
the Atheros chipset [8]. The inertial sensors are mounted on
a separate sensor board which is connected to the Fastrax
IT03 evaluation kit via SPI bus available on I/O card terminal
connectors as shown in Fig. 2. Murata gyro can be also used
as a cheaper alternative to the ADXRS150 gyro.

This evaluation kit allows convenient real time data fusion
between the GPS and inertial sensors. In this arrangement the
GPS receiver is the core of the system and is responsible for
both making its own measurements, and for time tagging of the
inertial sensor measurements. The integrated GPS/DR solution
is computed at rate of 5 Hz and represented in NMEA 0183
format. The map-matching algorithm is implemented on the
PC which is connected to the evaluation board via serial port.
We are working now on the real-time implementation of our
map-matching algorithm on Nokia N800 with Linux OS.

IV. INTEGRATION OF GPS AND DR

A. Kalman Filter

The real time data fusion algorithm employs an extended
Kalman filter to combine computed GPS position, velocity,
and heading with the acceleration and heading rate measure-
ments provided by the 3D accelerometer and heading gyro.
The EKF uses the values of the filter states to predict the
future states through a dynamic model which is based on

dead reckoning equations to estimate position, velocity, and
heading. The dynamic model is given by

ẋ =


˙PN

ṖE

v̇

Ψ̇

 = f(x) =


v cos Ψ
v sin Ψ
aL

w

 , (1)

where PN and PE are the vehicle north and east positions,
respectively, Ψ is the vehicle heading, w is the measured
heading rate, v is the speed over ground, and aL is the
measured vehicle acceleration in the longitudinal direction.
The vehicle frame longitudinal acceleration is calculated by
transforming three-dimensional acceleration vector measured
by accelerometers in the sensor frame into vehicle frame and
calculating projection of the transformed vector on vehicles
longitudinal axes. It also includes the effect of gravitational
forces because of unknown road grade. It is defined by

aL = a+ bL + gθ + n (2)

where a is the vehicle longitudinal acceleration, g is the
gravitational constant, θ is the road grade and bL is the longitu-
dinal acceleration error. To properly model accelerometer and
gyro measurement errors and unknown road grade the state
vector is augmented with two additional states: gyro bias, δw,
and acceleration bias and misalignment, δa, which includes
unknown road grade,

x = [PN , PE , v,Ψ, δw, δa]> . (3)

The observation vector is calculated by taking the difference
between GPS and DR corresponding positions and velocities,
and in some cases heading. The measurement update can take
the following forms:
• vehicle position, velocity, and heading,
• vehicle position and velocity,
• or velocity, only in the case of the zero velocity update

(ZUPT).
The position accuracy of a single frequency L1 GPS receiver

is approximately 10 m in the horizontal axis and 15 m in the
vertical axis. A single frequency L1 GPS receiver determines
velocity based on the Doppler shift of the GPS carrier wave.
The velocity accuracy in the horizontal axis can reach 2-5 cm/s
and in the vertical axis 4-10 cm/s 1-σ standard deviation of
the stochastic errors [9]. The accuracy of GPS depends heavily
on satellite geometry and multipath errors. In this project, the
update rate of the GPS receiver was set to 1 Hz to reduce the
amount of computations in the processor. The GPS velocity
measurements can be also used to determine vehicle heading.
If there is no vehicle sideslip, the heading can be calculated
as

ΨGPS = arctan
vGPS

E

vGPS
N

(4)

where vGPS
E and vGPS

N are the east and north GPS velocity
measurements, respectively. The standard deviation of the
heading error can be approximated by

σ(ΨGPS) =
δvGPS

vGPS
. (5)



The GPS heading is calculated only when a vehicle has
sufficient speed. This threshold is determined empirically and
in the current project a threshold of 2.5 m/s was used.

B. Alignment and Calibration

In order to assist GPS with the gyro and accelerometers,
initialization procedures have to be completed: initial align-
ment and calibration. The initial alignment procedure includes
horizontal alignment based on the accelerometers outputs, yaw
angle estimation, and azimuth alignment using external head-
ing information. The initial calibration includes estimation of
the accelerometer bias and misalignment, and also calibration
of the gyroscope bias. The horizontal alignment and calibration
are implemented in real time and can be performed at any time
when vehicle is stationary. The yaw angle between sensor
frame and vehicle frame can be estimated when vehicle is
accelerating with constant direction [2]. It takes about 20
seconds to complete all these procedures in fully automatic
mode. There is no need for the user to take any special actions.
During and after the alignment the portable navigation device
has to be fixed into a cradle. The system has the capability
to re-initialize alignment and calibration parameters at any
time when it is not moving. The need for re-computation of
alignment parameters may arise due to change in orientation
of the device during the drive which can be detected by the
algorithm. This change in orientation can affect the gyro scale
factor. The need for re-computation of accelerometer and gyro
calibration parameters is caused by changes of accelerometer
and gyro bias mainly because of temperature variations.

