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ABSTRACT: Proteins embedded in the plasma membrane mediate interactions with the cell environment and play decisive
roles in many signaling events. For cell−cell recognition molecules, it is highly likely that their structures and behavior have been
optimized in ways that overcome the limitations of membrane tethering. In particular, the ligand binding regions of these
proteins likely need to be maximally exposed. Here we show by means of atomistic simulations of membrane-bound CD2, a small
cell adhesion receptor expressed by human T-cells and natural killer cells, that the presentation of its ectodomain is highly
dependent on membrane lipids and receptor glycosylation acting in apparent unison. Detailed analysis shows that the underlying
mechanism is based on electrostatic interactions complemented by steric interactions between glycans in the protein and the
membrane surface. The findings are significant for understanding the factors that render membrane receptors accessible for
binding and signaling.

Membrane proteins and receptors direct a variety of
cellular functions by, for example, being involved in cell

recognition and generating signals associated with cellular
communication. The fact that these molecules are tethered to
membranes and interact at cellular interfaces has several
important consequences.1 Principal among these is that
membrane tethering limits the ability of receptors to encounter
each other, and this requires the opposing surfaces to come into
sufficiently close proximity to allow engagement of the binding

partners driven by lateral diffusion in the membrane only. A
related consideration is that cell surface proteins can vary
considerably in size, which will tend to work against the
interactions of pairs of smaller proteins. On the other hand, all
of these proteins are tethered to the membrane either by a
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glycosylphosphatidylinositol (GPI) anchor, which in at least
some instances is likely to be highly flexible,2 or via a relatively
short (∼4−15 residue) “stalk”-like segment presumed to have
extended, nonrigid structures. At present, it is unclear how the
positioning of the ligand binding sites of receptors is optimized
to ensure efficient ligand engagement at the cell surface.

Recent experimental work has suggested that lipids located in
the extracellular leaflet of a cell membrane can influence protein
behavior and activation. For example, it has been proposed that
the ganglioside GM3 inhibits epidermal growth factor receptor
(EGFR) autophosphorylation,3 and the activation of toll-like
receptor 4 has been reported to be inhibited by another two
gangliosides (GM1 and GD1A).4 These studies suggest that
lipids could affect ectodomain activity, perhaps by influencing
the positioning of the receptor in the membrane. Other work
on the EGFR implies that protein glycosylation can also
influence membrane receptor conformation and accessibility for
ligand binding.5 Here, we explore the possibility that lipids and
glycosylation act in concert to control the positioning of the
ligand binding region of an immune receptor, CD2,6−9 using
atomistic molecular dynamics simulations.

CD2 is expressed in T-cells and natural killer cells, where it
functions as a cell adhesion and co-stimulatory molecule. The
extracellular domain (ECD) of CD2 is relatively small (∼75
Å),10,11 which for our purposes is advantageous because it
allows us to explore its full conformational space in multi-
microsecond simulations. This region of CD2 consists of a
membrane-distal immunoglobulin superfamily (IgSF) V-set
domain supported by a C2-set domain.10,11 The positioning of
the ligand binding region of CD2 at the “top” of the V-set
domain suggests its optimization for ligand binding. The ECD
is attached to a conventional transmembrane domain via a
seven-residue, apparently extended stalk.11 An intriguing feature
of CD2 is the presence of a highly conserved glycosylation site
at the base of CD2 of domain 2.12 This glycosylation site is well
away from the ligand binding region, and it has been shown
that the ligand-binding properties of CD2 are in any case
glycosylation-independent. It has therefore been proposed that
the conserved site is well placed for an N-glycan positioned
there to stabilize the orientation of the protein at the
surface.10,12 Finally, there are suggestions that CD2 function
is lipid-dependent.13,14

In general terms, N-glycosylation is one of the most common
structural modifications of proteins, being involved in, for
example, protein folding, structural diversification, and
activation.15−17 Considering the importance of N-glycosylation
and the difficulties associated with unraveling the effects of
atom-scale structural modifications, the role of membrane
protein glycosylation has received surprisingly little attention in
the form of atomistic simulations until now; to our knowledge,
only one atom-scale simulation study has explored the influence
of glycosylation on membrane protein conformation and the
resulting effects on presentation and ligand binding.5 The study
showed glycosylation to critically determine the structural
arrangement of the EGFR ectodomain and its ligand-binding
domains. Further studies on peptides interacting with lipid
membranes have explored, for example, the importance of
glycosylation in the binding of autoantibodies with glycopep-
tides used as biomarkers.18

CD2 is the ideal candidate for exploring how lipids and
glycosylation could act in concert to position its ectodomain,
thereby enhancing its binding function. This stems from the
facts that CD2 has conserved membrane-proximal glycosyla-

tion, there are data favoring the view that its function is lipid-
dependent,13,14 and, above all, that it is a relatively small
glycoprotein. We find that both lipid composition and
glycosylation influence the orientation and dynamics of the
CD2 ectodomain, but the most distinct and most pronounced
effect is observed when they act in concert. The implications of
these findings are discussed below.

