Active Learning for Sound Event Classification by Clustering Unlabeled Data

Citation

Year
2017

Version
Peer reviewed version (post-print)

Link to publication
TUTCRIS Portal (http://www.tut.fi/tutcris)

Published in
2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

DOI
10.1109/ICASSP.2017.7952256

Copyright
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Take down policy
If you believe that this document breaches copyright, please contact cris.tau@tuni.fi, and we will remove access to the work immediately and investigate your claim.
ACTIVE LEARNING FOR SOUND EVENT CLASSIFICATION BY CLUSTERING UNLABELED DATA

Zhao Shuyang Toni Heittola Tuomas Virtanen

Tampere University of Technology, Finland.

ABSTRACT

This paper proposes a novel active learning method to save annotation effort when preparing material to train sound event classifiers. K-medoids clustering is performed on unlabeled sound segments, and medoids of clusters are presented to annotators for labeling. The annotated label for a medoid is used to derive predicted labels for other cluster members. The obtained labels are used to build a classifier using supervised training. The accuracy of the resulted classifier is used to evaluate the performance of the proposed method. The evaluation made on a public environmental sound dataset shows that the proposed method outperforms reference methods (random sampling, certainty-based active learning and semi-supervised learning) with all simulated labeling budgets, the number of available labeling responses. Through all the experiments, the proposed method saves 50%-60% labeling budget to achieve the same accuracy, with respect to the best reference method.

Index Terms: active learning, sound event classification, K-medoids clustering

1. INTRODUCTION

Sound event classification [1] and detection [2] has many applications such as noise monitoring [3, 4, 5], surveillance [6, 7] and home service robots [8]. The development of sound event classification and detection applications requires annotated recordings. Recordings can be made continuously all day around, almost effortlessly. However, reliable annotation takes at least the duration of a recording. As a result, the annotation work is quite often the main cost to build a sound event classifier. To aim at this situation, we attempt a method that optimizes the classification performance with a limited annotation effort, utilizing an abundant amount of audio data that is much more than the amount that can be afforded to annotate.

The maximum number of labels that can be assigned is called a labeling budget, which is used to quantify a limited annotation effort. When labeling budget is small, there are two established techniques to utilize the abundant amount of unlabeled data: active learning and semi-supervised learning.

An active learning algorithm actively asks for labeling responses on data selected by the algorithm from a set of unlabeled data. An unlabeled data point is called a sample and the selection of samples to be labeled is called sampling; after labeling, a labeled data point and its label constitutes a training example. Active learning algorithms controls the sampling, in order to avoid redundant examples to optimize the efficiency of labeling effort. Though other types of active learning methods exist, only certainty-based active learning (CRTL) [9] has been studied in the field of acoustic pattern recognition. It has been proposed to speech recognition in [10]. In certainty-based active learning methods, a small set of samples (selected by the annotator or randomly) are annotated in the beginning. The annotated labels are used to train a classifier and unlabeled samples are classified. A batch of samples with the lowest classification certainties are presented to the annotator for labeling. The classifier is updated after adding new labels to the training material. An experiment on speech recognition has shown that the amount of labels needed to achieve a target word accuracy can be reduced by 60% using CRTL [11], compared to random sampling.

Semi-supervised learning (SSL) assigns predicted labels to unlabeled data so that unlabeled data is utilized as training examples according to predicted labels. Expectation-maximization based semi-supervised learning has been studied for various acoustic pattern recognition problems such as speaker identification [12] and musical instrument recognition [13]. These methods start by training an initial classifier with labeled data, and they iteratively update predicted labels of either a batch or all unlabeled data. The final classifier is obtained by training with both annotated labels and predicted labels. Gender identification and speaker identification error rates are generally halved using semi-supervised learning with varying proportion of labeled data [12].

All the above-mentioned methods rely on a classifier for uncertainty sampling or label prediction. However, it would require much labeling effort as an overhead to achieve a classifier that produces reasonable classification outputs (predicted class and certainty). As is shown in [11], as long as less than 10% (about 3000) utterances are labeled, performance of CRTL is behind random sampling. An ideal way to deal with a small labeling budget is to utilize the internal structure of the dataset so that the method starts to outperform random sampling from the very beginning of a labeling process.