C. Stop detection

The stationary state is detected by a stop detection module
based on accelerometers output. Our stop detection algorithm
is based on the observation that during a complete stop the
variance of the accelerometer signal is markedly smaller than
when the vehicle is moving. This algorithm can work in
all types of vehicles and has the ability to calibrate itself
in a brief learning phase during GPS availability. The real-
time version of stop detection algorithm is based on signal
detection analysis of accelerometer variance data within a
moving window. Unlike the algorithm described in [10] where
stops are reliably detected only after 15 seconds delay, our
algorithm detects stops almost immediately. The stop detection
algorithm will be described in more detail in a future paper.

V. MAP-MATCHING

The digital road network map is another important compo-
nent of our positioning system. A map database is a source of
valuable information that can be used to improve the accuracy
of the position given by the GPS/DR navigation system and
calibrate the DR sensors. Map-matching algorithms usually
consist of two steps: identification of the road link where
vehicle is most likely travelling and estimation of vehicle po-
sition on the selected road link[9]. We used the map matching
algorithm which is based on probabilistic Bayesian theory to
select a correct road segment on which the vehicle is travelling.

This approach is mainly based on the proximity between the
position fix and the road, the difference between the estimated
vehicle heading and the current segment heading from the map
data, and vehicles position, velocity and heading prior to the
current moment. The determination of the vehicle location on
the segment is a challenging task, especially considering the
errors associated with both the digital map and navigation
sensors. When the vehicle is travelling on a straight road
the orthogonal projection of the position fix onto the selected
road segment is used to calculate the vehicle location on the
segment. In this case only cross track error can be deduced by
map-matching. But when the vehicle is travelling on a curved
road or turning at an intersection, along track errors can also
be reduced [9].

Our map-matching algorithm is built on the Bayesian frame-
work and uses particle filtering. Because it is Bayesian, it
does not associate a single specific street to a position fix,
but computes a probability for every street on the map, and
it is incremental [11], that is, it processes one single GPS/DR
fix at a time rather than trying to identify a trajectory on the
map from a sequence of fixes.

A. Model

We are interested in obtaining the sequence of streets
or street segments1 travelled by the vehicle given all the
information provided by the GPS receiver and the INS sensors,
namely, position, velocity, and heading. Thus, we aim at
approximating the a posteriori pdf p(s:t|x:t,Ψ:t, v:t), which
contains all the information to estimate that sequence. Here
s:t stands for the set {s0, s1, · · · , st}.

Using Bayes’ theorem and straightforward manipulations,
we have

p(s:t|x:t,Ψ:t, v:t) ∝ p(xt|s:t, x:t−1,Ψ:t, v:t)×
× p(Ψt|s:t, x:t−1,Ψ:t−1, v:t)p(st|s:t−1, x:t−1,Ψ:t−1, v:t)×
× p(s:t−1|x:t−1,Ψ:t−1, v:t), (6)

where st is the street segment on which the vehicle is moving
at discrete time t, and xt, Ψt, and vt are, respectively, the
position, heading and speed given by the GPS/DR system.

In order to compute p(s:t|x:t,Ψ:t, v:t) we make several
assumptions. Each assumption is connected with one or several
terms in (6) and will be discussed briefly in the following.

We will start by considering that if the current street, st,
is known, the heading given by the positioning system is
independent of the previous travelled segments and previous
GPS/DR fixes (position, heading, and velocity). Using the
above notation, this can be written as

p(Ψt|s:t, x:t−1,Ψ:t−1, v:t) = p(Ψt|st, vt). (7)

The dependency of the heading on the speed in (7) models
the degradation of the heading measurement given by a GPS
receiver as speed decreases.

1A street is modelled as a sequence of connected straight segments since
this is the way in which most digital maps store the information.



To simplify the last two terms in (6), we also assume that
the speed of the vehicle is independent of the current and any
previously travelled streets, that is,

p(vt|s:t, ·) = p(vt|·). (8)

This is a fair assumption if the digital map does not provide
any information of speed limits. With this assumption, it
follows that

p(st|s:t−1, x:t−1,Ψ:t−1, v:t) = p(st|s:t−1, x:t−1,Ψ:t−1, v:t−1)
(9)

and

p(s:t−1|x:t−1,Ψ:t−1, v:t) = p(s:t−1|x:t−1,Ψ:t−1, v:t−1).
(10)

Thus, in order to simplify computation of
p(xt|s:t, x:t−1,Ψ:t, v:t), we consider that the probability
of xt only depends on the current street, st, that is

p(xt|s:t, x:t−1,Ψ:t, v:t) = p(xt|st). (11)

Then, using equations (7), (9), (10), and (11), we can rewrite
(6) as

p(s:t|x:t,Ψ:t, v:t) ∝ p(xt|st)p(Ψt|st, vt)×
× p(st|s:t−1, x:t−1,Ψ:t−1, v:t−1)×
× p(s:t−1|x:t−1,Ψ:t−1, v:t−1). (12)

Leaving aside the recursive part of (12), we still need to
provide a way to compute the first three pdf’s on the right-
hand side of that equation. The first two pdf’s can be either
defined ad-hoc or estimated during a training phase of the
algorithm. We assume the a priori probability of st is

p(st|s:t−1, x:t−1,Ψ:t−1, v:t−1) =

=
{

(1− α) / |St−1| , st ∈ St−1

α/ |S − St−1| , otherwise (13)

where S is the set of all streets, St−1 is the set of streets
connected to st−1 (note, st−1 ∈ St−1), and 0 ≤ α ≤ 1 is a
design parameter, that stands for the probability of the current
street not being connected to the previous one. This could
happen during the algorithm initialization or due to errors in
the digital map (a missing street, for example).