We unraveled the importance of glycosylation (G) compared
to nonglycosylation (NG) in two different lipid membranes: a
single-component, liquid-disordered (Ld) fluid bilayer made of
1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC; referred to
here as the Ld bilayer) and a bilayer with a ternary lipid mixture
(DOPC, sphingomyelin (SM), and cholesterol (Chol)), which
is more ordered (liquid-ordered (Lo)) and less fluid and is
often taken as a physical model of putative membrane “rafts”19

(referred to here as the Lo bilayer). Introducing glycosylated
(G) and nonglycosylated (NG) CD2 into these bilayers
resulted in the simulation of four systems (Ld-NG, Ld-G, Lo-
NG, Lo-G), which were simulated for 500 ns each, and every
simulation was repeated three times to improve sampling.

Figure 1 highlights qualitatively the main conclusions of this
study by means of a series of snapshots (see also movies in the

Supporting Information (SI)). We find that the orientation of
the ECD of CD2 can depend in a critical manner on both CD2
glycosylation and the local lipid composition of the membrane.

In the Ld bilayer without glycosylation (Figure 1a), the ECD
is positioned parallel to the membrane surface. For the same Ld
bilayer with glycosylation (Figure 1c), the ECD of CD2 is
positioned more upright, suggesting that glycosylation plays a
role in CD2 orientation. Considering CD2 in the Lo bilayer, we
find that the lipid composition has an important role in CD2
ECD positioning too (Figure 1b,d). Without glycosylation in
the Lo system, the ECD of CD2 fluctuates around an upright
position (Figure 1b). However, the most significant change is
observed when the Lo bilayer hosts glycosylated CD2, where

Figure 1. Simulation snapshots of the equilibrium configurations of
nonglycosylated CD2 in (a) Ld (Ld-NG) and (b) Lo (Lo-NG)
bilayers and of glycosylated CD2 in (c) Ld (Ld-G) and (d) Lo (Lo-G)
bilayers. Color code: DOPC (orange), SM (cyan), Chol (yellow),
CD2 domain 1 (dark blue), CD2 domain 2 (red), CD2 trans-
membrane helix (black), and lipid carbohydrate chains (light blue).
The glycans attached to CD2 in panels (c) and (d) (Ld-G, Lo-G) are
shown in light blue. For clarity, water and ions are not shown.
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the protein assumes a constitutively upright position (Figure
1d).

While the data shown in Figure 1 are suggestive, a more
quantitative analysis of the simulation data confirmed these
findings. We first calculated the tilt angle for vectors that
represent the ECDs of CD2. The vectors used to characterize
the domain orientations were defined as follows. We first define
three points A, B, and C (Figure 2a), where point A is localized

at the top of domain 1 (atom N in the LYS residue), point B is
in the linker region10 between domains 1 and 2 (atom N in the
GLU residue), and point C connects domain 2 to the
transmembrane helix at the “top” of the membrane (atom N
in ASP). Vectors RBA from B to A (in the domain 1) and RCB
from C to B (in the domain 2) are then defined as vectors
connecting these points (Figure 2a). The tilt angles of these
vectors with respect to the membrane normal are denoted by � 1
(for domain 1) and � 2 (for domain 2), respectively.

The probability distributions P(� 1) and P(� 2) of the tilt
angles are shown in Figure 2b,c, respectively. The results show

that the tilt angle � 1 of domain 1 is the highest for
nonglycosylated CD2 embedded in the Ld bilayer, and the
smallest tilt is observed for glycosylated CD2 in the Lo bilayer.
The tilts for glycosylated CD2 in the Ld bilayer and for
nonglycosylated CD2 in the Lo bilayer are comparable and
between the two above-mentioned extreme cases. The average
values of the tilt angles are summarized in Table 1, which

highlights profound differences between the four systems. A
similar pattern is found for the tilt angle � 2 of domain 2 (Figure
2c). Similar conclusions are found when one analyzes the tilt
angle of the entire ECD of CD2 (� tilt between RCA and the
membrane normal; Figure 2a) and the kink angle between
domains 1 and 2 (� kink between vectors RBA and RCB; Figure
2a); see Figure S4 in the SI.

