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AbstractÑRecently, a computational issue of sphere decoding
algorithm (SDA) during transient operation of multistep model
predictive control has been addressed in [1] and achieved its
real-time implementation in [2] for a medium-voltage electrical
drive system. This is achieved by projecting the unconstrained
solution onto theconvex-hull of the Þnite control set during tran-
sient operation. Therefore, a new initial sphere that guarantees
feasibility and includes a signiÞcant smaller number of candidate
solutions is obtained. This reduces the computation time required
to solve the optimization problem. However, the reduction of the
computational burden comes at the expense of (mild) suboptimal
results [3]. This paper analyses the possibility to obtain a subop-
timal solution by the SDA based optimization during transient
operation. To deal with this suboptimality issue, this work
explores the possibility to enlarge theconvex-hull, whose size
is by deÞnition tied to the original Þnite control set. Therefore,
in this work, the convex-hull is treated as a SDA initialization
parameter during transient operation. As will be demonstrated,
enlarging the convex-hull size reduces the possibility to obtain
a suboptimal solution during the transient operation retaining,
thus, the optimality during the whole converter operation.

Index TermsÑPredictive Control, Long Prediction Horizon,
Sphere Decoder, Transient Operation, Suboptimality

I. I NTRODUCTION

In recent decades, model predictive control (MPC) has
paved its way in becoming one of the most attractive control
alternatives fo power electronics converters and electrical
drives [4]. In MPC, an optimal control problem can be
formulated by considering the physical limits of the system
and, as a result, several constraints and nonlinearities can be
included to achieve the best possible outcome. These features
of MPC, combined with the available computational power,
justify its widespread acceptance from the power electronic
community.

Among the MPC families, the Þnite control set MPC (FCS-
MPC) is most widely utilized. In this strategy, the optimization
and modulation problem are formulated in one stage; thus, no
modulator is needed. However, performing the optimization
is still computationally challenging as the number of control
inputs or the length of the prediction horizon increases. As

reported recently, multistep MPC can improve the system
performance [5]Ð[7] when compare to its horizon-one coun-
terpart. However, the computational challenges for prediction
horizons longer than one are signiÞcant. Moreover, the use of
an exhaustive search algorithm (ESA)Ñaccording to which
all candidate solutions are enumerated to conclude to the
optimal oneÑfurther aggravate these challenges. This is due
to the fact that the number of candidate solutions increases
exponentially with the prediction horizon steps, rendering ESA
computationally intractable.

To achieve real-time implementation of multistep MPC, the
sphere decoding algorithm (SDA), originally introduced in
the Þeld of communications, can be adapted to solve opti-
mal control problem associated to multistep MPC for power
converters and drives [6]Ð[8]. SDA is an efÞcient optimization
algorithm for quadratic integer optimal problems, which can
be used to optimally obtain the converter switch position.
This is achieved by setting aninitial spherecentered on the
unconstrained optimal solution and with a radius deÞned by
a good initial input candidate. Thus, any input combination
from the FCS that lies outside the sphere is discarded from
evaluation. Therefore, the computational efÞciency of the SDA
is directly associated to the initial sphere. Nevertheless, during
transient operation, the unconstrained solution can be placed
far from the FCS, yielding to a large initial sphere, which
increases the computational time required by the SDA to
obtain the optimal solution.

To overcome this issue, an interesting solution was orig-
inally proposed in [1]. Therein, aconvex hullof the FCS
was used to discriminate between steady-state and transient
operation. In doing so, if the unconstrained optimal solution
lies inside theconvex hullthen, the SDA is performed as usual.
Conversely, whenever the unconstrained optimal solution lies
outside theconvex hull, it is considered as transient operation.
In that case, it is proposed in [1] to project the unconstrained
optimal solution onto theconvex hulland use this projection as
center for the initial sphere. Consequently, a new initial sphere
that guarantees feasibility and includes a signiÞcant smaller



number of candidate solutions is obtained. This reduces the
computation time required to solve the optimization problem.
This idea has been adopted in [2], [3] for multistep MPC
formulated for medium-voltage electrical drive systems. Im-
portantly, the reduction of the computational burden comes at
the expense of (mild) suboptimal results [3], since the optimal
problem considering the projection differs from the original
one.

The paper at hand analyses the possibility to obtain a
suboptimal solution by the SDA-based optimization during
transient operation. To deal with this suboptimality issue, this
work explores the possibility to enlarge theconvex-hull, whose
size is by deÞnition tied to the original Þnite control set.
Therefore, in this work, theconvex-hullis treated as a SDA
initialization parameter during transient operation. As will
be demonstrated, enlarging theconvex-hullsize reduces the
possibility to obtain a suboptimal solution during the transient
operation retaining, thus, the optimality during the whole
converter operation. To validate this proposal, an induction
motor drive system is chosen as a case study. Simulation
results are presented to verify the effectiveness of enlarging the
convex-hullsize, allowing SDA to preserve optimality for the
whole range of operating points when using multistep MPC
with prediction horizon as long asN = 10 steps. Finally,
experimental results of the closed-loop system behavior using
multistep MPC withN = 4 and SDA with enlargedconvex-
hull are also provided.