The computational burden of the algorithm can be reduced if
only the streets located up to a certain radius from the current
GPS/DR position fix (the road cache) are taken into account.

Further details on the definition of the probabilities involved
in (12) will be given in a follow-up paper.

B. Particle filtering

The idea behind sequential Monte Carlo (SMC) methods,
also known as particle filtering (PF), is the recursive approxi-
mation of probability distributions of interest by using samples
and weights [12]. Most PF methods rely on the principle of
importance sampling (IS) [13] to build an empirical aproxi-
mation of the desired pdf by drawing samples from a different
distribution known as importance function or proposal pdf.

In order to approximate p(s:t|x:t,Ψ:t, v:t), we will use a
proposal function of the form

q(s:t|x:t,Ψ:t, v:t) = q(st|s:t−1, x:t,Ψ:t, v:t)
× q(s:t−1|x:t−1,Ψ:t−1, v:t−1). (14)

If we have M samples,

s
(1)
:t , s

(2)
:t , · · · , s

(M)
:t ∼ q(s:t|x:t,Ψ:t, v:t), (15)

and assign them appropriate normalized weights computed
according to the IS principle,

w
(i)
t ∝

p(s(i):t |x:t,Ψ:t, v:t)

q(s(i):t |x:t,Ψ:t, v:t)
, (16)

then an approximation of the probability of interest is

p̂(s(i):t |x:t,Ψ:t, v:t) =
M∑
i=1

δ(s:t − s(i):t )w(i)
t . (17)

It is straightforward to obtain estimates of the sequence of
travelled streets from the pdf in equation (17).

The recursive decomposition of the importance function in
(14) allows to obtain a sample of the sequence of travelled
streets up to time t, s(i):t , from the sequence of travelled streets
up to time t− 1, s(i):t−1, by simply drawing a sample, st, from
the marginal proposal q(st|s:t−1, x:t,Ψ:t, v:t). We will define
the latter as

q(st|s:t−1, x:t,Ψ:t, v:t) = p(xt|st)p(Ψt|st, vt), (18)

and the weight update equation that results in this case is

w
(i)
t = p(s(i)t |s

(i)
:t−1, x:t−1,Ψ:t−1, v:t−1)w(i)

t−1. (19)

A more thorough explanation on the use of particle filtering
to solve the map-matching problem given the model depicted
in section V-A will be presented in the aforementioned follow-
up paper.

C. Position accuracy enhancement

The above procedure allows to identify the street segment
in which the vehicle is moving, but we still need to find out its
position on that segment. This is a challenging task, especially
taking into account the errors associated with both the digital
map and the navigation sensors. Given a position fix and its
corresponding segment, we assume the true position of the
vehicle is the point on the latter that is the closest to the former.
More sophisticated (and complex) approaches [14] could be
used here based on the above map-matching procedure.

VI. EXPERIMENTAL RESULTS

The system was tested in a real driving environment that
included tunnels, parking garages, urban canyons, and road
interchanges. Typical performance during these road tests is
presented in this section. In Figures 3–4, the blue line is a
DGPS computed trajectory which is a reference trajectory in
our case. The position error of Novatel DGPS receiver didn’t
exceed 0.5 m during the test. The green line is the GPS/DR
integrated solution. During GPS outages it will be the DR only
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Fig. 3. Reference trajectory, uncorrected GPS/DR trajectory, and GPS/DR
trajectory corrected using our map-matching particle filter.

solution. The red line corresponds to a corrected solution after
map-matching algorithm was applied. We have implemented
two different versions of map-matching algorithm: one is
based on probabilistic approach implemented in a form of
particle filter which is described in this paper, another is based
on calculation of Mahalanobis distance between road segments
and a vehicle [15], [11]. The performance of particle filter
based algorithm (Fig. 3) is superior to the second approach
(Fig. 4). This test shows that the combined GPS/DR solution
provides significant improvement; accurate position, velocity,
and heading information were available even in the absence
of GPS signal.

VII. CONCLUSION

This paper has shown that low-cost inertial sensors and map-
matching algorithm can significantly improve GPS positioning
by continuing to output position during short GPS outages with
sufficient accuracy for most of car navigation applications.
The integrated GPS+MEMS system has also demonstrated
improvement of position and velocity accuracy in high mul-
tipath urban canyon environment and the ability to provide
continuous output of the vehicle heading even when vehicle
is not moving. This is useful when we apply the map-matching
algorithm. This device does not require any installation in the
vehicle. It works in all vehicles and can be easily transferred
between vehicles. Finally, it should be noted that our design is
suitable for portable navigation devices since the cost, size and
power consumption of inertial sensors meet the requirements
for mass market consumer electronics.
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