The results suggest that glycosylation and lipid composition
govern the orientation of the ECD of CD2. One possible
general conclusion that can be drawn is that for membrane
receptors with binding surfaces or binding pockets in the
extracellular region, glycosylation and the lipid environment
may restrict the amount of ligand-accessible space. We
therefore complemented the above analysis for ECD
orientation and determined also the distances between the
ECD of CD2 and the bilayer surface. To this end, the distance
between the center of mass (CM) positions of domains 1 and 2
along the bilayer normal direction is defined as d12. The
distances along the membrane normal between A and C and B
and C are then defined as d1m and d2m, respectively (see Figure
2).

Data presented in Figure 3a show that the distance d12 is the
shortest for nonglycosylated CD2 in the DOPC bilayer, and it
is the longest for the glycosylated CD2 in the Lo bilayer. The
distance is in-between these limits for the remaining two cases
(Ld-G and Lo-NG). Consistent conclusions are found based on
the distances d1m and d2m (Figure 3b,c).

Figure 3 allows us to indicate the relative importance of
glycosylation and the two lipid compositions for the orientation
of the ECD. First, Figure 3 provides compelling evidence that
the ECD generally stands most upright when CD2 (either
glycosylated or nonglycosylated) is in the Lo bilayer. Second, in
both Ld and Lo bilayers, the glycosylated form of CD2 stands
more upright than the nonglycosylated protein. This feature is
quite weak in the Lo systems but strong in the Ld membranes.

The largest effect on the positioning of the ECD of CD2
appears to be the Lo lipid composition in the bilayer, compared
to the Ld bilayer. Glycosylation also influences ECD position-
ing, but this effect is somewhat less pronounced compared to
the change induced when going from the Ld to the Lo lipid
environment. In order to understand what governs the
orientation of the CD2 ectodomain, and in particular why
the ectodomain of nonglycosylated CD2 collapses in the Ld

Figure 2. (a) Schematic diagram of CD2 embedded in a lipid
membrane. The transmembrane part of CD2 is shown in violet, while
the two domains in the ECD of CD2 are denoted by semidark green
(domain 1) and light orange (domain 2). Points A, B, and C (see text)
stand for the top of domain 1, the junction between domains 1 and 2,
and the bottom of domain 2 that is connected to the transmembrane
helix of CD2, respectively. (b) Probability distribution functions of the
tilt angle of domain 1 with respect to the membrane normal. (c) A
similar probability distribution for the tilt of domain 2. Color code: Ld-
NG (red), Ld-G (green), Lo-NG (blue), Lo-G (brown).

Table 1. Results for the Average Values of the Tilt Angles
(� 1, � 2) Describing the Orientation of Domains 1 and 2 of
the CD2 Ectodomaina

system average � 1 (deg) average � 2 (deg)

Ld-NG 65.30 ± 0.07 73.33 ± 0.30
Ld-G 38.40 ± 0.39 31.77 ± 1.11
Lo-NG 34.62 ± 0.50 34.98 ± 0.61
Lo-G 25.82 ± 1.00 21.78 ± 0.57

aSee Figure 2. The error correspond to the standard error based on
analyses of the three independent simulations for each system.
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bilayer, we next explored the orientation of the CD2
transmembrane domain and its dependence on glycosylation
and membrane lipid content. Figure 4 shows that the
orientation of the transmembrane domain is distinctly different
in the Ld and Lo bilayers, irrespective of the presence of
glycosylation. In the case of the Ld environment, where the
membranes are ∼0.4 nm thicker than those in the Lo systems,

the transmembrane region is more “upright” on average (Figure
4). Further analysis showed that the orientation of the
transmembrane domain does not correlate with the position
of the ectodomain (Figure S5).