We propose a method to optimize the sound event classification performance when labeling budget is limited and only a small portion of data can be annotated. The proposed method is called medoid-based active learning (MAL). K-medoids clustering is performed on sound segments, and the centroids of clusters (medoids) are selected for labeling. The label assigned to a medoid is used to derive predicted labels for other cluster members. An advantage of MAL over traditional SSL and CRTL is that it does not depend on a model that would require many labels as an overhead to achieve reliable performance on uncertainty sampling and label prediction. In the evaluation, labels are produced to a training dataset through the proposed method or reference methods, simulating a limited number of labeling responses. A classifier is trained according to the produced labels and its classification accuracy on a test dataset is used to evaluate the performance of the whole process. Selecting cluster representatives for labeling has been originally proposed for text classification in [14], but it does not use representatives to predict labels. Similar studies have not been found in the field of acoustic pattern recognition.

The proposed method is described in Section 2. The evaluation of the proposed system and the discussion about the results is given in Section 3. The conclusion is drawn in Section 4.
second-order derivatives are used as acoustic features. Sound segment representation proceeds with another round of clustering on unlistened segments. The details of the processing is described in more detail.

The initialization of medoids is based on farthest-first traversal method. The farthest segment to the current traversed set is selected as a medoid. The farthest-first traversal has been proved to give an efficient approximation of k-center problem [21]. A traversed set starts as a singleton of a random segment. The farthest segment to the current traversed set (the distance from a point \(x \) to a set \(S \) is defined as \(d(x,S) = \min_{y \in S}d(x,y) \)) is added to the traversed set until the traversed set is the most frequent class in a cluster if only one sample can be taken. As the centroid of a cluster, is intuitively the best sample to estimate the mean and covariance of the corresponding features. In a preliminary study, using a diagonal covariance matrices gave better performance than using full covariance matrices, thus diagonal covariance matrices are used in this study.

2.2. Segment-to-segment dissimilarity measurement

Dissimilarity measurement between segments is needed to perform clustering. Symmetric KL divergence is a dissimilarity measurement between multi-variate Gaussian pairs, which has been used in various applications such as in music information retrieval [15] and audio texture creation [16]. Symmetric KL divergence is also used in this study to measure the dissimilarity between a pair of sound segments. The KL divergence between two multi-variate Gaussian distributions \(P_0 \) and \(P_1 \) is calculated as

\[
D_{KL}(P_0\|P_1) = \frac{1}{2} \left(\text{tr}(\Sigma_1^{-1} \Sigma_0) + (\mu_1 - \mu_0)^\top \Sigma_1^{-1} (\mu_1 - \mu_0) + \ln \left(\frac{\det \Sigma_1}{\det \Sigma_0}\right) - k\right),
\]

where \(\mu_0 \) and \(\Sigma_0 \) are mean and covariance of distribution \(P_0 \), respectively. The mean and covariance of distribution \(P_1 \) are denoted as \(\mu_1 \) and \(\Sigma_1 \).

KL divergence is not a commutative operation so that \(D_{KL}(P_0\|P_1) \) is different from \(D_{KL}(P_1\|P_0) \). In order to obtain a symmetric dissimilarity matrix, the average of both way KL divergence is used to measure the dissimilarity between two segments as

\[
D(P_0\|P_1) = D(P_1\|P_0) = \frac{D_{KL}(P_0\|P_1) + D_{KL}(P_1\|P_0)}{2}.
\]

The segment-to-segment dissimilarity matrix \(D \) is formed as \(D_{ij} = D(P_i\|P_j) \). Since distance matrix is a more common term used for clustering algorithms, the term distance matrix is used instead of dissimilarity matrix in next section. However, it has to be mentioned that KL divergence is not a distance measure.

2.3. K-medoids clustering

K-medoids clustering algorithm [17, 18] is performed based on the segment-to-segment distance matrix. K-medoids is a partitioning-based clustering algorithm, similar to K-means. K-medoids uses a data point in the dataset as a centroid whereas K-means uses an arbitrary point in the coordinate space as a centroid. K-medoids typically outperforms K-means, in terms of accuracy, and the advantage increases with the size of the dataset [19]. Furthermore, a medoid, as the centroid of a cluster, is intuitively the best sample to estimate the most frequent class in a cluster if only one sample can be taken.

