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Abstract
Recently, CIDECT (International Committee for the Development and Study of Tubular Structures) has
proposed the component method as a unified approach for the design of many types of connections,
including welded tubular joints. Although CIDECT provides clear and simple equations for the
resistance of welded tubular joints, the design of initial stiffness remains complicated and includes a
number of uncertainties. This paper analyzes the theoretical approach for the initial axial stiffness of
rectangular hollow section T joints. The validation against experimental data has shown that the
component method considerably overestimates the stiffness of T joints. The paper develops new
equations for the stiffness of the components “chord face in bending” and “chord side walls in
compression”. The equations are based on simplified mechanical models, employing finite element
analyses to calculate the parameters for which analytical solutions are found extremely complicated. In
addition, the article numerically investigates the effect of chord axial stresses on the axial stiffness of
joints and proposes a corresponding chord stress function.
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1. Introduction
Welded tubular structures are used in a wide range of trusses and frames. In such structures, rectangular
hollow section (RHS) joints combine high strength and simple end preparations. The main properties of
tubular joints include their design resistance and stiffness. Generally, in the design of joints, the main
attention of engineers and scientists is payed to design resistance, while the stiffness of joints is usually
disregarded. However, initial stiffness is known to be essential in the global analysis of frames and
trusses, since it affects the distribution of forces between members. In addition, it has been shown [1–3]
that initial rotational stiffness plays the key role when considering buckling of tubular truss members.

a) b) c)

Fig. 1. a) RHS T joint loaded by axial force; b) axial stiffness modelled by a linear spring; c) Vierendeel girder.

Particular attention should be paid to axial stiffness, which represents the stiffness of a joint under an
axial force acting along its brace. Fig. 1a shows an RHS T joint loaded by an axial force. A T joint
represents the simplest joint configuration, when a brace is welded to a chord at an angle of 90°.
Considering a beam model for such a joint, its axial stiffness Cj,ini,N can be presented by a linear spring
located on the surface of the chord [4]. The importance of axial stiffness for such joints can be
demonstrated in a shallow Vierendeel girder, shown in Fig. 1c. When the girder is analyzed using the
frame theory, then in addition to rotational stiffness, the axial stiffness of its joints should be taken into
account. The local deformations of the joints can reduce the height of the girder e. Such reduction can

Cj,ini,N



be particularly noticeable for shallow girders. Finally, this increases axial forces acting in the chords,
making the design unsafe.
The current design rules for RHS T joints in EN 1993-1-8:2005 [5] and CIDECT Design Guide No. 3
[6] are based on the failure mode approach and allow calculating design resistance, providing however
no information for initial stiffness. Most of the publications and design guides on the topic [7–9] deal
with the resistance of RHS joints, and very few of them investigate their stiffness. A formula for the
initial axial stiffness of circular hollow section joints was presented by Mäkeläinen et al. [10]. Grotmann
& Sedlacek [11] investigated the initial stiffness of RHS joints under in-plane bending. An extensive
parametric study of axially-loaded joints was conducted by de Matos et al. [12], but no theoretical
equation was proposed for initial stiffness. Costa-Neves [13] developed the equation for the axial
stiffness of RHS-to-IPE connections, which was later accepted by CIDECT [14] and extended for RHS
joints with some modifications.
One of the most reliable solutions for the design of initial stiffness can be provided by the component
method. It was invented by Zoetemeijer [15] for bolted beam-to-column connections and developed by
Tschemmernegg [16]. Later it was extended to column bases by Wald [17] and fire resistance by Leston-
Jones [18]. Girão Coelho & Bijlaard [19] employed the method to investigate the behavior of high
strength steel end-plate connections. Da Silva [20] developed the component method for joints under
arbitrary loading. For bolted end-plate joints the method was used by Heinisuo et al. [21].
Decomposing the joint into basic parts (components), the component method determines joint resistance
and stiffness by combining the resistance and stiffness of these components. Being a unified approach
for the design of various types of joints, the method was adopted by EN 1993-1-8:2005 [5] for joints
connecting H or I sections. Weynand & Jaspart [22] proposed the method for hollow section joints. The
main principles of the component method for tubular joints were developed in the CIDECT reports 5BP
[23] and 16F [14]. The documents identify the main components of RHS joints and present a detailed
procedure to calculate their design resistance. However, the information concerning initial stiffness is
very limited: the provided equations for the stiffness of the components are not distinguished between
various loading cases, and, therefore, the design of initial stiffness remains questionable.

This paper investigates the theoretical approach for the initial axial stiffness of RHS T joints. Section 2
briefly describes and discusses the current design procedure for axial stiffness, which is provided in the
CIDECT report 16F [14] (hereinafter – CIDECT). Section 3 validates the design approach against the
experimental data available in the literature. Section 4 develops and experimentally validates new
stiffness equations for two individual components. The equations are based on simple mechanical
models, employing finite element modeling to replace complicated analytical solutions. Finally, Section
5 numerically investigates the effect of chord axial stresses on the axial stiffness of RHS T joints and
develops a corresponding chord stress function. The developed solutions are limited only for joints
following the requirements of EN 1993-1-8:2005 [5].

