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Abstract: Consider the recursion g0 = a, g1 = b, gn = gn−1 + gn−2, n = 2, 3, . . . . We compute the Frobenius
norm of the r-circulant matrix corresponding to g0, . . . , gn−1. We also give three lower bounds (with equal-
ity conditions) for the spectral norm of this matrix. For this purpose, we present three ways to estimate the
spectral norm from below in general.

Keywords: Euclidean norm, Frobenius norm, generalized Fibonacci numbers, r-circulant matrix, spectral
norm

1 Introduction
Given a, b, p, q ∈ R, we de�ne the Horadam sequence (hn) = (hn(a, b; p, q)) via

h0 = a, h1 = b,
hn = phn−1 + qhn−2, n = 2, 3, . . . .

(It is often assumed that a, b, p, q ∈ Z, but real numbers apply as well.) We abbreviate

(un) = (hn(a, b; p, 1)), (gn) = (hn(a, b; 1, 1)),
(fn) = (hn(0, 1; 1, 1)), (ln) = (hn(2, 1; 1, 1)),

and denote

h = (h0, . . . , hn−1), u = (u0, . . . , un−1), g = (g0, . . . , gn−1),
f = (f0, . . . , fn−1), l = (l0, . . . , ln−1).

Throughout, we let
x = (x0, . . . , xn−1) ∈ Rn , n ≥ 2.

Given r ∈ R, the r-circulant matrix Cr(x) is de�ned as

Cr(x) =



x0 x1 . . . xn−2 xn−1
rxn−1 x0 . . . xn−3 xn−2
rxn−2 rxn−1 . . . xn−4 xn−3

...
...

...
...

...
rx2 rx3 . . . x0 x1
rx1 rx2 . . . rxn−1 x0


.
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(If r ∈ Z, the term “r-circulant” has also another meaning [4, p. 155]: each row is obtained from the preceding
row by r shiftings.)

We let ‖ · ‖F stand for the Frobenius (or, equivalently, Euclidean) norm of a matrix, and ‖ · ‖2 for the
spectral norm (or, equivalently, the largest singular value) of a matrix likewise for the Euclidean norm of a
vector.

Shen and Cen [12] presented bounds for ‖Cr(f)‖F and ‖Cr(l)‖F . Chandoul [3] extended them to ‖Cr(g)‖F,
and Raza and Ali [11] to ‖Cr(u)‖F . Our �rst goal is to �nd ‖Cr(g)‖F exactly. We will do it in Section 2.

The above-cited authors have also presented bounds for ‖Cr(f)‖2, etc. In this paper, we focus on exam-
ining lower bounds. Shen and Cen [12, Theorems 1–2] proved that

‖Cr(f)‖2 ≥ min (|r|, 1)
√
fn−1fn ,

‖Cr(l)‖2 ≥ min (|r|, 1)
√

5fn−1fn if n is even,
‖Cr(l)‖2 ≥ min (|r|, 1)

√
5fn−1fn + 4 if n is odd.

Chandoul [3, Theorem 2.2] extended these inequalities to

‖Cr(g)‖2 ≥ min (|r|, 1)
√
gn−1gn − ab + a2. (1)

More generally, Raza and Ali [11, Theorem 2.1] showed that

‖Cr(u)‖2 ≥ min (|r|, 1)
√
un−1un − ab + pa2

p .

They assume that a, b ≥ 0 but say nothing about p. However, it seems that they implicitly presume that p ≥ 1.
A couple of years earlier Yazik and Taskara [13, Theorem 5] found evenmore general, yet a quite complicated,
lower bound for ‖Cr(h)‖2.

If |r| is large (and n �xed), then the left-hand side of each of the above inequalities is large but the right-
hand side remains constant. If |r| is small, then the right-hand side is small but the left-hand side may be
large (because Cr(g)TCr(g) has entries without factor r). Therefore, the right-hand sides are often poor lower
bounds for the left-hand sides.

In order to exceed the above results, in Section 3, we will cultivate three previously known ways to es-
timate ‖A‖2 from below, where A ∈ Cm×n. We will also give equality conditions. Because we �nd this topic
interesting in itself, our approach is going to be more general than actually is needed. Applying the bounds
so obtained, we will in Section 4 underestimate ‖Cr(x)‖2, where x ∈ Cn. Thereafter, in Section 5, we will
attain our second goal: to �nd three lower bounds for ‖Cr(g)‖2. In Section 6, wewill compare the found lower
bounds with each others and with the right-hand side of (1), brie�y “rhs(1)”. Finally, Section 7 completes our
paper with some concluding remarks.

Norms of generalized Fibonacci r-circulantmatrices are widely studied. The above references are directly
connected with our paper. For other references, see, e.g., [1, 2, 5, 7, 9].

