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Long-Horizon Finite-Control-Set Model Predictive
Control With Non-Recursive Sphere Decoding on

an FPGA
Tinus Dorfling, Student Member, IEEE, Toit Mouton, Member, IEEE, Tobias Geyer, Senior Member, IEEE and

Petros Karamanakos, Senior Member, IEEE

Abstract—Long-horizon finite-control-set model predictive
control is implemented on a field-programmable gate array
(FPGA). To solve the underlying least-squares integer program,
a non-recursive sphere decoding algorithm is developed. By ex-
ploiting the problem structure, few multipliers are required, and
the algorithm computes the optimal solution in a few clock cycles,
thus achieving a resource-efficient implementation on the FPGA.
For a prediction horizon of five steps and a three-level converter,
87 digital signal processor (DSP) blocks and an execution time of
at most 13.4 µs was required to solve the optimization problem
during steady-state operation. Experimental results verify the
effectiveness of the long-horizon controller.

Index Terms—Model predictive control, optimal control, field-
programmable gate array, integer programming, sphere decoder,
three-level neutral-point clamped (NPC) converters, integer least-
squares

I. INTRODUCTION

In recent years, the use of and research in model predictive
control (MPC) for power electronic applications has signifi-
cantly increased [1]–[3]. More specifically, finite-control-set
(FCS) MPC, a direct MPC method, is predominately con-
sidered for power electronic converters [4], [5]. Direct MPC
methods consider the case in which the controller directly
manipulates the switch positions of a converter. Due to the
absence of a modulator, the output of the controller (i.e.,
the manipulated variable determining the switch position) is
restricted to a set of integers. The adoption of long horizons,
which are used to predict the trajectories of the state vari-
ables over multiple discrete time steps, provides a substantial
improvement over short horizons by lowering the harmonic
distortion of the current [6]. Long horizons are potentially
beneficial for higher-order plants, such as converters with an
LC filter [7]. Thanks to its multiple-input multiple-output
approach, long-horizon FCS-MPC achieves damping of the
resonance without additional damping control loops.

The optimization problem underlying FCS-MPC is an in-
teger program usually with a quadratic cost function. Since
the admissible set formed by the manipulated variables is
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non-convex, solving the integer program requires significant
computational effort. In fact, integer programs are known to
be non-deterministic polynomial-time hard. This means that,
in general, when increasing the horizon, the upper bound on
the computation time increases exponentially. For this reason,
the implementation of long-horizon FCS-MPC on embedded
control hardware remains largely an unexplored topic.

For short horizons, the optimization problem can be solved
via enumeration of all the possible solutions. This is known as
exhaustive search. Due to the exponential increase in the num-
ber of possible solutions, this approach is not suited for real-
time implementation with horizons beyond Np > 2, where Np

denotes the number of the prediction steps. In [8] an appro-
priate terminal weight was chosen, thereby approximating the
infinite horizon case. This enables low harmonic distortions
even with short horizons. Horizons of Np = 1 and 2, with
a sampling interval of Ts = 25 µs, were implemented on a
field-programmable gate array (FPGA). By exploiting parallel
computations on the FPGA, the optimal solution was found in
5.8 µs and 17.2 µs for Np = 1 and 2, respectively. Note that as
the horizon was increased, the computation time significantly
increased due to the use of enumeration.

For long horizons of Np > 2, efficient solvers have
been proposed and implemented by reformulating the integer
program as an integer least-squares (ILS) problem. In [9],
a Voronoi diagram is used to partition the search space
into nearest-neighbour regions. A binary search tree is built
offline and traversed in real-time to find the Voronoi region
corresponding to the optimal solution. However, calculating
the hyperplanes that define the Voronoi regions quickly be-
comes intractable as the horizon increases, because the number
of hyperplanes defining the regions, and thus the storage
requirements, increases exponentially. Algorithms such as the
iterative slicer [10] and Micciancio-Voulgaris algorithm [11]
have been investigated in simulations. According to these
simulations, the computation time of these algorithms rapidly
increases for horizons beyond Np > 3. These algorithms also
have significant storage requirements.