2. Current theoretical approach for the initial axial stiffness of RHS T joints
The main notations of RHS T joints are provided in Fig. 2a. The theoretical approach for the initial
stiffness of tubular joints employs the component method, as presented in CIDECT [14]. The component
method assumes the axial load to be transferred from the brace to the chord face through four loading
zones located at the corners of the brace. The mechanical behavior of the joint can then be modelled by
a system of springs, as shown in Fig. 2b. Generally, the springs represent the following components:

a) chord face in bending,
b) chord side walls in tension / compression,
c) chord side walls in shear,
d) chord face under punching shear,
e) brace flange / webs in tension / compression,
f) chord section in distortion,
g) welds.



b0 Chord width
h0 Chord height
t0 Chord wall thickness
b1 Brace width
h1 Brace height
t1 Brace wall thickness
β b1/b0 ratio
η h1/b0 ratio
γ b0/2t0 ratio

aw Weld throat thickness
a) b)

Fig. 2. RHS T joint: a) notations; b) component model.

The behavior of the springs is assumed to be elastic. The initial stiffness of the joint is computed by
combining the corresponding stiffnesses of the components using the combination rules for the systems
of springs. In particular, initial axial stiffness Cj,ini,N  is calculated as
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where E is Young’s modulus, and ki is the stiffness of component i. In this paper, ki defines the sum of
the four components (strings) in the corners of the brace; therefore, each component is counted in Eq. (1)
only once. According to [4], only components a “chord face in bending” and b “chord side wall in
compression / tension” play a noticeable role in the axial stiffness of RHS T joints. The other components
have substantially greater stiffness and can be considered as infinite for practical purposes. Taking into
account the aforementioned assumptions, Eq. (1) can be reduced to
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where ka is the stiffness of the component “chord face in bending” and kb is the stiffness of the component
“chord side walls in compression / tension”. According to CIDECT [14], the stiffness of the latter is
assumed to be the same in tension and in compression. This paper considers joints only under
compressive axial load; therefore, component b is referred to as “chord side walls in compression” for
simplicity. For joints with large β, the stiffness of the component “chord face in bending” becomes
relatively high, i.e. 0.1ka > kb, and can be also ignored in the design of initial stiffness. In this case,
Eq. (2) can be simplified to

, ,j ini N bC Ek= (3)

2.1 Component “Chord face in bending”
As been said before, the stiffness of the component “chord face in bending” has to be calculated only
for the joints in which this component noticeably contribute to the design of stiffness. To be consistent
with the design of resistance specified in EN 1993-1-8:2005 [5], such joints can be limited to those
governed by chord face failure, i.e. β ≤ 0.85. However, this component might become irrelevant even
for smaller β if the cross-section of the brace is increased by large fillet welds [24].
Two possible options are available to compute the stiffness of this component. The first one was
developed by Costa-Neves [13] for RHS-to-IPE connections. Later it was accepted by CIDECT [14] in
a form presented in Eq. (4).
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where b and с are respectively the width and the height of the brace, i.e., b = b1 and c = h1. Lstiff is the
stiffness length determined as Lstiff = d + r, where d and r represent the width of the chord top face flat
area and the chord inner corner radius, respectively. Notations b, c, d and r are illustrated in Fig. 3. The
reduction factor β0 is found as
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Fig. 3. Design model for component “chord face in bending”.

The angle θ is defined as

35 10 / , / 0.7

49 30 / , / 0.7
stiff stiff

stiff stiff

b L b L
b L b L

q
- <ìï= í - ³ïî

(6)

The validity range of Eq. (4) is defined by the following limitations:

010 / 50; 0.08 / 0.75; 0.05 / 0.20stiff stiff stiffL t b L c L£ £ £ £ £ £ (7)

For RHS joints, the last limitation in Eq. (7) is transformed into

1 1 00.05 / / 0.20stiffh L h b h£ » = £ (8)

Obviously, this requirement can be fulfilled only for very small braces, meaning that Eq. (4) violates by
default its validity range for most of RHS joints. However, Eq. (4) will be examined in this paper.
The second option for the stiffness of the component “chord face in bending” has been presented in [25]
and accepted as an alternative approach in CIDECT [14]. It represents the following equation:
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where ν is Poisson’s ratio and Ct is a coefficient assumed as 0.18. It should be noted that Eq. (9)
represents a function of the chord geometry and does not depend on the size of the brace, making its
reliability doubtful for tubular joints. CIDECT [14] provides no information regarding its validity range.



2.2 Component “Chord side walls in compression”
The stiffness of the component “chord side walls in compression” was originally developed in [26] and
later studied in [27]. The component employs the model of an RHS chord loaded by two transverse
plates of the same width as the chord, as shown in Fig. 4a. CIDECT [14] provides the following equation
for its stiffness:
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where beff,c,wc is the effective width, defined as

, , 1 02 2 5eff c wc wb t a t= + + (11)

where t1 is the thickness of the loading plate. In case of an RHS joint, the load is transferred through the
whole section of the tubular brace, as shown in Fig. 4b, and Eq. (11) should be modified as

, , 1 02 2 5eff c wc wb h a t= + + (12)

However, the applicability of Eq. (10) for tubular joints remains questionable. Firstly, as can be seen in
Fig. 4a, Eq. (10) has been developed for X joints and CIDECT [14] does not specify its reliability for T
joints. Secondly, Eqs. (10)-(12) do not include β as a variable, i.e., provide the same solution for joints
with the same h1 but various b1. Since these equations have been developed for β = 1.0, their applicability
for joints with smaller β remains unclear.

a) b)

Fig. 4. Component “chord side walls in compression”: a) original design model; b) its extension to RHS joints.