2 Computation of ‖Cr(g)‖F
We recall three sum formulas for the Fibonacci numbers.

Lemma 2.1. Let n ∈ Z+. Then

f 2
1 + · · · + f 2

n = fn fn+1, (2)
f1f2 + · · · + fn−1fn = f 2

n − ηn , (3)
f 2
1 + 2f 2

2 + · · · + nf 2
n = (nfn+1 − fn)fn + ηn , (4)

where

ηn = 1 − (−1)n
2 . (5)
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Proof. By induction. See also [8, Theorem 5.5] and [8, p. 90, Eqs. 57 and 60].

We also need two other sum formulas.

Lemma 2.2. Let n ∈ Z+. Then

2f 2
1 + 3f 2

2 + · · · + (n + 1)f 2
n =

[
(n + 1)fn+1 − fn

]
fn + ηn . (6)

Proof. By (4) and (2),

2f 2
1 + 3f 2

2 + · · · + (n + 1)f 2
n = (f 2

1 + 2f 2
2 + · · · + nf 2

n ) + (f 2
1 + · · · + f 2

n ) =
nfn fn+1 − f 2

n + ηn + fn fn+1 = (n + 1)fn fn+1 − f 2
n + ηn ,

and (6) follows.

Lemma 2.3. Let n ∈ Z+. Then

f0f1 + 2f1f2 + 3f2f3 + · · · + nfn−1fn = (nfn − fn−1)fn + θn , (7)

where

θn = (−1)n n + ηn
2 . (8)

Proof. Denote sn = f0f1 + f1f2 + · · · + fn−1fn. Then, by (3) and (2),

f0f1 + 2f1f2 + 3f2f3 + · · · + nfn−1fn = sn + (sn − s1) + (sn − s2) + · · · + (sn − sn−1) =
f 2
n + (f 2

n − f 2
1 ) + (f 2

n − f 2
2 ) + · · · + (f 2

n − f 2
n−1) − ηn + (ηn − η1) + (ηn − η2) + · · · + (ηn − ηn−1) =

nf 2
n − (f 2

1 + · · · + f 2
n−1) − nηn + η1 + η2 + · · · + ηn−1 = nf 2

n − fn−1fn − nηn + η1 + η2 + · · · + ηn−1.

If n is even, then
−nηn + η1 + η2 + · · · + ηn−1 = 0 + n

2 = θn .

If n is odd, then
−nηn + η1 + η2 + · · · + ηn−1 = −n + n − 1

2 = −n + 1
2 = θn ,

and the proof is complete.

Now, we can compute ‖Cr(g)‖2
F . Applying the equation

gn = afn−1 + bfn , n = 1, 2, . . . , (9)

and (2), (4), (6), (7), we have

‖Cr(g)‖2
F =

n−1∑
i=0

(n − i)g2
i +

n−1∑
i=1

ir2g2
i = na2 + n

n−1∑
i=1

g2
i + (r2 − 1)

n−1∑
i=1

ig2
i =

na2 + n
n−1∑
i=1

(afi−1 + bfi)2 + (r2 − 1)
n−1∑
i=1

i(afi−1 + bfi)2 =

na2 + n
n−1∑
i=1

(a2f 2
i−1 + 2abfi−1fi + b2f 2

i ) + (r2 − 1)
n−1∑
i=1

i(a2f 2
i−1 + 2abfi−1fi + b2f 2

i ) =

na2 + n
(
a2

n−1∑
i=1

f 2
i−1 + 2ab

n−1∑
i=1

fi−1fi + b2
n−1∑
i=1

f 2
i

)
+ (r2 − 1)

(
a2

n−1∑
i=1

if 2
i−1 + 2ab

n−1∑
i=1

ifi−1fi + b2
n−1∑
i=1

if 2
i

)
=

na2 + n
[
a2fn−2fn−1 + 2ab(f 2

n−1 − ηn−1) + b2fn−1fn
]

+

(r2 − 1)
(
a2{[(n − 1)fn−1 − fn−2

]
fn−2 + ηn−2

}
+ 2ab

{[
(n − 1)fn−1 − fn−2

]
fn−1 + θn−1

}
+
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b2{[(n − 1)fn − fn−1
]
fn−1 + ηn−1

})
=

na2 + n(a2fn−2fn−1 + 2abf 2
n−1 + b2fn fn−1) + n(r2 − 1)(a2fn−1fn−2 + 2abf 2

n−1 + b2fn−1fn) +
(1 − r2)(a2fn−2fn−1 + a2f 2

n−2 + 2abf 2
n−1 + 2abfn−2fn−1 + b2fn−1fn + b2f 2

n−1)
−2nabηn−1 + (r2 − 1)(a2ηn−2 + 2abθn−1 + b2ηn−1) =

na2 + nr2(a2fn−2fn−1 + 2abf 2
n−1 + b2fn−1fn) + (1 − r2)(a2fn−2fn + 2abfn−1fn + b2fn−1fn+1) −

2nabηn−1 + (r2 − 1)(a2ηn−2 + 2abθn−1 + b2ηn−1).

