Performace of Dilute Nitride Triple Junction Space Solar Cell Grown by MBE

Citation

Year
2017

Version
Publisher's PDF (version of record)

Link to publication
TUTCRIS Portal (http://www.tut.fi/tutcris)

Published in
11th European Space Power Conference, 3-7 October 2016 Thessaloniki, Greece

DOI
10.1051/e3sconf/20171603008

Copyright
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

License
CC BY

Take down policy
If you believe that this document breaches copyright, please contact cris.tau@tuni.fi, and we will remove access to the work immediately and investigate your claim.
PERFORMANCE OF DILUTE NITRIDE TRIPLE JUNCTION SPACE SOLAR CELL GROWN BY MBE

Arto Aho, Riku Isoaho, Antti Tukiainen, Ville Polojärvi, Marianna Raappana, Timo Aho, Mircea Guina

Tampere University of Technology, Optoelectronics Research Centre, Korkeakoulunkatu 3, 33720 Tampere, Finland, Email: arto.j.aho@tut.fi

ABSTRACT

Dilute nitride arsenide antimonide compounds offer widely tailorable band-gaps, ranging from 0.8 eV to 1.4 eV, for the development of lattice-matched multijunction solar cells with three or more junctions. Here we report on the performance of GaInP/GaAs/GaInNAsSb solar cell grown by molecular beam epitaxy. An efficiency of 27% under AM0 conditions is demonstrated. In addition, the cell was measured at different temperatures. The short circuit current density exhibited a temperature coefficient of 0.006 mA/cm²/°C while the corresponding slope for the open circuit voltage was -6.8 mV/°C. Further efficiency improvement, up to 32%, is projected by better current balancing and structural optimization.

1. INTRODUCTION

Commercial space solar cells have reached 30% beginning of life (BOL) efficiencies [1]. For even higher efficiencies and more efficient spectral utilization, the development of new materials is needed. In lattice matched solar cells with three or more junctions. Here we report on the performance of GaInP/GaAs/GaInNAsSb solar cell grown by molecular beam epitaxy. An efficiency of 27% under AM0 conditions is demonstrated. In addition, the cell was measured at different temperatures. The short circuit current density exhibited a temperature coefficient of 0.006 mA/cm²/°C while the corresponding slope for the open circuit voltage was -6.8 mV/°C. Further efficiency improvement, up to 32%, is projected by better current balancing and structural optimization.

2. EXPERIMENTS

The GaInP/GaAs/GaInNAsSb solar cell structure was grown monolithically on p-GaAs substrate using a Veeco GEN20 MBE-system. Detailed description for the fabrication process can be found elsewhere [4, 5]. Subsequent to the growth, the wafer was processed into 4x4 mm² solar cells. TiAu and NiAu alloys were used for p- and n-side contacts, respectively. For anti-reflection coating, we used a double-layer TiOₓ/SiOₓ thin film [6]. For the measurements, we used a spectrally adjustable in-house built three-band solar simulator, which was set to AM0 spectral conditions with separately calibrated single junction GaInP, GaAs and GaInNAsSb cells. ASTM E490 AM0 spectrum (1366 W/m²) [7] was used for reference. External quantum efficiency (EQE) measurements were performed using an in-house built, monochromator based, measurement system. In addition, for different spectral regions, proper set of band pass filters were used, which ensures monochromatic probe beam. The EQE system response was calibrated with Si and Ge detectors. For the performance analysis and performance projections we used diode modelling employing the parametrization described earlier [3, 8].

3. RESULTS AND DISCUSSION

The current-voltage (I-V) performance of the GaInP/GaAs/GaInNAsSb cell illuminated with AM0 three band solar simulator is shown in Fig. 1a. The short circuit current density (Jₛccd) was 17.2 mA/cm². Our analysis concluded that the cell was current limited by the GaInP top cell. The open circuit voltage (V₀) and fill factor (FF) were 2.67 V and 80%, respectively. The band-gaps for GaInP/GaAs/GaInNAsSb cell are 1.9 eV, 1.4 eV and 0.98 eV, respectively. These values are revealed by the EQE measurement performed at 22°C, which is shown in Fig. 1b. In addition, Fig. 1b reveals the EQE measurement at 80°C. The Jₑ for the sub-junctions calculated using the EQE measurements are presented in the Tab. 1. For the GaAs sub-junction, the limiting current was estimated from both EQE and using a three band solar simulator measurements to give realistic values. For GaInP top cell and for GaInNAsSb bottom cell the values were directly calculated from the EQE measurements and AM0 spectrum.
Table 1. Analysis of the EQE measurements.