3. Validation of the current theoretical approach
This part validates the current approach for the initial axial stiffness of RHS T joints with the
experimental results available in the literature. Usually publications dealing with experimental
investigations of joints provide no direct values of initial stiffness. For this reason, initial stiffness was
determined graphically, as a tangent line in the beginning of available load-displacement curves. The
described procedure is illustrated in Fig. 5, where Cj,ini,N denotes initial axial stiffness. Although the
accuracy of this approach is doubtful, it represents the only possible method to obtain experimental
stiffness from available publications. Moreover, the design of initial stiffness does not require such high
level of accuracy as the design of resistance, assuming 30% discrepancy in both directions. This fact can
fully justify the possible inaccuracy of this method. For simplicity, initial axial stiffness is denoted as C
further in this paper.



Fig. 5. Graphical approach for determination of initial axial stiffness.

A pioneering experimental work on T joints has been conducted by Kato & Nishiyama [28]. However,
the authors presented only the global deformations of joints, including chord bending. Later a series of
tests under various loading was conducted by Zhao & Hancock [29], but only three load-displacement
curves can be found for T joints under pure axial loading. One T joint was selected from the tests of
Davies & Crockett [30]. Nizer et al. [31] conducted six tests on T joints with and without axial loading
in the chord. Generally, axial stresses in the chord are found to affect the stiffness of T joints; therefore,
only one joint free from chord pre-loading have been selected for the validation. Some results have been
found in the most recent tests of Becque & Wilkinson [32].
Attention should be also paid to the publications that analyze the behavior of RHS X joints, e.g. [33, 34].
Due to the similarities in the behavior of T and X joints, these joints are often considered together. In
particular, EN 1993-1-8:2005 [5] and CIDECT Design Guide No. 3 [6] provide the same equations for
the design resistances of RHS T and X joints. However, the design of initial stiffness might differ. To
investigate this issue in details, a comparative analysis was conducted based on the experimental results
of Feng & Young, who conducted a series of tests on stainless steel RHS T [35] and X [36] joints. The
tests were carried out in such a way that the geometry of X joints repeated the geometry of some T joints.
The stiffness of the joints with matching geometry was determined and collected in Table 1, where the
joints are arranged in the ascending order of β. The graphical comparison of the behavior of some
matching joints is provided in Fig. 6.
Table 1. Comparison of stiffness of T and X joints. The names of joints in accordance with [35] and [36].

X joint CX [kN/mm] T joint CT [kN/mm] CX/CT β
XD-C140x3-B40x2-P0 75 TD-C140x3-B40x2 42 1.8 0.50
XH-C110x4-B150x6-P0 200 TH-C110x4-B150x6 50 4.0 0.75
XD-C50x1.5-B40x2-P0 200 TD-C50x1.5-B40x2 67 3.0 0.80
XD-C40x2-B40x2-P0 1900 TD-C40x2-B40x2 167 11.4 1.00
XD-C50x1.5-B50x1.5-P0 1700 TD-C50x1.5-B50x1.5 100 17.0 1.00
XD-C140x3-B140x3-P0 4250 TD-C140x3-B140x3 175 24.3 1.00
XH-C150x6-B150x6-P0 2000 TH-C150x6-B150x6 338 5.9 1.00
XH-C200x4-B200x4-P0 1500 TH-C200x4-B200x4 145 10.3 1.00
XN-C40x2-B40x2-P0 2000 TN-C40x2-B40x2 100 20.0 1.00

It can be seen that X joints have noticeably higher experimental stiffness than matching T joints. The
difference is particularly pronounced for the cases with β = 1.0, reaching an order of magnitude for some
joints. The observed difference can be explained by the various contribution of the components to the
overall stiffness of the joint. If β is small, the stiffness is mostly governed by the component “chord face
in bending”, which behaves similarly for both types of joints. This leads to relatively small difference
between the stiffness of T and X joints. Oppositely, the stiffness of the joints with large β is mostly
influenced by the component “chord side walls in compression”, which obviously behaves differently
for T and X joints. This leads to a significant difference in the stiffness of the matching T and X joints.
These results demonstrate that initial stiffness should be calculated differently for T and X joints.
Although a common equation can be adopted for the component “chord face in bending”, individual
equations for T and X joints should be derived for the component “chord side walls in compression”.
For this reason, X joints are not employed in the validation and this paper considers only T joints.

N

δ

Cj,ini,N



a) b)

Fig. 6. Comparison of T and X joints with matching geometry: a) β = 0.75, b) β = 1.0.

Attention should be also paid to stainless steel joints. Due to the non-linear stress-strain responses of
stainless steels [34], the equation developed for joints made of carbon steels may be invalid for joints
made of stainless steels. For this reason, the latter were excluded from in the validation, in particular the
abovementioned tests of Feng & Young [35]. Table 2 presents the summary of the tests used for the
validation. Table 3 provides the details of the joints and their experimental initial stiffness Cexp, which
was determined according to Fig. 5.
Table 2. Summary of tests used for the validation.