Furthermore,

a2fn−2fn−1 + 2abf 2
n−1 + b2fn−1fn = afn−1(afn−2 + bfn−1) + bfn−1(afn−1 + bfn) =

afn−1gn−1 + bfn−1gn

and

a2fn−2fn + 2abfn−1fn + b2fn−1fn+1 = afn(afn−2 + bfn−1) + bfn−1(afn + bfn+1) =
afngn−1 + bfn−1gn+1.

We summarize our result as follows.

Theorem 2.1. Let r, a, b ∈ R. Then

‖Cr(g)‖F =
[
αr2 + β(1 − r2) + γ

] 1
2 , (10)

where

α = n(afn−1gn−1 + bfn−1gn),
β = afngn−1 + bfn−1gn+1 − a2ηn−2 − 2abθn−1 − b2ηn−1,

γ = n(a2 − 2abηn−1).

3 Underestimating ‖A‖2

Our �rst approach to estimate ‖A‖2 from below rests upon applying ‖A‖F .

Lemma 3.1. Let A ∈ Cm×n. Then

‖A‖2 ≥
1√q ‖A‖F , q = min (m, n). (11)

Equality is attained if and only if all singular values of A are equal. For A ∈ Cn×n, an equivalent condition is that
A is a scalar multiple of a unitary matrix.

Proof. Let A have singular values σ1 ≥ · · · ≥ σq. Since

‖A‖2
2 = σ2

1,
1
q ‖A‖2

F = σ2
1 + · · · + σ2

q
q ,

we obtain (11) with equality condition; see also [6, Problem 5.6.P23], [6, p. 594]. For the last statement, see [6,
Problem 2.6.P13].

In the other two alternative procedures which we study in this paper, we consider the spectral norm as
the largest eigenvalue λ(·) of a suitable Hermitian matrix.
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Lemma 3.2. Given A ∈ Cm×n, de�ne

HA =
(

O A
A* O

)
∈ C(m+n)×(m+n), KA = A*A ∈ Cn×n .

Then

‖A‖2 = λ(HA), ‖A‖2 = λ(KA)
1
2 . (12)

Proof. The �rst equation follows from [6, Theorem 7.3.3]. The second is obvious.

Lemma 3.3. Let M ∈ Cn×n be Hermitian. If 0 = ̸ x ∈ Cn, then

λ(M) ≥ x*Mx
x*x . (13)

Equality is attained if and only if x is an eigenvector corresponding to λ(M).

Proof. See [6, Theorem 4.2.2].

Throughout,we let r1, . . . , rm (respectively c1, . . . , cn) denote the row (column) sumsofA = (aij) ∈ Cm×n.
We also denote

r = (r1, . . . , rm), c = (c1, . . . , cn), 1k = (1, . . . , 1) ∈ Rk .

Theorem 3.1. Let A ∈ Cm×n. Then

‖A‖2 ≥
2 |r1 + · · · + rm|

m + n . (14)

In particular, for A ∈ Cn×n,

‖A‖2 ≥
|r1 + · · · + rn|

n . (15)

Proof. Let us denote 1 = 1m+n and s = |s|eiθ = r1 + · · · + rm. By (12) and (13),

‖A‖2 = λ(HA) ≥ 1*HA1
1*1 = 1

m + n

( m∑
i=1

n∑
j=1

aij +
n∑
i=1

m∑
j=1

āji
)

=

1
m + n

m∑
i=1

n∑
j=1

(aij + āij) = 2
m + n

m∑
i=1

n∑
j=1

<aij = 2
m + n<

m∑
i=1

ri = 2
m + n<s,

where < stands for the real part. Applying this to e−iθA, we obtain

‖A‖2 = ‖e−iθA‖2 ≥
2

m + n<(e−iθs) = 2
m + n<(e−iθ|s|eiθ) = 2|s|

m + n ,

verifying (14).

Theorem 3.2. If m ≠ n and A = ̸ O, then (14) is strict. Assuming m = n and A ≥ O (entrywise), equality is
attained in (15) if and only if

r1 = · · · = rn = c1 = · · · = cn .

Proof. By Lemma 3.3, a necessary condition for equality is that 1 is an eigenvector of HA. Since

HA1 =
(

A1n
A*1m

)
=
(

r
c̄

)

(where c̄ is understood entrywise), this happens if and only if

r1 = · · · = rm = c̄1 = · · · = c̄n . (16)
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Assume (16). Then s = mr1 = mc̄1 but also s = nc1 = nr̄1. Writing r1 = α + βi, c1 = α − βi, we therefore have

mα = nα, mβ = −nβ.

So, m = n ∨ α = 0 by the �rst equation, and β = 0 by the second. We have now shown that a necessary
condition for HA to have 1 as an eigenvector is

(α = β = 0) ∨
[
(m = n) ∧ (r1 = · · · = rn = c1 = · · · = cn ∈ R)

]
.

