Light field reconstruction using shearlet transform in tensorflow

Citation

Year
2019

Version
Peer reviewed version (post-print)

Link to publication
TUTCRIS Portal (http://www.tut.fi/tutcris)

Published in
2019 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2019

DOI
10.1109/ICMEW.2019.00116

Take down policy
If you believe that this document breaches copyright, please contact cris.tau@tuni.fi, and we will remove access to the work immediately and investigate your claim.
LIGHT FIELD RECONSTRUCTION USING SHEARLET TRANSFORM IN TENSORFLOW

Yuan Gao, Reinhard Koch
Kiel University, Germany
\{yga, rk\}@informatik.uni-kiel.de

Robert Bregovic, Atanas Gotchev
Tampere University, Finland
\{robert.bregovic, atanas.gotchev\}@tuni.fi

ABSTRACT
Shearlet Transform (ST) is one of the most effective approaches for light field reconstruction from Sparsely-Sampled Light Fields (SSLFs). This demo paper presents a comprehensive implementation of ST for light field reconstruction using one of the most popular machine learning libraries, i.e. TensorFlow. The flexible architecture of TensorFlow allows for the easy deployment of ST across different platforms (CPUs, GPUs, TPUs) running varying operating systems with high efficiency and accuracy.

Index Terms— Light Field Reconstruction, Shearlet Transform, TensorFlow, Epipolar-Plane Image, Light Field Sparsification

1. INTRODUCTION
Shearlet Transform (ST) [1, 2] is designed for reconstructing a Densely-Sampled Light Field (DSLF) from a Sparsely-Sampled Light Field (SSLF) using Epipolar-Plane Image (EPI) sparse representation in shearlet domain. Typically, ST is composed of four steps, which are (1) pre-shearing, (2) shearlet system construction, (3) sparsity regularization and (4) post-shearing. For step (1), (2) and (4), ST requires the information of minimum disparity \(d_{\text{min}}\), maximum disparity \(d_{\text{max}}\) and disparity range \(d_{\text{range}}\) of the input SSLF, so that this input SSLF can be pre-sheared with new \(d_{\text{min}} = 0\) and \(d_{\text{max}} = d_{\text{range}}\). Besides, a shearlet system for the input SSLF can be constructed with \(\xi\) scales, where \(\xi = \lceil \log_2 d_{\text{range}} \rceil\). Regarding sparsity regularization, it typically consists of analysis transform, hard thresholding and synthesis transform as introduced in [1]. In addition, the double overrelaxation (DORE) algorithm in [2] can efficiently accelerate the convergence speed of sparsity regularization.

2. IMPLEMENTATION
The sparsity regularization step of ST is re-implemented here using TensorFlow as shown in Fig. 1 (a). The original implementation [2] of ST using Matlab and the presented TensorFlow ST implementation are also compared here. For a fair comparison, the fifth row of “Dishes” in 4D Light Field Dataset [3] is extracted and decimated with an interpolation rate \(\delta = 2\). In other words, the input SSLF contains 5 horizontal-parallax images. Since the “Dishes” light field has ground-truth \(d_{\text{min}}\) (3.1 pixels) and \(d_{\text{max}}\) (3.5 pixels), the disparity condition of the input SSLF can be derived. The pre-shearing step is performed as illustrated in Fig. 1 (b) and (c). An Nvidia Titan Xp is exploited to process these 512 sparsely-sampled EPIs with resolution of 608 \(\times\) 128 pixels and the number of iterations is set to 30.

Table I. Computation time comparison of different implementations.

<table>
<thead>
<tr>
<th>ST implementation</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matlab (with CUDA) [2]</td>
<td>87.635</td>
</tr>
<tr>
<td>TensorFlow (with CUDA)</td>
<td>91.574</td>
</tr>
</tbody>
</table>

The work in this paper was funded from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 676401, European Training Network on Full Parallax Imaging, and the German Research Foundation (DFG) No. K02044/8-1. The Titan Xp used for this research was donated by the NVIDIA Corporation.

Fig. 1. The coarse estimation, logical measuring matrix and estimation refinement for densely-sampled EPI reconstruction using ST.

The computation time of different implementations are compared in Table I. As can be seen in this table, the presented TensorFlow implementation achieves comparable performance to the original Matlab implementation. An example of reconstructed densely-sampled EPI is displayed in Fig. 1 (d). The source code of this demo will be released to facilitate learning-based light field research using ST.

3. REFERENCES