No. Authors Reference
1-3 Zhao & Hancock, 1991 [29]
4 Nizer et al., 2016 [31]

5-6 Becque & Wilkinson, 2017 [32]
7 Davies & Crockett, 1996 [30]

Table 3. Details of joints used for the validation.

No. Joint b0
[mm]

h0
[mm]

t0
[mm]

r1)

[mm]
b1

[mm]
h1

[mm]
t1

[mm] β 2γ aw
[mm]

E2)

[GPa]
Cexp

[kN/mm]
1 S1B1C11 51 102 4.9 4.9 51 51 4.9 1.00 10.4 4.6 200 570
2 S1B1C12 51 102 3.2 3.2 51 51 4.9 1.00 15.9 4.6 200 330
3 S1B1C23 102 102 4 4 51 51 4.9 0.50 25.5 4.6 200 74
4 TN02N0 140 80 4 4 100 100 3 0.71 35.0 5.0 200 280
5 T1 200 200 6 14 100 100 8 0.50 33.3 4.0 210* 75
6 T4 400 400 16 24 200 200 12.5 0.50 25.0 6.3 210* 400
7 MPJT1 150 150 6.2 9.3 90 90 6.2 0.60 24.2 6.2 210* 230

1) nominal inner corner radius;
2) Young’s modulus of the chord steel (* if a value not provided by authors).

Theoretically, initial stiffness was calculated according to Section 2. For the joints with β ≤ 0.85, the
stiffness of the component “chord face in bending” was computed using both available options, Eqs. (4)
and (9), corresponding to ka1 and ka2 respectively. The stiffness of the component “chord side walls in
compression” was calculated by Eq. (10). It should be noted that most of the joints were welded with
fillet welds, which are known to considerably increase their initial stiffness [37]. In this paper, the
influence of fillet welds was taken into account using the approach of de Matos et al. [12], which replaces
the actual brace section by the equivalent butt-welded section with the following width:

1 1.6eq wb b a= + (13)

The equivalent brace width was used further to calculate the equivalent brace-to-chord width ratio:

0/ 1.0eq eqb bb = £ (14)
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The equivalent brace-to-chord width ratio was further used to compute the stiffnesses ka and kb. Two
joint stiffnesses, C1 and C2, were calculated according to Eq. (2), respectively employing ka1 and ka2 for
the component “chord face in bending”. For the joints with β > 0.85, only the component “chord side
walls in compression” was considered, and joint stiffness C was determined according to Eq. (3).
Table 4 provides a detailed comparison of initial stiffness calculated theoretically and experimentally.
Regarding the joints with β ≤ 0.85, if ka is calculated using the first approach, Eq. (4), then theoretical
stiffness two times overestimates the experimental. Oppositely, if ka is calculated using the alternative
approach, Eq. (9), the results are significantly underestimated, with the average C2 / Cexp ratio of 0.08.
For the joints with β > 0.85, the stiffness is overestimated more than two times. All these findings clearly
show that the CIDECT equations for the initial stiffness of RHS T joints cannot serve as a reliable tool
in the design of tubular joints and more accurate equations have to be developed.
Table 4. Validation of the theoretical approach.

No. Joint β βeq
E

[GPa]
ka1

[mm]
ka2

[mm]
kb

[mm]
C1

[kN/mm]
C2

[kN/mm]
Cexp

[kN/mm]
C1 /
Cexp

C2 /
Cexp

β ≤ 0.85
3 S1B1C23 0.50 0.57 200 0.661 0.043 4.612 116 8.4 74 1.6 0.11
4 TN02N0 0.71 0.77 200 4.064 0.022 9.390 567 4.4 280 2.0 0.02
5 T1 0.50 0.53 210 0.747 0.037 5.935 139 7.7 75 1.9 0.10
6 T4 0.50 0.53 210 2.317 0.178 16.670 427 36.9 400 1.1 0.09
7 MPJT1 0.60 0.67 210 2.883 0.074 8.017 445 15.3 230 1.9 0.07

Average 2.0 0.08
Variance 0.3 0.001
β > 0.85

1 S1B1C11 1.00 1.00 200 - - 5.952 1190 - 570 2.1 -
2 S1B1C12 1.00 1.00 200 - - 3.514 703 - 330 2.1 -

Average 2.1
Variance 0.0

4. New equations for the stiffness of components
Given the unsatisfactory prediction of initial axial stiffness by the current theoretical approach, this
section develops a more accurate solution for RHS T joints. Following the component method, the paper
proposes new equations for the components “chord face in bending” and “chord side walls in
compression”. To avoid extremely complicated analytical solutions for these components, the paper
considers simplified mechanical models and employs the concept of equivalent length and width, which
are determined numerically. The developed equations are further validated against the same
experimental results.