If α = β = 0, then the right-hand side of (14) is zero; so, to have equality in this case, necessarily A = O.
Therefore, a necessary condition for equality in (14) is

A = O ∨
[
(m = n) ∧ (r1 = · · · = rn = c1 = · · · = cn ∈ R)

]
.

The �rst claim of the theorem is thus proved.
The problem is that the corresponding eigenvalue is not necessarily λ(HA). However, there is no problem

if A ≥ O. Because a positive eigenvector corresponds to the Perron root [6, Theorem 8.3.4], this eigenvalue
is λ(HA), and the second claim follows.

Theorem 3.3. Let A ∈ Cm×n. Then

‖A‖2 ≥
( |r1|2 + · · · + |rm|2

n

) 1
2 . (17)

Assuming A ≥ O (or, more generally, A*A ≥ O), equality is attained if and only if all row sums of A*A are equal.

Proof. Denote 1 = 1n; then
‖A‖2 ≥

‖A1‖2
‖1‖2

= ‖r‖2√
n
,

verifying (17). To study equality, we have

‖A1‖2
2

‖1‖2
2

= (A1)*A1
1*1 = 1*A*A1

1*1 .

Consequently, 1 must be an eigenvector of K = A*A corresponding to λ(K). Clearly, 1 is an eigenvector if
and only if all the row sums of K are equal. As in the proof of Theorem 3.2, we see that the corresponding
eigenvalue is λ(K) if K ≥ O.

Proposition 3.4. Let A ∈ Rn×n. The bound rhs(17) is better than rhs(15). If A ≥ O, then rhs(17) is better than
rhs(11), but rhs(11) and rhs(15) are not comparable.

Proof. Easy and omitted.

4 Underestimating ‖Cr(x)‖2

We �rst recall an exact expression of ‖C1(x)‖2.

Theorem 4.1. If x ≥ 0, then
‖C1(x)‖2 = x0 + · · · + xn−1.

Proof. See [10, Corollary 2]. The assumption x ≥ 0 can be generalized, see [10, Theorem 4].

Now we apply our bounds to ‖Cr(x)‖2.
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Theorem 4.2. Let r, x0, . . . , xn−1 ∈ R. Then

‖Cr(x)‖2 ≥
( n−1∑
i=0

x2
i + r2 − 1

n

n−1∑
i=1

ix2
i

) 1
2 . (18)

Proof. Since

‖Cr(x)‖2
F =

n−1∑
i=0

(n − i)x2
i + r2

n−1∑
i=1

ix2
i = n

n−1∑
i=0

x2
i + (r2 − 1)

n−1∑
i=1

ix2
i ,

we have
‖Cr(x)‖2

F
n =

n−1∑
i=0

x2
i + r2 − 1

n

n−1∑
i=1

ix2
i ,

and (18) follows from (11).

Theorem 4.3. Let r, x0, . . . , xn−1 ∈ R. Then

‖Cr(x)‖2 ≥
∣∣∣ n−1∑
i=0

xi + r − 1
n

n−1∑
i=1

ixi
∣∣∣. (19)

Proof. The sum of entries of Cr(x) equals
n−1∑
i=0

(n − i)xi + r
n−1∑
i=1

ixi = n
n−1∑
i=0

xi + (r − 1)
n−1∑
i=1

ixi ,

so (19) follows from (15).

Theorem 4.4. Let r, x0, . . . , xn−1 ∈ R. Then

‖Cr(x)‖2 ≥
[1
n

n−1∑
i=0

( n−i−1∑
j=0

xj + r
n−1∑
j=n−i

xj
)2] 1

2 . (20)

Proof. The (i + 1)’st row sum of Cr(x) is
n−i−1∑
j=0

xj + r
n−1∑
j=n−i

xj ,

hence (17) implies (20).

Theorem 4.5. Equality is attained in (18) if and only if either

r = ̸ ±1 ∧ (x1 = · · · = xn−1 = 0) (21)

or

r = 1 ∧
( n−1∑
i=0

xixi−j = 0
)
, j = 1, . . . , n − 1, (22)

or

r = −1 ∧
( j−1∑
i=0

xixi−j =
n−1∑
i=j
xixi−j

)
, j = 1, . . . , n − 1, (23)

where the indices are mod n. Assuming

r, x0, . . . , xn−1 ≥ 0, (24)

equality is attained in (19) and, respectively, in (20) if and only if

r = 1 ∨ (x1 = · · · = xn−1 = 0). (25)
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Proof. We divide the proof in three parts.
1. Equality condition of (18). By Lemma 3.1, equality holds if and only if the rows of Cr(x) form a scalar

multiple of an orthonormal set. In particular, their Euclidean norms must be equal. Comparing the n’th and
(n − 1)’th rows, this means that

r2(x2
1 + · · · + x2

n−1) + x2
0 = r2(x2

2 + · · · + x2
n−1) + x2

0 + x2
1,

i.e., r2x2
1 = x2

1.
First, assume r ≠ ±1; then x1 = 0. Comparing the (n − 1)’th and (n − 2)’th rows, we have

r2(x2
2 + · · · + x2

n−1) + x2
0 = r2(x2

3 + · · · + x2
n−1) + x2

0 + x2
2,

i.e., r2x2
2 = x2

2; so x2 = 0. Continuing similarly, we see that necessarily x1 = · · · = xn−1 = 0. Since this
condition is clearly su�cient, the condition (21) is veri�ed.