In a bit more detail, K-medoids is performed by assigning each segment to the nearest medoid among all \(k \) medoids. The medoids are initialized and iteratively updated to minimize the total distance of all segments to the nearest medoids until no medoid can be swapped to reduce the total distance.

The initialization of medoids is based on farthest-first traversal [20]. Farthest-first traversal has been proved to give an efficient approximation of k-center problem [21]. A traversed set starts as a singleton of a random segment. The farthest segment to the current traversed set (the distance from a point \(x \) to a set \(S \) is defined as \(d(x,S) = \min_{y \in S}d(x,y) \)) is added to the traversed set until the...
traversed set reaches the size of K. The traversed set is then used as the initial medoids.

The choice of the number of clusters k gives a trade-off between bigger cluster size (more predicted labels can be derived from a single label assignment) and better accuracy of predicted labels. Let us denote the number of unlistened segments as n. We choose $k = n/4$, which can be interpreted that the average size of clusters is four.

2.4. Assigning labels
The medoids of clusters are presented to an annotator in a sequence sorted by cluster size in descending order. Only one medoid is played at a time and the annotator assign label to the medoid by selecting a class from a list of pre-defined classes. Assigning a label consumes labeling budget by one. The label assigned to a medoid is seen as an annotated label. The label of the medoid is derived as predicted labels for the rest of cluster members. Largest clusters are labeled first so that high number of predicted labels can be derived with low listening budget.

2.5. Recursive process
Initially, all the segments are flagged as unlistened. Once a medoid segment is annotated, the segment is flagged as listened. The target situation is small labeling budget so that we do not aim on an optimal performance when the budget is more than the number of clusters. In case all medoids are annotated, we simply perform another round of clustering on unlistened segments and the annotation process continues with medoids in the latest round of clustering. Annotated labels overwrite predicted labels received in previous rounds.

If the listening budget is sufficient so that multiple rounds of clustering have been performed, there would be multiple, possibly different predicted labels given to an unlistened segment. In supervised learning, all the different predicted labels for an unlistened segment are used, by taking the segment as an training example of each labeled class.

3. EVALUATION
The performance of the proposed method is evaluated as the classification accuracy using labels produced with the proposed method.

3.1. Dataset
The goal of the proposed method is to save annotation effort. In order to approximate the target situation, the used dataset has to be large enough so that reducing annotation effort is worthy attempting. In addition, a public dataset designed for sound event classification accuracy using labels produced with the proposed method.

3.2. Experimental setup
MFCCs are used as frame-wise features. The audio signal is divided into frames with 24 ms length and 50% frame overlap. We compute 1st to 25th MFCCs from 40 Mel bands between 25 Hz and 22 050 Hz. To calculate the segment-to-segment distances, the mean and covariance of MFCCs are used as is discussed in Section 2.2. In supervised learning, the following summary statistics of MFCCs are used as segment-wise features: minimum, maximum, median, mean, variance, skewness, kurtosis and the median and variance of the first and second derivatives.

In each round of evaluation, nine folds are used for training and one fold is used for testing. The labels provided by the dataset are used as ground truth. In a training set, the ground truth labels are initially all hidden. A labeling budget m allows a learning algorithm to query labeling responses for up to m segments. The labels obtained directly through labeling responses are called annotated labels, whereas other labels generated using the proposed method or SSL are called predicted labels.

Two annotators are simulated: an oracle annotator that always answers the ground truth and an artificial weak annotator [23] that produces noisy labels. The labeling accuracy of our artificial weak annotator is set to 75%, which is the lowest reported human sound event recognition rate in found studies [5, 8, 24, 25]. The probabilities that the artificial annotator mislabels a class to any other classes are even.

Obtained labels are used to perform supervised learning. Support vector machine (SVM) with radial basis function as kernel is used as classification model. Since this study does not aim on optimal parametrization, we use default settings of Python Scikit-learn [26]. A training example consists of a segment-wise feature vector and a target class according to the label.

Since the distribution of classes in the dataset is not even, we use unweighted accuracy to weigh different classes the same regardless to the number of instances. The classification accuracy is reported averaging the accuracy across all 10 folds. There are random elements (medoid initialization, random sampling and labeling errors from the weak annotator) in the experiments that affect on the performance. Therefore, all the experiments are repeated five times and the averaged results are reported.

3.3. Reference methods
Random sampling is used as a baseline, where a random subset with the size of labeling budget in the training dataset is annotated. The purpose of random sampling is to simulate the performance of passive learning as a benchmark.