4.1 Stiffness of the component “chord face in bending”
Consider an RHS T joint with a b0×h0×t0 chord loaded axially by a b1×h1 brace, as shown in Fig. 7a.
Generally, the thickness of the brace t1 does not influence the structural properties of tubular joints [38];
therefore, it is not considered in this section. Since the influence of fillet welds is considered
independently (see Section 3), it is ignored in this study. The top face of the chord can be replaced by a
simply supported plate with an equivalent length leff and a span L = b0 – 2t0. The load N can be assumed
applied through an infinitely rigid plate of the size b1×leff. This design model can be simplified further
to a 2D beam model, shown in Fig. 7b. The vertical displacement of point A (mid-point of the 2D beam)
is found as

( ) ( )3
1

48
N L b

v A
EI
-

= (15)

where I is the second moment of area of the cross-section A-A. Then, Eq. (15) can be written as
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a) b)

Fig. 7. Component “chord face in bending”: a) spatial design model; b) 2D design model.

The stiffness of the component can be found as

( ) ( )

3
0

3
1

4 eff
a

l tNk
v A E L b

= =
-

(17)

The equivalent length leff remains the only unknown variable in Eq. (17). In this paper, it was determined
numerically, employing the finite element (FE) software Abaqus/Standard [39]. To exclude a possible
effect of the chord end conditions, the length of the chord was selected as 6b0 [40], while the brace length
was chosen as b1, as shown in Fig. 8a. According to [41], the model was constructed using quadratic
solid finite elements with reduced integration (C3D20R), with two elements in the thickness direction.
Since initial stiffness was the only requested outcome of the analyses, only elastic properties were
introduced to the material model, with Young’s modulus of 210 GPa and Poisson’s ratio of 0.3. The
brace was connected to the chord top face using a tie constraint. To avoid the contribution of the brace
to the deformation of the joint, it was modelled with increased Young’s modulus of 210·104 GPa. The
compressive axial load was applied using a single increment to point O, connected by a rigid body to the
upper face of the brace. To avoid bending of the chord from the transverse force, it was restrained against
vertical displacements along its length, as shown in Fig. 8a.

a) b)

Fig. 8. FE model: a) overall view; b) location of points with measured displacements.



Fig. 8b demonstrates two vertical displacements measured in the analyses: v(O) corresponding to the
displacement of the loading point O and v(O1) corresponding to the global displacement of the upper
flange of the chord. The shortening of the brace was neglected due to its relatively high Young’s
modulus. The local displacement corresponding to the component “chord face in bending” was found as

( ) ( ) ( )1v A v O v O= - (18)

Following Eq. (16), the equivalent length leff was calculated as
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The equivalent length leff was determined for a series of joints with varying parameters b0, b1, h1 and t0.
To avoid considering an extra variable h0, only square hollow section were analyzed. For convenience,
parameters b1, h1 and t0 were correspondingly replaced by their relative ratios β = b1 / b0, α = h1 / b1 and
2γ = b0 / t0. EN 1993-1-8:2005 [5] provides the following limitations for these ratios: 0.25 ≤ β ≤ 1.0,
0.5 ≤ α ≤ 2.0 and 10 ≤ 2γ ≤ 35. Based on the numerical observations, for β > 0.85 the contribution of the
component “chord face in bending” to the overall stiffness of the joint becomes negligibly small;
therefore, the upper bound for β was reduced to 0.85. Table 5 provides the values for the considered
variables.
Table 5. Values of variables used in FEM

Variable Considered values
b0 [mm] 100; 150; 200; 250; 300
β = b1 / b0 0.25; 0.40; 0.55; 0.70; 0.85
2γ = b0 / t0 10; 15; 20; 25; 30; 35
α = h1 / b1 0.5; 1.0; 1.5; 2.0

Using Eq. (17), leff was calculated for varying joint parameters with v(A) obtained by the finite element
analysis. To analyze the behavior of leff, it was plotted against the introduced variables. As can be seen
from Fig. 9, leff depends linearly on b0 and α. According to Fig. 10, the dependence on β was assumed
linear, while the influence of 2γ was found comparatively small and thus was ignored. To be consistent
with the current terminology, α was replaced by the commonly used ratio η = h1 / b0. Finally, leff was
approximated as

( ) ( )1 02 1.25 1

0.85
effl h bb b

b

= - + -

£
(20)

In relation to the numerical results, the proposed equation demonstrated sufficient accuracy, with
R2 = 0.980, R2

adj = 0.979 and the average relative error of 4.1%. Since the component “chord face in
bending” behaves similarly for T and X joints, the proposed equation can be also extended for X joints.

Fig. 9. Dependence of leff on b0 and α.
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Fig. 10. Dependence of leff on β and 2γ.

4.2 Stiffness of the component “chord side walls in compression”
Consider an RHS T joint with a b0×h0×t0 chord loaded axially by a b1×h1 brace with an axial force N.
Fig. 11a shows the approximate deformation pattern for the compressed chord side wall. Considering it
separately, the chord side wall can be replaced by a simply supported column of length H = h0 – t0 with
an equivalent width beff and loaded by a compressive force N/2. It can be further simplified to a 2D beam
model, shown in Fig. 11b.

a) b)

Fig. 11. Component “chord side walls in compression”: a) spatial design model; b) 2D design model.