II. OPTIMAL CONTROL PROBLEM OF IM D RIVE

The predictive controller for an induction machine (IM)
drive system here follows the cascaded structure of the Þeld
oriented control (FOC), where the electromagnetic system
is controlled by a model predictive current control (MPCC)
and classical proportional-integral (PI) controllers govern the
mechanical system as shown in Fig. 1. The discrete-time state-
space model of the IM drive system is formed as

x (k + 1) = A (k)x (k) + Bu (k) (1a)

y (k) = Cx (k) (1b)

where the state vector,x = [ i s! i s" ! r! ! r" ]T ! R4,
consists of the stator currents and the rotor ßuxes in"# -
framework, while the stator current is the output variable,
i.e., y = [ i s! i s" ]T ! R2. Finally, the control input vector,
u = [ µa µb µc]T ! U = V3, is composed of the inverter
voltage levels,µ# , " $ ! { a, b, c} , whereµ# ! V = {# 1, 0, 1}
for a three-level inverter, and the system matrices (A , B and
C ) are obtained from the IM drive system model [2]. The
latter are summarized in Remark. 1.

The main objective of MPCC is for the output variablesy
(i.e., the stator currents) to track their referencesy ! , while
maintaining a low inverter switching frequency. At each time
stepk, the objectives are mapped into a cost function over a
Þnite prediction horizonN as

JN (k) =
k+ N ! 1!

$= k

$y (%+1) # y ! (%+1) $2
2 + &u $! u (%)$2

2 (2)

Cell-a
Cell-b

Cell-c

Vdc Cdc
Sa1 Sa2

Sa1 Sa2

H-Bridge

Rotor Flux
Estimator

PI Speed

PI Flux
Controller

Controller

+

+
! !

!

!

IM
Encoder

! m

dq
"#

MPCC

Cost Function
Minimization

Stator Current
Prediction

[S
a

S
b

S
c
]

n

[v
sa

n
v s

bn
v s

cn
]

[i sa i sb i sc]

$m

$m

$!
m

[%r" %r# ]

&

%!
rd

%rd

i !
sd

i !
sq

i !
s"i !
s"

i !
s#

i s" i s#

" ."

!

Speed information

Fig. 1. A cascaded FOC control structure with speed and ßux outer control
loop and MPCC inner control loop governing an IM fed by a three-phase
three-level H-Bridge inverter.

where the Þrst term penalizes the stator current tracking
error and the second term (! u (%) = u(%) # u(%# 1)) is
related to the switching effort. Furthermore, the weighting
factor, &u > 0, adjusts the trade-off between these two
control targets. Then, the optimal control input sequence,
Uopt(k) = [ u T

opt(k) . . . u T
opt(k + N # 1)]T , is obtained by

solving the following optimization problem

Uopt(k) = arg min
U (k )

{ JN (k)} (3a)

subject to:x (%+ 1) = A (k)x (%) + Bu (%), y (%) = Cx (%)
(3b)

U (k) ! U (3c)

$! u (%)$" % 1, " %! k, . . . k + N # 1, (3d)

where, (3b) is the system constraint given by (1), (3c) restricts
the control input sequences,U (k) = [ u T (k) . . . u T (k + N #
1)]T , that belong to the FCS,U = V%=3 N , and (3d) is the
transition voltage level constraint which is limited to one, in
order to avoid highdv/dt ratings [4]. Normally, transition in
any voltage level becomes more than one (i.e. violates (3d))
during the transients and/or worst case condition of the steady-
states [9].

Remark1. Considering the stator currents (i s = [ i s! i s" ]T ),
the rotor ßuxes (! r = [ ! r! ! r" ]T ) and the rotorÕs speed
' m as the state-variables, the continuous-time state equations
of the IM drive system can be expressed as

di s

dt
= #

1
(&

i s +
kr

R&(&

"
1
' r

' m
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1
' r

#

! r +
1

R&(&
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(4a)
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=

L m

( r
i s #
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1
' r

' m

# ' m
1
' r

#

! r (4b)

Jm
d' m

dt
= # f m ' m + Te # T l (4c)

where( r = L r
R r

, kr = L m
L r

, R& = Rs + Rr k2
r , L & = L s # k2

r L r ,
and (& = L !