CRTAL [10] is used as the second reference method. Half of the labeling budget is used for the initial samples that are randomly selected. The other half of the labeling budget is used for uncertainty selection. A batch size five is used so that the least confident five samples to the current model, in each iteration, are selected for labeling and the model is updated after adding new labels to training material.

SSL [12] is coupled with random sampling and CRTAL, respectively, as the third and the fourth reference method. The annotated labels are obtained though either random sampling or CRTAL. An initial classifier is trained with annotated labels and all unlabeled segments get predicted labels based on the classification output using the initial classifier. The predicted labels and the classifier are updated with five iterations. This way of combining of CRTAL and SSL is called a serial combined learner [27].
3.4. Results

Figure 2 illustrates the performance of the proposed method compared with reference methods, simulating oracle labeling responses. All segments in the training set get annotated labels when the labeling budget is 8,000. When all the segments are labeled as ground truth, the obtained classifier achieves an accuracy about 65%, which is the ceiling performance of all compared methods.

The proposed method (MAL) performs the best with all simulated labeling budget until all methods converge to the ceiling performance. Reference methods need 2-4 times of labeling budget, compared to the proposed method, to achieve the same accuracy. An interesting benchmark is listening budget 2,000, where each segment has received a label, either annotated or predicted using the proposed method. We have observed that the accuracy of predicted labels is about 97%. The high labeling accuracy makes the resulted classifier approximates the ceiling performance.

CRTAL does not outperform the baseline until labeling budget of 3,000. An active learning study on speech recognition [11] shows a similar trend. When labeling budget is small, the most uncertain segments selected within a batch are often similar to each other, which makes the selected training material more redundant than when using baseline.

The effect of SSL goes divergent along with baseline and CRTAL. The performance is improved when SSL is used together with CRTAL, but similar improvement is not observed with the baseline. Uncertain segments are labeled out with CRTAL, and there remains confident segments to predict. As a result, the label prediction accuracy is much higher when CRTAL is used compared to baseline.

Figure 3 illustrates the difference in performance between the resulted classifiers using the oracle annotator and the artificial weak annotator. The results show that the proposed method also outperforms the baseline when the weak annotator is used. However, the advantage of the proposed method is smaller compared to using the oracle annotator: the baseline needs less than double sized labeling budget to achieve the same accuracy. Intuitively, this phenomenon is due to the predicted label derivation mechanism of the proposed method. Mislabeling the medoid makes a whole cluster of segments wrongly labeled to another class, which may lead to a strong confusion between the two classes. In comparison, when the same amount of wrong labels are evenly distributed to all classes, the performance of the resulted classifier seems to be affected much less. As a summary, the proposed method might be less effective when using weak annotators.

4. CONCLUSION

We propose a novel method, medoid-based active learning (MAL), to improve sound event classification performance when labeling budget is small, compared to the number of unlabeled data.

In the evaluation using an oracle annotator, when the labeling budget was less than 10% of unlabeled data, the resulted classifier using the proposed method gave about 8% better accuracy than using the best reference method. Furthermore, as the listening budget grew, the proposed method kept to outperform reference methods. Through all the experiments, the proposed method used generally 50%-60% less labeling budget to achieve the same classification accuracy with respect to the best reference method.

In this study, the number of clusters \(k \) was set to a rather big number (only four segments per cluster in average). However, the performance of the proposed method could be potentially further improved by tuning \(k \) according to the listening budget, e.g. a smaller \(k \) for a tight budget. In preliminary experiments, the classification accuracy with a tight listening budget (400) was further improved by 5% when \(k \) was halved.

The experiment using an artificial weak annotator shows that the proposed method is less effective if the annotator gives too many wrong labels. This suggests a future study about using weak annotators. In case of very weak annotator, clustering may be used to improve the labeling accuracy (listening to all segments in a cluster and label the whole cluster using majority vote) instead of active learning, which leads to another study.

As a conclusion, the proposed method can effectively improve the sound event classification performance when the labeling budget is small. In future, datasets with different number of segments and possible classes can be studied. Furthermore, it would be helpful to evaluate the performance using realistic human annotators. At last, it would be useful to study alternative acoustic models, e.g. neural network, to compare how they work along with less accurate labels.
5. REFERENCES