The vertical displacement at the end of the column (point B) can be found as

( )
0

0.5
2 eff

NH NHv B
EA Eb t

= = (21)

Then the stiffness of the component “chord side walls in compression” can be calculated as
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This equation looks similar to Eq. (10) if beff and H are respectively replaced by beff,c,wc and h0. However,
Eq. (22) does not take into account the coefficient 0.7, which is present in Eq. (10). The origin of this
coefficient is difficult to trace. Probably, it represents a correction factor between the gradients for load
introduction, as demonstrated by Grotmann & Sedlacek [11]:

3 0.693 0.7
2.5

r = = » (23)

However, Grotmann & Sedlacek [11] employ a slightly different equation for the stiffness of this
component and use this correction factor for the effective width beff. In this section, the equivalent width
beff is determined by a series of numerical analyses, which by default consider this correction factor. This
section employs the results of the FE analyses conducted for the component “chord face in bending”.
According to Fig. 8b, displacement v(B) was found as equal to displacement v(O1). Moreover, additional
analyses were conducted to consider joints with β = 1.0. These joints experienced no chord face bending;
therefore, displacement v(B) was calculated as equal to displacement v(O). According to Eq. (22), the
equivalent width beff was found as

( )02eff
NHb

Et v B
= (24)

To analyze the behavior of beff, it was plotted against the introduced variables. The effective width beff
was found to depend linearly on b0 and α, as shown in Fig. 12. Similar to the component “chord face in
bending”, the influence of 2γ was found negligibly small and was ignored. At the same time,
considerable nonlinear behavior was observed in relation to β, as shown in Fig. 13. To be consistent with
the current terminology, α was replaced by the commonly used ratio η = h1 / b0. Finally, a curve fitting
approach approximated beff as

( ) 0
1

2.4
0.025 9 1

1.2eff
bb h b
b

æ ö
= - +ç ÷-è ø

(25)

In relation to the numerical results, the accuracy of the proposed equation was justified by R2 = 0.96,
R2

adj = 0.95 and the average relative error of 11.2%. The component “chord side walls in buckling”
governs the behavior of joints with β > 0.85. Table 1 demonstrated a clear difference between T and X
joints with matching geometry. For this reason, the equations developed for this component cannot be
extended for X joints and are limited only for T joints.

Fig. 12. Dependence of beff on b0 and α.
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Fig. 13. Dependence of beff on 2γ and β.

4.3 Validation of the proposed equations
The developed equations were validated against the same experimental data as was used in Section 3.
The stiffnesses of the components were calculated in accordance with the developed Eqs. (17) and (22),
both neglecting (denoted as ka and kb) and considering the influence of fillet welds (denoted as ka,eq and
kb,eq). The corresponding theoretical stiffnesses are denoted as C and Ceq, respectively. Both were
compared to experimental stiffness Cexp. The results of the validation are summarized in Table 6. For all
the joints with β ≤ 0.85, the theoretical prediction underestimates the experimental values, if fillet welds
are ignored. If welds are taken into account, the prediction is more accurate and the C / Cexp ratio exceeds
1.0 in most cases, except joints T1 and T4. For these two joints, the exact throat thicknesses of welds
were not provided by the authors and were determined as equal to t1/2, as the minimum specified in the
paper. If measured throat thicknesses were used instead, the ratio could have been closer to 1.0. The
joints with β = 1.0 also demonstrate accurate prediction; however, any certain conclusions are
complicated by the small amount of joints of available for the validation. It should be noted that for the
joints with β = 1.0, the consideration of fillet welds does not bring any reasonable changes, since β
cannot exceed 1.0. Generally, the results show that the developed equations provide sufficiently accurate
prediction of initial axial stiffness and can be effectively used in the design of RHS T joints.
Table 6. Validation of the proposed theoretical approach

No. Joint β βeq
ka

[mm]
ka,eq

[mm]
kb

[mm]
kb,eq

[mm]
C

[kN/mm]
Ceq

[kN/mm]
Cexp

[kN/mm]
C /
Cexp

Ceq /
Cexp

β ≤ 0.85
3 S1B1C23 0.50 0.57 0.452 0.720 1.019 1.161 63 89 74 0.85 1.20
4 TN02N0 0.71 0.77 1.395 3.016 3.097 3.455 192 322 280 0.69 1.15
5 T1 0.50 0.53 0.349 0.419 1.513 1.604 60 70 75 0.79 0.93
6 T4 0.50 0.53 1.900 2.212 4.077 4.268 272 306 400 0.68 0.76
7 MPJT1 0.60 0.67 1.777 3.255 2.039 2.302 199 283 230 0.87 1.23