<table>
<thead>
<tr>
<th>Sub-cell</th>
<th>Band-gap (eV)</th>
<th>$J_{sc, 22^\circ C}$ (mA/cm2)</th>
<th>ΔJ_{sc} (25°C to 80°C) (mA/cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaInP</td>
<td>1.88</td>
<td>17.1</td>
<td>1.85 +0.4</td>
</tr>
<tr>
<td>GaAs</td>
<td>1.41</td>
<td>17.7*</td>
<td>1.37 +0.4</td>
</tr>
<tr>
<td>GaInNAsSb</td>
<td>0.98</td>
<td>18.5</td>
<td>0.96 -0.2</td>
</tr>
</tbody>
</table>

*Limited EQE measurement performance for the GaAs sub-junction, J_{sc} values are estimated for GaAs cell based on the EQE and solar simulator measurements.

For the absolute comparison and projective analysis of GaInP/GaAs/GaInNAsSb cell performance, diode modelled I-V-characteristics of a current matched cell are also presented in Fig. 1a. The comparison reveals that with further current matching and band-gap tuning, 4 percentage points higher efficiencies are projected for the optimized GaInP/GaAs/GaInNAsSb cell. For better current matching, structural optimization is needed for GaInP and GaAs sub-cells, which we have started with very promising results. Therefore, we believe that the J_{sc} can be increased at least to 17.7 mA/cm2. The triple junction cell has 0.18 V lower V_{oc} than the simulated cell. This voltage drop can be reduced with band-gap engineering and material improvements.

Figure 1. (a) AM0 biased IV-characteristics of GaInP/GaAs/GaInNAsSb solar cell and the simulated performance of GaInP/GaAs/GaInNAsSb cell. (b) EQE characteristics of GaInP/GaAs/GaInNAsSb solar cell measured at 22°C and 80°C.

Approximately 0.1 V higher V_{oc} can be obtained by using higher band-gap for the GaInNAsSb junction. For the remaining voltage gap of 0.08 V, structural and material quality optimizations are the key factors. Ultimately, additional 0.05-0.09 mV improvement for the GaInNAsSb sub-junction might be expected with optimization and improved design, yielding efficiency as high as 32% for the triple junction cell.

Moreover, the temperature coefficients for the cell were defined by the I-V measurements performed in the temperature range of 25-90°C. The relative change of the J_{sc} value for the GaInP/GaAs/GaInNAsSb cell is presented in Fig. 2a, while Fig. 2b shows the dependence on the cell V_{oc} as the function of the cell temperature. The J_{sc} temperature coefficient was 0.006 mA/cm2/°C while the corresponding value for V_{oc} was -6.8 mV/°C. The J_{sc} temperature coefficient calculated from EQE was also 0.006 mA/cm2.

Figure 2. (a) Temperature dependent J_{sc} normalized to J_{sc} at 25°C. (b) Temperature dependence of V_{oc} for GaInP/GaAs/GaInNAsSb cell.

4. CONCLUSION AND FUTURE WORK

We have demonstrated a high performance GaInP/GaAs/GaInNAsSb space solar cell with an efficiency of 27% at AM0 conditions. Using realistic diode model simulation, we show that the efficiency of GaInP/GaAs/GaInNAsSb cell could reach 31%, following current matching and band-gap optimization of...
the dilute nitride bottom cell. Ultimately, with further optimization of the triple junction cell interfaces and material quality, an BOL efficiency as high as 32% is feasible. We also determined the temperature coefficients for J_{sc} and V_{oc}, which were 0.006 mA/cm2/°C and -6.8 mV/°C, respectively.

5. ACKNOWLEDGEMENTS

The authors acknowledge the financial support provided by the Finnish Funding Agency for Technology and Innovation, Tekes (projects ‘Solar III-V’ #40120/09 and ‘Nextsolar’ #40239/12). This work was also partly performed under a programme of and funded by the European Space Agency (contract N.: 4000108058/13/NL/FE). The view expressed herein can in no way be taken to reflect the official opinion of the European Space Agency.

6. REFERENCES