Second, assume r = ±1; then the rows of Cr(x) have equal norms. Since their orthogonality condition is
stated in (22) and (23), also this case is clear.

2. Equality condition of (19), assuming (24). By Theorem 3.2, equality holds in (15) if and only if all row
sums of Cr(x) are equal. (Since r1 = cn , r2 = cn−1, . . . , rn = c1, they are also equal to the column sums.)
Comparing the n’th and (n − 1)’th rows, we have

r(x1 + · · · + xn−1) + x0 = r(x2 + · · · + xn−1) + x0 + x1,

i.e., r = 1 or x1 = 0. Continuing as above, we obtain (25).
3. Equality condition of (20), assuming (24). Let d be the di�erence of the �rst and last row sum of

CTr (x)Cr(x). If equality holds, then d = 0 by Theorem 3.3. A rather extensive computation, which we omit
here, shows that

d = (r2 − 1)
( n∑
i=1

x2
i +

n∑
i=1

i−1∑
j=1

xixj
)
.

Therefore, (25) is necessary; obviously, it is a su�cient condition.

Although rhs(11) and rhs(15) are not comparable even if A ≥ O, a question arises whether they are if
A = Cr(x), x ≥ 0. The answer is negative. For example, if x = (1, 1, 1), then rhs(19) ≥ rhs(18) for all r ≥ −1

2 . On
the other hand, if x = (0, 1, 0), then rhs(18) ≥ rhs(19) for all r ∈ R.

5 Underestimating ‖Cr(g)‖2

We are now ready to study ‖Cr(g)‖2.

Theorem 5.1. Let r, a, b ∈ R. Then

‖Cr(g)‖2 ≥
(
αr2 + β1 − r2

n + γ
) 1

2 , (26)

where

α = afn−1gn−1 + bfn−1gn ,
β = afngn−1 + bfn−1gn+1 − a2ηn−2 − 2abθn−1 − b2ηn−1,

γ = a2 − 2abηn−1,

and ηm and θm are as in (5) and (8), respectively.

Proof. The claim follows from (10), (11), and (18).
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In applying Theorems 4.3 and 4.4 in order to estimate ‖Cr(g)‖2, we also need the following three sum
formulas.

Lemma 5.1. Let m ∈ Z+. Then
m∑
i=0

gi = gm+2 − b, (27)

m∑
i=1

igi = mgm+2 − gm+3 + a + 2b, (28)

m∑
i=0

g2
i = gmgm+1 + a(a − b). (29)

Proof. By induction. See also [8, p. 113, Eqs. 11, 17 and 14]. (Note that Gi = gi−1 and that there is a typo in
Eq. 17.)

Theorem 5.2. Let r ∈ R. Then

‖Cr(g)‖2 ≥
1
n
∣∣gn+3 − a − (n + 2)b + r(ngn+1 − gn+3 + a + 2b)

∣∣. (30)

Proof. By (27) and (28),

n
n−1∑
i=0

gi + (r − 1)
n−1∑
i=0

igi = n(gn+1 − b) + (r − 1)
[
(n − 1)gn+1 − gn+2 + a + 2b

]
=

−nb + gn+1 + gn+2 − a − 2b + r
[
(n − 1)gn+1 − gn+2 + a + 2b

]
=

gn+3 − a − (n + 2)b + r(ngn+1 − gn+3 + a + 2b);

so, (19) implies (30).

In particular, if a, b ≥ 0, then
‖C1(g)‖2 = gn+1 − b,

which follows also from Theorem 4.1 and (27).
Next, we apply Theorem 4.4. We denote

σi = gn−(i−1) + · · · + gn−1, τi = g0 + · · · + gn−i , si = σir + τi ,

where i = 1, . . . , n.
1. Computing τi and σi. By (27),

τi =
n−i∑
j=0

gj = gn−i+2 − b

and

σi =
n−1∑

j=n−(i−1)

gj =
n−1∑
j=0

gj −
n−i∑
j=0

gj = (gn+1 − b) − (gn−i+2 − b) = gn+1 − gn−i+2.

2. Computing s2
i . Simply, observe that

s2
i = (σir + τi)2 =

[
(gn+1 − gn−i+2)r + gn−i+2 − b

]2 =
(gn+1 − gn−i+2)2r2 + 2(gn+1 − gn−i+2)(gn−i+2 − b)r + (gn−i+2 − b)2 =: αir2 + βir + γi .