We next turned our attention to lipid−protein interactions.
We identified the amino acids on nonglycosylated CD2 that
interacted with the lipid membrane environment in the Ld
system. These were positively charged lysines and arginines
forming a patch, present in both human and rat CD2, and
suggesting electrostatic interactions to play a role in CD2
tilting. We therefore performed additional simulations wherein
Lys125, Lys132, Lys185, Lys183, Lys206, Lys134, Lys175,
Lys166, Arg170, and Arg129 were deprotonated to a neutral
form (Figure S10). Figure 5 depicts the significance of

deprotonation. Whereas the ECD of intact nonglycosylated
CD2 associates directly with the membrane surface of the Ld
bilayer, deprotonated nonglycosylated CD2 is positioned
upright in a largely similar manner to glycosylated CD2 in
the Lo bilayer. These data suggest that the main cause of the
CD2 ectodomain’s tilt is the electrostatic attractive interaction
between the charged residues and the strongly polar lipid head
groups (of DOPC) in the bilayer. When weakly polar Chol
replaces strongly polar DOPC, as in a change from the Ld to
the Lo system, or when CD2 is deprotonated, the tilt is reduced
(Figures 2b,c and 5). In addition, the glycans bound to CD2
and, in particular, the glycosylation in the juxtamembrane
region of CD2 prevent collapse of the ectodomain by both
shielding the charged residues and holding the ECD upright
through steric effects.

The above-described conclusions are supported by analysis
of the total electrostatic energy that results from electrostatic
interactions between CD2 and all of the membrane lipids (see
Figure S8). Here, the basis is the idea that the larger the
(attractive) electrostatic interaction, the more tilted the ECD.
Accordingly, we observe that the electrostatic energy is the
highest in the Ld-NG system, followed by (in decreasing order)
Ld-G, Lo-NG, and Lo-G. The correlation with the results
describing the ECD orientation in Figure 2 is evident. Further,
we find that the total electrostatic interaction is lowest in the
deprotonated system, where the ECD of CD2 stands the most
upright.

As discussed above, the positively charged lysines and
arginines form a patch that is present in both human and rat

Figure 3. Probability distributions for distances (a) d12, (b) d1m, and
(c) d2m for the different conditions studied.

Figure 4. (a) Probability distributions for the orientation of the
transmembrane region of CD2 characterized by � , which is the angle
between the principal axis of the CD2 transmembrane domain and the
membrane normal. Average values of � together with error bars are
listed in the inset. (b) Schematic illustration of the angle � .

Figure 5. (a) Distribution of the tilt angle � tilt in the Ld-NG system
(blue line) when a set of 10 positively charged amino acids of CD2
were deprotonated (see text). The tilt � tilt is the angle between the
membrane normal and a vector from the point C to A (see Figure 2a).
The corresponding data for the intact Ld-NG system without
deprotonation are shown for comparison (red line). (b) Snapshot of
the equilibrium configuration for the deprotonated Ld-NG system.
The neutralized lysines are shown in green and the neutralized
arginines in violet.
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CD2. As a matter of fact, a patch of charged residues is present
in this region even beyond these species. We carried out
sequence alignment for CD2 for all mammal species for which
the sequence was deposited in UNIPROT (see Figure S11).
Regarding the charged residues, lysines 125 and 132 were
found to be highly conserved, and lysines 185, 175, and 166 as
well as arginine 170 were also frequently conserved. As for
glycosylation, positions 89 and 141 were also found to be
highly conserved.

Our results suggest that positioning of the ECD in CD2 is
affected by protein glycosylation and the lipid composition of
the membrane environment that hosts the protein. On the basis
of analysis for CD2, the most decisive factor is the lipid content
(Figure 2). We found that when CD2 is transferred from a
bilayer that is characterized by a DOPC-rich Ld membrane
environment to a Chol- and SM-rich bilayer with a more
ordered Lo membrane environment, the orientation of the
ECD undergoes significant reorganization; in the Ld bilayer,
the ECD associates with the membrane, while in the Lo bilayer,
the ECD stands upright. Glycosylation had a similar effect, but
its significance was less pronounced versus that of lipid-induced
effects. Importantly, the largest effects were observed when
lipids and glycosylation acted in unison.

Lipids are proposed to affect membrane protein conforma-
tion in a number of ways. These include Chol-induced changes
in membrane order, ordering of water, ion binding and ion-
mediated interactions, lipid−protein interactions, or changes in
the pressure profile inside of a membrane.20−24 We tested many
of the potential contributions in our simulations (e.g., leaving
out Chol, considering differing water contents, and assessing
the importance of lipid−protein interactions), but each of these
was found to be insignificant (see the SI). Instead, the results
point to a conclusion that the lipid-induced tilt of the
membrane protein ectodomain was driven by electrostatic
interactions. The results in Figures 5 and S8 demonstrate this
convincingly. Our simulations indicate that the significant tilt of
the CD2 ectodomain largely disappeared when the positively
charged amino acids (two arginines and eight lysines), which
interact with the headgroup of DOPC, were deprotonated
(Figure 5). Further, when we considered the total electrostatic
interaction between CD2 and the lipid membrane, we found a
direct correlation between the electrostatic interaction and the
ECD tilt (Figures S8 and 2).

