Nanofibrillated and bacterial celluloses as renewable piezoelectric sensor materials

Citation

Year
2018

Version
Other version

Link to publication
TUTCRIS Portal (http://www.tut.fi/tutcris)

Take down policy
If you believe that this document breaches copyright, please contact tutcris@tut.fi, and we will remove access to the work immediately and investigate your claim.
Nanofibrillated and bacterial cellulosics as renewable piezoelectric sensor materials

Sampo Tuukkanen

1BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology (TUT), P.O. Box 692, FI-33101 Tampere, Finland

Cellulose based nanomaterials, generally known as nanocellulose, are interesting renewable biomaterial which has potential applications for example in material science, electronics and biomedical engineering and diagnostics [1]. Cellulose has a strong ability to form light-weight, highly porous, entangled networks makes nanocellulose suitable as substrate or membrane material for various applications, for example as a material for in supercapacitors in different ways [2, 3, 4].

The piezoelectricity of wood was proposed already in 1950’s [5], but only slightly studied since. Here, we report the experimental evidence of significant piezoelectric activity of different type nanocellulose films. We have studied both wood-based cellulose nanofibril (CNF) films [6] and bacterial nanocellulose (BC) films [7] (see Figure 1), as well as composite of chitosan and cellulose nanocrystals (CNC) [8]. Our results suggest that nanocellulose is a potential bio-based piezoelectric sensor material.

Figure 1. (a) wood based nanocellulose film, (b) bacterial nanocellulose film, (c) piezoelectric sensor.

1. R. J. Moon et al., Chemical Society Reviews 40(7), 3941 (2007).