3. Computing α1 + · · · + αn. We have
n∑
i=1

αi =
n∑
i=1

(gn+1 − gn−i+2)2 =
n∑
i=1

(
g2
n+1 − 2gn+1gn−i+2 + g2

n−i+2
)

=
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ng2
n+1 − 2gn+1

n∑
i=1

gn−i+2 +
n∑
i=1

g2
n−i+2 = ng2

n+1 − 2gn+1

n+1∑
i=2

gi +
n+1∑
i=2

g2
i . (31)

Since
n+1∑
i=2

gi =
n+1∑
i=0

gi − a − b = gn+3 − a − 2b (32)

by (27), and
m∑
i=0

g2
i = gmgm+1 + a(a − b)

by (29), we get
n+1∑
i=2

g2
i =

n+1∑
i=0

g2
i − a2 − b2 = gn+1gn+2 + a(a − b) − a2 − b2 = gn+1gn+2 − ab − b2. (33)

Now we can evaluate (31):
n∑
i=1

αi = ng2
n+1 − 2gn+1(gn+3 − a − 2b) + gn+1gn+2 − ab − b2 =

gn+1(ngn+1 + gn+2 − 2gn+3 + 2a + 4b) − ab − b2 =
gn+1

[
ngn+1 + gn+2 − 2(gn+1 + gn+2) + 2a + 4b

]
− ab − b2 =

gn+1
[
(n − 2)gn+1 − gn+2 + 2a + 4b

]
− ab − b2.

4. Computing β1 + · · · + βn. By (32) and (33),

1
2

n∑
i=1

βi =
n∑
i=1

(gn+1 − gn−i+2)(gn−i+2 − b) =

gn+1

n∑
i=1

gn−i+2 −
n∑
i=1

g2
n−i+2 + b

n∑
i=1

gn−i+2 − nbgn+1 =

gn+1

n+1∑
i=2

gi −
n+1∑
i=2

g2
i + b

n+1∑
i=2

gi − nbgn+1 = (gn+1 + b)
n+1∑
i=2

gi −
n+1∑
i=2

g2
i − nbgn+1 =

(gn+1 + b)(gn+3 − a − 2b) − (gn+1gn+2 − ab − b2) − nbgn+1 =
gn+1gn+3 − (a + 2b)gn+1 + bgn+3 − ab − 2b2 − gn+1gn+2 + ab + b2 − nbgn+1 =
gn+1(gn+1 + gn+2) − (a + 2b)gn+1 + b(gn+1 + gn+2) − gn+1gn+2 − nbgn+1 − b2 =

g2
n+1 −

[
a + (n + 1)b

]
gn+1 + bgn+2 − b2.

5. Computing γ1 + · · · + γn. Again by (32) and (33),
n∑
i=1

γi =
n∑
i=1

(gn−i+2 − b)2 =
n+1∑
i=2

(gi − b)2 =
n+1∑
i=2

g2
i − 2b

n+1∑
i=2

gi + nb2 =

gn+1gn+2 − ab − b2 − 2b(gn+3 − a − 2b) + nb2 =
gn+1gn+2 − 2bgn+3 + ab + (n + 3)b2 =

gn+1gn+2 − 2b(gn+1 + gn+2) + ab + (n + 3)b2 =
(gn+1 − 2b)(gn+2 − 2b) + ab + (n − 1)b2.

6. Computing s2
1 + · · · + s2

n. Finally,
n∑
i=1

s2
i =
( n∑
i=1

αi
)
r2 +

( n∑
i=1

βi
)
r +

n∑
i=1

γi .

We have now proved the following theorem.
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Theorem 5.3. Let r ∈ R. Then

‖Cr(g)‖2 ≥
(αr2 + βr + γ

n

) 1
2 , (34)

where

α = gn+1
[
(n − 2)gn+1 − gn+2 + 2a + 4b

]
− ab − b2,

β = 2
{
g2
n+1 −

[
a + (n + 1)b

]
gn+1 + bgn+2 − b2

}
,

γ = (gn+1 − 2b)(gn+2 − 2b) + ab + (n − 1)b2.

The bound (34) simpli�es remarkably if b = 0. It is no essential restriction to take a = 1; then g0 = 1 and
gn = fn−1, n = 1, 2, . . . . We �nd this result nice enough to warrant a corollary of its own.

Corollary 5.3.1. Let r ∈ R. Then g = (1, f0, f1, . . . , fn−2) satis�es

‖Cr(g)‖2 ≥
(1
n

{
gn+1

[
(n − 2)gn+1 − gn+2 + 2

]
r2 + 2gn+1(gn+1 − 1)r + gn+1gn+2

}) 1
2 .

We complete this section by examining equality. Omitting the trivial case n = 2, we assume that n ≥ 3.
The equality conditions of (30) and (34) follow from those of (19) and (20), i.e., from (25); then

r, x0, . . . , xn−1 ≥ 0 is assumed. So, assuming r, a, b ≥ 0, equality is attained in (30) and (34) if and only
if

r = 1 ∨ (a = b = 0).