The effect on CD2 orientation of glycosylation appears to be
due to steric effects; glycans in the ECD of CD2 act as a steric
barrier, preventing association with the membrane surface.
Similar effects were recently observed for the EGFR,5 wherein
loss of glycosylation led to strong interactions between the
protein and the membrane surface, resulting in a reduction in
the accessibility of the ligand-binding site. In the present work,
the most important glycosylation is that linked to Asn141 and
Asn150 located close to the membrane surface (Figure 1,
Figure S9). The influence of these glycans was enhanced in the
Lo membrane environment, presumably due to mechanical
effects such as Chol-induced increased order and reduced
elasticity. However, the glycosylation at Asn150 is likely also to
act as a shield, preventing electrostatic interactions mediated by
lysine and arginine residues,25 which in CD2 form a patch of
positive electrostatic potential (see Figures S9 and S10).

In conclusion, our results show that lipids and glycosylation
act in concert in modulating the orientation of the CD2 ECD.
These effects are likely to have a crucial role in ensuring that
CD2 binds efficiently to its ligands, enhancing T-cell

interactions and signaling. In more general terms, given the
abundance of glycosylation among membrane proteins, our
results suggest their orientation and presentation to be quite
broadly influenced by the concerted interplay of lipids and
glycosylation.

� METHODS
The crystal structures of the SH2 and SH3 domains of CD2
were obtained from the PDB database (id: 1HNF),26 and the
transmembrane helical part of CD2 was built using the VMD
package.27 Hence, we simulated residues 25−235 of CD2. For
numbering of the residues, we used the UNIPROT scheme. As
for glycosylation, N-linked glycans display an extraordinary
diversity.28 However, because all N-linked glycans share the
common pentasaccharide core (GlcNAc2Man3; see Figure S1),
this primary sugar core is here attached to the N-terminus of
residues 89, 141, and 150 (Figure S9) using the protocol
described elsewhere.5 The present study shows that even this
primary sugar core that is an appropriate choice for simulation
purposes to demonstrate the effects of glycosylation has a major
influence on CD2 orientation and presentation. The effects of
glycosylation can be expected to strengthen with longer and
more specific glycans.

The multicomponent Lo membrane used in our simulations
was comprised of 35.3 mol % SM (SM d16:1/16:0), 43.0 mol
% DOPC, and 28.7 mol % Chol. As a control system in the Ld
phase, we used a single-component DOPC bilayer. The number
of lipids ranged between 508 and 982, and the number of water
molecules was between ∼85 000 and ∼220 000. Details of the
systems’ compositions and dimensions are given in Table S1.

All simulations were performed with the GROMACS 4
package.29 The refined OPLS all-atom force field was used for
SM and DOPC,30−33 and the standard OPLS all-atom force
field was employed for the protein and the sugars together with
the OPLS-compatible TIP3P water model.34 The Nose−́
Hoover thermostat35 and the Parrinello−Rahman barostat36

were used to maintain the temperature and pressure at 310 K
and 1 atm. A semi-isotropic pressure coupling with a
compressibility of 4.5 × 10−5 bar−1 was used in the NpT
ensemble. Long-range electrostatic interactions were incorpo-
rated through the Particle Mesh Ewald (PME) method with a
cutoff of 1 nm (between real and reciprocal space descriptions),
and the same cutoff was also used for Lennard-Jones
interactions.37 For each of the systems, we carried out three
independent 500 ns simulations. The first 300 ns of the 500 ns
trajectories was considered as an equilibration period based on
convergence of the ECD orientation distributions (see the SI),
and the last 200 ns was used for analysis unless mentioned
otherwise. The results of the three independent simulations
were used as the basis for error analysis. The results of the three
simulations, for each of the systems considered, were found to
be consistent with each other.
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Unsaturated Phosphatidylcholines Bilayers: Molecular Dynamics
Simulation Study. Chem. Phys. Lipids2016, 195, 12−20.
(32) Kulig, W.; Pasenkiewicz-Gierula, M.; Roǵ, T. Topologies,
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