R !
stand for rotor time constant, rotor coupling

factor, equivalent resistance, total leakage inductance, and
transient-stator-time constant, respectively, see [10]. Addi-



tionally, Tl is the mechanical load torque, andTe is the
electromagnetic torque given by

Te =
3
2

np
L m

L r
(! r! i s" # ! r" i s! ) (5)

where Rs (Rr ), L s (L r ), L m , f m , and np stand for stator
(rotor) resistance, stator (rotor) inductance, magnetizing induc-
tance, friction coefÞcient, and number of pole pairs, respec-
tively. According to the MPCC scheme in"# -framework, the
continuous-time state-space model becomes

dx (t)
dt

= A c(t)x (t) + B cu(t), y (t) = Cx (t) (6)

where
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(7)

with theClarke-transformationmatrix, Ct . By performing the
well-known Forward-Euler method with a sampling period of
Ts (time stepk ! N) on (6), the discrete-time state-space
model (1) is formed with system the system matrices,A (k) =
I 4 + TsA c(k), (whereI 4 is an identity matrix of size four),
B = TsB c, andC as per (7).

III. SDA BASED OPTIMIZATION

This section brießy introduces the basic formulation of the
SDA, and most importantly, the suitable initialization approach
to be used. As shown, thanks to the aforementioned initial-
ization method, the computational burden of the optimization
process during transients is signiÞcantly reduced.

A. Equivalent ILS Problem

The original optimization problem (3) can be used easily to
compute the so-called unconstrained solution,Uuc(k) ! R%.
Based on that, (3) is reformulated as an equivalent integer
least-squares (ILS) problem [8], i.e.,

Uopt(k) = arg min
U (k )

$H (k)U (k) # øUuc(k)$2
2, (8)

subject to (3c) and (3d). Here,øUuc(k) = H (k)Uuc(k) ! R%.
As derived in [2], [8],H (k) ! R%# % is a non-singular lower
triangular matrix (lattice generator) for&u > 0, and is obtained
by performing the Cholesky decomposition [11] during the
intermediate stage of the ILS-problem (8) formation. Once the
ILS-problem has been formulated, the next step is to initialize
the SDA to perform the optimization.

B. Initialization Approach

The SDA forms an initial sphere,Sini , with a center,! , and
an initial radius,) ini , based on the associated ILS-problem
to be solved. This is achieved by computing) ini , which is,

in fact, the Euclidean distance between the center! and an
initial control input sequence,Uini , i.e.,

Sini (k) : ) 2
ini (k) = $H (k)Uini (k) # ! (k)$2

2. (9)

The computational burden of the SDA depends directly on the
size of initial sphereSini (k) and, thus, the selection of center
! (k) and initial radius) ini (k). This Sini (k) should be small
enough containing a possibly limited number of candidate
solutions in it, hence less number of computations are per-
formed. To this end, two different initialization approach have
been used in [2] depending on the location of unconstrained
optimal solutionUuc(k) during the steady-state and transient
operations.

According to an educated-guess initialization approach pro-
posed in [8], the initial sphereSini (k) in (9) is formed by
consideringøUuc(k) as the center! (k). Furthermore,Uini (k)
is chosen by using the previous optimal input sequence, and
shifting it backwards by one time-step. This approach is partic-
ularly effective at steady-state operation, as the unconstrained
solution Uuc(k) usually belongs to theconvex-hull, CH 1, of
the original FCSU, i.e., Uuc(k) ! CH 1, and it is deÞned as

CH 1 = Conv(U) & R%. (10)

As a result, usually a compactSini (k) results, and, thus,
less computations are required. In contrast, the educated-
guess initialization approach may not be a feasible option for
transients, sinceUini (k) is no longer a good guess like steady-
state and is far from its previous optimal. This is because the
unconstrained solutionUuc(k) may be located far away from
CH 1 (Uuc(k) /! CH 1) and thus, a larger initial sphereSini (k)
is formed that leads to a higher number of computations.

This issue has been solved in [1] by using a box-constrained
quadratic programming (QP) problem1 that projects the infea-
sible Uuc(k) '! CH 1 on CH 1. This provides a feasible center
and a relatively small initial radius for the SDA. SpeciÞcally,
by solving

Ubc1(k) = arg min
U (k )

$H (k)U (k) # øUuc(k)$2
2 (11a)

subject to:U (k) ! CH 1 & R% (11b)

the projected solutionUbc1(k) results. This is equivalent to
Uuc(k), wheneverUuc(k) ! CH 1 (generally, during the steady-
state). Having foundUbc1(k) ! CH 1, the new ILS-problem
can be written as

Usopt(k) = arg min
U (k )

$H (k)U (k) # øUbc(k)$2
2 (12a)

subject to: (3c) and (3d). (12b)

In (12), øUbc(k) = H (k)Ubc1(k) ! R% acts as the new center
! for the SDA. Moreover, a feasible initial vector,Uini (k) =

1An exterior point active set algorithm based on Lagrangian multipliers and
the Karush-Kuhn-Tucker conditions is computationally feasible to solve this
problem [12]Ð[14].