To show this, (25) states that r = 1 ∨ (g1 = · · · = gn−1 = 0). In particular, b = 0, but then also a = 0, since
otherwise g2 > 0.

Also equality in (26) is easily settled under the assumption r, a, b ≥ 0. We show that it is attained if and
only if

a = b = 0. (35)

For r ≠ 1, applying (21) and continuing as above yields (35). For r = 1, equality holds by (22) if and only if

n−1∑
i=0

gigi−j = 0, j = 1, . . . , n − 1. (36)

(Remember that indices are mod n.) Since g0, . . . , gn−1 ≥ 0, this happens if and only if gi > 0 for at most one i.
But if a > 0 or b > 0, then g2, . . . , gn−1 > 0; we hence obtain (35) again.

However, we meet a problem. Contrary to (19) and (20), the equality condition of (18) is stated for all
r, x0, . . . , xn−1, without assuming nonnegativity. Therefore, wemust omit this assumption in studying equal-
ity. Then (36) may hold also for some a and b, at least one of them being nonzero. Also (23), applied to
(a, b, g2, . . . , gn−1), may be valid.

Let us consider n = 3. The scalar product of any two rows of C1(a, b, a + b) is

a(a + b) + ab + b(a + b) = b2 + 3ab + a2,

and that of C−1(a, b, a + b) is either

−a(a + b) + ab + b(a + b) = b2 + ab − a2

or its opposite. For r = ±1, we can therefore characterize equality in (26) as follows: Choose a arbitrarily.
Equality holds if and only if a = 0 or

r = 1 ∧ b = −3 ±
√

5
2 a
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or
r = −1 ∧ b = −1 ±

√
5

2 a.

For n = 4, the situation changes. It is easy to see that the only matrix C1(a, b, a + b, a + 2b) and, respec-
tively, C−1(a, b, a + b, a + 2b) with orthogonal rows is the zero matrix; so, we get nothing but a = b = 0. It is
very likely that the same holds for all n ≥ 4, since there are many equations but only two unknowns. In other
words, it is very likely that, for n ≥ 4, the only C±1(g) with orthogonal rows is the zero matrix. Unfortunately,
our attempts to prove this seem to lead to complicated calculations.

6 Comparison between (1), (26), (30), and (34)
We have four lower bounds under comparison. Some of them are comparable in general, some not.

Proposition 6.1. If r, a, b ∈ R, then rhs(26) ≥ rhs(1) and rhs(34) ≥ rhs(30). If r, a, b ≥ 0, then rhs(34) ≥
rhs(26).

Proof. The bound rhs(1) is obtained by using a lower bound for ‖Cr(g‖2, while rhs(26) is obtained by using
its exact value; hence, the �rst inequality follows. The second and third follow from Proposition 3.4.

We already saw that the bounds rhs(18) and rhs(19) are not comparable even if r ≥ 0 and x ≥ 0, but what
about rhs(26) and rhs(30)? We conjecture that rhs(30) ≥ rhs(26) if r, a, b ≥ 0.

We consider two examples. For brevity, we denote

Ar = Cr(g).

For convenience, we examine the squares of the bounds, denoting

xr = ‖Ar‖2
2, yr = rhs(1)2, z(1)

r = rhs(26)2, z(2)
r = rhs(30)2, z(3)

r = rhs(34)2.

Since all bounds are nonnegative, we can do so.

Example 1. Let
Ar = Cr(f0, . . . , f7) = Cr(0, 1, 1, 2, 3, 5, 8, 13).

The squared bounds to be compared are

yr = min (r2, 1)f7f8 = 273 min (r2, 1),

z(1)
r = f7f8r2 + 1 − r2

8 (f7f9 − 1) = 1743r2 + 441
8 ,

z(2)
r =

{1
8
[
f11 − 10 + (8f9 − f11 + 2)r

]}2
=
(185r + 79

8

)2
,

z(3)
r =

[
f9(6f9 − f10 + 4) − 1

]
r2 + 2(f 2

9 − 9f9 + f10 − 1)r + (f9 − 2)(f10 − 2) + 7
= 5201r2 + 1808r + 1703.

Consider �rst r ≥ 1. We have (with integer precision)

x1 = z(3)
1 = z(2)

1 = 1089, z(1)
1 = 273,

x2 = 3480, z(3)
2 = 3265, z(2)

2 = 3150, z(1)
2 = 927,

x9 = 64603, z(3)
9 = 54907, z(2)

9 = 47524, z(1)
9 = 17703,

x50 = 1968010, z(3)
50 = 1636825, z(2)

50 = 1359848, z(1)
50 = 544743.