Average 0.77 1.06
Variance 0.01 0.03
β > 0.85

1 S1B1C11 1.00 1.00 - - 2.445 2.445 489 489 570 0.86 0.86
2 S1B1C12 1.00 1.00 - - 1.569 1.569 314 314 330 0.95 0.95

Average 0.90 0.90
Variance 0.00 0.00

Attention should be paid also to the approach that was employed to consider the influence of fillet welds.
The results of the validation show that if welds are disregarded, initial stiffness in noticeably
underestimated. The used solution allowed to compensate the observed underestimation for most of
joints and obtain more accurate prediction of stiffness, although demonstrating excessive stiffness for
joints 3 and 7. Unless a more accurate equation is developed based on extensive numerical and/or
experimental values, this solution can be effectively employed as a rule of thumb for RHS T joints under
axial loading. A similar approach was proposed for moment-loaded RHS joints in [37].
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5. Chord stress function for initial axial stiffness
According to Wardenier [38], axial forces in the chord affect the structural behavior of RHS T joints. In
particular, the reduction of resistance is determined by the so-called chord stress functions, the simplest
of which is provided in EN 1993-1-8:2005 [5], Eq. (26). Some other functions for RHS T and X joints
can be found in [42, 43].
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where n is the relative axial stress:
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where A0 is the cross-sectional area of the chord and N0 is the axial force in the chord. Although EN
1993-1-8:2005 [5] assumes negative n for tension and positive n for compression, most of publications
[42–44] employ the inverse sign convention for n, which is also used in this paper.

In addition to resistance, a similar influence of chord axial stresses is also observed on the initial stiffness
of tubular joints. Garifullin et al. [45] have shown that compressive normal stresses in the chord reduce
the initial rotational stiffness of RHS T joints by 40%, while tensile stresses increase it by 30%. Such
phenomenon might be particularly important for frame structures, where the stiffness of joints has to be
considered in the global analysis. Such serious influence of chord axial stresses on initial stiffness can
noticeably change the distribution of forces in the members of frames, affecting the results of the global
analysis. This section numerically evaluates the effect of chord axial forces on the initial axial stiffness
of RHS T joints and develops a corresponding chord stress function ksn,N.

5.1 Numerical simulations
The analyses were conducted numerically, employing the same FE model as was used in Section 4. The
scope of the study was restricted to square hollow sections to exclude the consideration of the additional
variable b0/h0. All analyses were conducted for a joint with a 3.0 m long chord made of 300×300 mm
cross-section. Following the requirements of EN 1993-1-8:2005 [5], the chord wall thickness t0 varied
from 8.5 mm (2γ = 35) to 30 mm (2γ = 10), whereas the brace width changed from 75 mm (β = 0.25) to
300 mm (β = 1.00), as shown in Table 7. The length of the brace was selected as equal to b1. The brace
wall thickness t1 was determined so that it did not exceed the wall thickness of the chord t0. The relative
stress n in the chord was determined according to Eq. (27). All calculations employed the elastic-ideal
plastic material model with E = 210 GPa and ν = 0.3. The analyses were conducted in two steps: after
an axial load was applied to the chord on the first step, the end of the brace was loaded with a
concentrated axial force N using only one increment to find the initial stiffness of the joint.
Table 7. Parameters of joints used in numerical simulations.

Chord
300×300×t0

t0 [mm] 8.5 10 20 30
2γ 35 30 15 10

Brace
b1×b1×t1

b1 [mm] 75 180 255 300
β 0.25 0.60 0.85 1.00

Steel grade S355, S500, S700

n -0.95, -0.90, -0.80, -0.60, -0.30, 0, 0.30, 0.60, 0.80, 0.90, 0.95



According to the obtained results, chord axial stresses significantly affected the initial axial stiffness of
the joints. Figs. 14 and 16 plot the ratio C/C0 for the joints with varying 2γ and β, where C is the stiffness
with a relative axial stress n, C0 is the stiffness with no axial stress. As can be seen, the observed effect
has the similar pattern as in the case with initial rotational stiffness [45]. The maximum 35% reduction
of stiffness is observed for compressive loads and 30% increase for tensile loads. The effect is
particularly pronounced for the joints with small β and large 2γ. Moreover, the effect depends on the
steel grade, increasing with the increase of yield strength, as shown in Fig. 15.

Fig. 14. Dependence of the effect on 2γ, S355.

Fig. 15. Dependence of the effect on steel grade (2γ = 30, β = 0.25).
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Fig. 16. Dependence of the effect on β, S355.

5.2 Chord stress function for initial axial stiffness

To take into account the influence of chord axial stresses, a corresponding chord stress function (CSF)
was developed based on the obtained numerical results. Following the above observations, the function
was found dependent on four variables: β, γ, fy0 (i.e., steel grade) and n. The assessment criteria included
the coefficient of determination R2, the adjusted coefficient of determination R2

adj, the average percent
error Δav and the maximum percent error Δmax.
Table 8. Approximation based on the existing chord stress functions for the resistance.

Case Equation A B C R2 R2
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Firstly, the paper tested the existing chord stress functions for resistance for their applicability to initial
stiffness. The results are summarized in Table 8. Case 1 represents the current CSF in EN 1993-1-8:2005
[5], Eq. (26), providing very inaccurate results. Similar performance was observed for the functions
proposed in [43], Case 3, and [42], Case 5. In addition, none of these functions considers the increase of
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stiffness for tensile stresses. Cases 2, 4 and 6 represent the corresponding improvements of Cases 1, 3
and 5, originating from their general equations and adjusted using a curve fitting approach. As can be
seen, none of the latter brings reasonable improvements in accuracy. These results demonstrated that the
existing chord stress functions for resistance are inapplicable for initial stiffness.
A new CSF was developed based on the obtained numerical results. For some combinations of β and γ,
the influence of chord axial forces is found to be negligibly small, as presented on Fig. 17a for S700 and
n = –0.95. In the figure, the black dots represent the tested cases. In particular, the reduction of initial
stiffness does not exceed 5% for the joints with small 2γ and large β; therefore, the introduction of a CSF
seems unreasonable for these joints, particularly if its possible error exceeds 5%. For the remaining
combinations of β and 2γ, the reduction is considerable, with the maximum value at the largest 2γ and
smallest β. Following these observations, the analyzed area of joints was divided into two zones, as
shown on Fig. 17b. The grey area corresponds to the joints for which no CSF is proposed, while the
yellow zone denotes the area with the proposed CSF. The domain of CSF was specified with additional
numerical analyses:

2 12; 0.9; 40 2 11g b b g³ £ - £ (28)

a) b)
Fig. 17. a) Dependence on β and γ (S700, n = –0.95); b) domain of the proposed CSF.

According to Fig. 15, the proposed CSF was assumed to behave linearly for steel grades with 355 MPa
≤ fy0 ≤ 500 MPa and nonlinearly for S700. For steel grades 500 MPa < fy0 < 700 MPa, the values are
proposed to be found by linear interpolation. The developed CSF is provided in Eq. (29).
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5.3 Validation of the proposed chord stress function
The validation of the proposed CSF was conducted with a series of independent FE results and
employing the same FE model. To prove that the function is scalable in the chord width, the validation
was conducted for the different chord size, 100×100 mm. The validation was performed for three chord
wall thicknesses, two brace widths and two steel grades, as shown in Table 9. Although the grade S600
is not generally produced, it was used for scientific purposes, as an intermediate grade between S500
and S700. The brace wall thickness was selected so that it did not exceed that of the chord.
Table 9. Details of joints used for validation of CSF.

Chord, b0×h0×t0 2γ Brace, b1×h1×t1 β Steel grade
100×100×3
100×100×4
100×100×8

33.3
25.0
12.5

40×40×3
80×80×3

0.4
0.8

S420
S600

Fig. 18. Validation of the proposed CSF.
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Fig. 18 presents the graphical validation of the developed chord stress function, plotting the ratio C/C0
in relation to n, where C is the stiffness with a relative axial stress n, C0 is the stiffness with no axial
stress. As can be seen, the proposed CSF provides a sufficiently accurate prediction, with R2 = 0.94,
R2

adj = 0.93, the average error is 2.3% and the maximum error is 17.3%. The case with 2γ = 12.5 and
β = 0.8 represents the only joint outside the domain of the CSF, meaning that no CSF is needed for it
(ksn,N = 1.0). The numerical simulations demonstrate 9% maximum reduction of initial stiffness for this
joint, which is acceptable in practice. Taking the chord stress function into account, Eq. (1) can be
modified as follows:
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Conclusions
This paper considers the initial axial stiffness of tubular joints, employing the component method
proposed by CIDECT. The paper considered the existing CIDECT approach for initial axial stiffness of
RHS T joints and validated it against the existing experimental results. The validation has demonstrated
that the existing equations for the stiffness of individual components lead to inaccurate results and cannot
be reliable in the computational analysis. Moreover, in most cases, the stiffness equation for the
component “chord face in bending” has violated its validity range. In addition, the direct comparison of
the experimental stiffness of T and X joints with matching geometry have shown that X joints have
considerably higher axial stiffness than T joints, therefore, they cannot be used to validate the theoretical
approach for T joints.
Following the adopted component method, the paper has proposed new equations for the stiffness of the
components “chord face in bending” and “chord side walls in compression”. The equations are based on
simple mechanical modes, employing the concept of the effective length and width. Given that chord
face bending develops similarly for T and X joints, a common equation has been proposed for the
stiffness of the component “chord face in bending”. At the same time, the equation for the component
“chord side walls in compression” has been limited only for T joints, given the abovementioned
differences between the stiffness of T and X joints.

The developed equation were validated against the same experimental values. When the influence of
fillet welds was disregarded, the prediction inconsiderably underestimated the stiffness of joints. The
employed solution of de Matos et al. for fillet welds allowed to compensate the underestimation and
obtain more accurate results, although overestimating the stiffness of some joints. In general, the
proposed equations has demonstrated good correlation with the experimental results and can be
recommended for the design of axially loaded RHS T joints.

It should be noted that the conducted research was considerably complicated by the small amount of the
available experimental results. The second challenging issue was the determination of initial stiffness
from the experimental data. In this paper, it was determined graphically based on the presented load-
deformation curves. This approach is rather complicated and might lead to inaccurate results. Such
researches, where theoretical solutions are evaluated with existing experimental data, can be conducted
more effectively if in addition to resistance and load-deformation curves, authors also provide the exact
values of initial stiffness.
The second part of the paper investigated the influence of chord axial stresses on the initial axial stiffness
of RHS T joints. The conducted numerical simulations demonstrated that compressive stresses reduce
stiffness by 35%, while tensile stresses increase it by 30%. The effect was found dependent on the
geometry and the steel grade of joints, being particularly strong for joints with high 2γ, small β and high
steel grades. To take this influence into account, the paper has developed a corresponding chord stress
function. The validation with a series of independent numerical data has shown the sufficient accuracy
of the proposed function, which can be further verified against new experimental results.
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