In all these cases, yr = 273. The bound z(3)
r is good, and z(2)

r is almost as good. The bound z(1)
r is not good but

much better than yr, except for the case r = 1, when they are equal.
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Next, consider r ≤ −1. Again yr = 273. Resembling the above, the results are

x−1 = 744, z(3)
−1 = 637, z(2)

−1 = 176, z(1)
−1 = 273,

x−2 = 3015, z(3)
−2 = 2361, z(2)

−2 = 1323, z(1)
−2 = 927,

x−9 = 62791, z(3)
−9 = 50839, z(2)

−9 = 39303, z(1)
−9 = 17703,

x−50 = 1958018, z(3)
−50 = 1614225, z(2)

−50 = 1314176, z(1)
−50 = 544743.

If |r| < 1, the zr-bounds do not perform as well as above but anywaymuch better than yr. We obtain (with
four-digit precision)

x0.5 = 569.2, z(3)
0.5 = 488.4, z(2)

0.5 = 459.6, z(1)
0.5 = 109.6, y0.5 = 68.25,

x0.1 = 446.3, z(3)
0.1 = 242, z(2)

0.1 = 148.5, z(1)
0.1 = 57.30, y0.1 = 2.730,

x0 = 438.6, z(3)
0 = 212.9, z(2)

0 = 97.52, z(1)
0 = 55.13, y0 = 0,

x−0.1 = 437.3, z(3)
−0.1 = 196.8, z(2)

−0.1 = 57.19, z(1)
−0.1 = 57.30, y−0.1 = 2.730,

x−0.5 = 494, z(3)
−0.5 = 262.4, z(2)

−0.5 = 2.848, z(1)
−0.5 = 109.6, y−0.5 = 68.25.

In general, if Ar ≥ O or Ar ≤ O (and Ar ≠ O), the comparison seems to give rather similar results as above.
But if Ar has entries of opposite signs, they may be di�erent.

Example 2. Let
Ar = Cr(30, −19, 11, −8, 3, −5, −2, −7).

The squared bounds are

yr = 1533 min (r2, 1), z(1)
r = 1323r2 + 10941

8 ,

z(2)
r =

(119 − 95r
8

)2
, z(3)

r = 1601r2 − 3772r + 2243
8 .

If |r| ≥ 1, then yr = 1533, while

x1 = 6561, z(3)
1 = z(2)

1 = 9, z(1)
1 = 1533,

x2 = 10295, z(3)
2 = 137.9, z(2)

2 = 78.77, z(1)
2 = 2029,

x9 = 91821, z(3)
9 = 12247, z(2)

9 = 8464, z(1)
9 = 14763,

x50 = 2528004, z(3)
50 = 477018, z(2)

50 = 335096, z(1)
50 = 414805,

x−1 = 3626, z(3)
−1 = 952, z(2)

−1 = 715.6, z(1)
−1 = 1533,

x−2 = 6310, z(3)
−2 = 2024, z(2)

−2 = 1492, z(1)
−2 = 2029,

x−9 = 78373, z(3)
−9 = 20734, z(2)

−9 = 14823, z(1)
−9 = 14763,

x−50 = 2454997, z(3)
−50 = 524167, z(2)

−50 = 370424, z(1)
−50 = 414805.

The zr-bounds are not comparable, and none of themestimatewell. The bound yr, although being the poorest
one in most cases, is better than some of the zr-bounds if r = ±1 or r = ±2.

As to |r| < 1, we have

x0.5 = 5362, z(3)
0.5 = 94.66, z(2)

0.5 = 79.88, z(1)
0.5 = 1409, y0.5 = 383.3,

x0.1 = 4674, z(3)
0.1 = 235.2, z(2)

0.1 = 187.3, z(1)
0.1 = 1369, y0.1 = 15.33,

x0 = 4533, z(3)
0 = 280.4, z(2)

0 = 221.3, z(1)
0 = 1368, y0 = 0,

x−0.1 = 4404, z(3)
−0.1 = 329.5, z(2)

−0.1 = 258, z(1)
−0.1 = 1369, y−0.1 = 15.33,

x−0.5 = 3984, z(3)
−0.5 = 566.2, z(2)

−0.5 = 433.2 z(1)
−0.5 = 1409, y−0.5 = 383.3.

Now, z(1)
r is the best one but not especially good.
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7 Concluding remarks
We have above computed ‖Cr(x)‖F exactly and given three lower bounds for ‖Cr(x)‖2. In particular, we have
studied the case x = g, improving several previously known results. If a, b ≥ 0 (or a, b ≤ 0), then our bounds
appear to be quite good.

Extending (9) to
hn = aqϕn−1 + bϕn , n = 1, 2, . . . ,

where

ϕ0 = 0, ϕ1 = 1,
ϕn = pϕn−1 + qϕn−2, n = 2, 3, . . . ,

we could �nd ‖Cr(u)‖F and lower bounds for ‖Cr(u)‖2, but the calculations turned out to become more com-
plicated. More generally, we could do this even for ‖Cr(h)‖F and ‖Cr(h)‖2, but the calculationswould become
even more complicated. Therefore, we did not pursue this issue any further.
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