One of the most promising approaches to solve the ILS
problem is sphere decoding [12], [13], a branch-and-bound
method. As proposed in [5], the sphere decoder is suited to
solve the optimization problem online with relatively little pre-
processing and modest storage requirements, while quickly
finding the optimal solution in a depth-first search manner,
as discussed in [14]. The computational burden of the sphere
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decoder scales well when increasing the prediction horizon
or when increasing the number of state variables. Simulations
show that for horizons Np = 1 to 10, the average number of
iterations required increases almost linearly with the length
of the horizon [3]. The sphere decoder has been practically
implemented in [15]–[18]. In [15], a horizon of Np = 5
was implemented on an FPGA for a three-level converter,
and the sampling interval was set to Ts = 25 µs. The sphere
decoder required (along with the pre-processing calculations)
at most 16.2 µs to solve the optimization problem. In [16], a
horizon of Np = 3 was achieved on a dSpace system for a
five-level converter, and the sampling interval was chosen as
Ts = 100 µs. The control algorithm required 98 µs to find the
optimal solution. In [17], a horizon of Np = 4 was achieved
on a dSpace system for a three-level converter. The sampling
interval was set to Ts = 125 µs and the control algorithm
required at most 112.9 µs to find the optimal solution. In
[18], a horizon of Np = 4 was implemented on a dSpace
system for a two-level converter. The sampling interval was
set to Ts = 25 µs and the control algorithm required at most
(roughly) Ts = 24 µs.

Another approach to solve the optimization problem under-
lying direct MPC is to solve the optimization problem offline
for all possible states by deriving the (explicit) state-feedback
control law [19]. This approach is known as explicit MPC.
Power electronic systems are known to be hybrid systems,
which can be modelled as piecewise-affine or mixed-logical
dynamic systems [20]. The optimization problem is solved
offline via multi-parametric programming and the (integer)
optimal switch position is stored in a lookup table [21]. During
real-time operation, a binary search tree (that is constructed
offline) is traversed to find the appropriate switch position for
a given state vector. In the case of many state variables or
long horizons, the offline computations become intractable and
the memory requirements increase significantly. Therefore, this
approach is only suitable for low dimensional problems.

The contribution of this paper is threefold. The first con-
tribution is a non-recursive sphere decoding algorithm. In
contrast to the recursive sphere decoding algorithm introduced
in [5], and implemented on a dSpace in [16] and [17], such
an approach is ill-suited to an FPGA implementation, as
recursion on an FPGA is realized by synthesizing the sphere
decoder multiple times to account for the recursion depth,
leading to an unacceptable amount of resources. Thus, when
compared to the recursive sphere decoder, the proposed non-
recursive variant enables a resource-efficient implementation
on an FPGA. The second contribution is the implementation
of long-horizon FCS-MPC on a low-cost FPGA for a pre-
diction horizon of Np = 5 with a short sampling interval
of Ts = 25 µs. The implementation process, which thus far
has not been directly addressed in the literature, is described
in detail. The problem structure is exploited to allow for an
efficient implementation. The final contribution is a compre-
hensive experimental assessment of FCS-MPC for a three-level
neutral-point clamped (NPC) converter with an RL load with
different horizon lengths and for a wide range of switching
frequencies. The presented results verify that long horizons
do offer performance benefits for a typical converter system.

This paper is organized as follows. Section II describes
the dynamic model of the system and the control problem.
Section III briefly revises the reformulated ILS problem and
the notion of sphere decoding. Section IV presents a de-
tailed description of the non-recursive implementation of long-
horizon FCS-MPC on an FPGA. The computational burden
and resource usage is investigated. Experimental results with
long horizons are presented in Section VI, including a steady-
state comparison between horizons Np = 1, 3, and 5, as well
as a demonstration of the closed-loop response to step changes
in the current references when adopting the horizon Np = 5.
Conclusions are provided in Section VII.

II. CONTROLLER FORMULATION

As a case study, consider a neutral-point-clamped (NPC)
inverter with an RL load as shown in Fig. 1. The described im-
plementation of long-horizon FCS-MPC is sufficiently general
so that it is applicable also to other power electronic systems,
including grid-connected converters or electric machines.

A. Dynamic Model

To ensure that the model is linear, the potential of the neutral
point N (see Fig. 1) is fixed to zero. The dc-link voltage is
denoted by Vd. The converter can synthesise three voltage
levels (with respect to the neutral point N), which are given
by

vx =
Vd

2
ux, (1)

where x ∈ {a, b, c} denotes phase x and ux ∈ {−1, 0, 1} =
U represents the switch position of the particular phase. To
simplify the controller formulation, three-phase abc variables
are transformed to the αβ-orthogonal reference frame:

ξαβ = Kξabc, (2)

where

K =
2

3

[
1 1

2 − 1
2

0
√
3
2 −

√
3
2

]
. (3)

By taking the orthogonal reference frame currents iαβ(t) =[
iα(t) iβ(t)

]T
as the state variables and the three-phase

switch positions u(t) =
[
ua(t) ub(t) uc(t)

]T ∈ U =
U × U × U as the input (or manipulated) variables, the
continuous-time state-space representation of the system is
given by

d iαβ(t)

dt
= Fiαβ(t) +Gu(t). (4)

The state and input matrices are

F = −R

L
I2 and G =

Vd

2L
K, (5)

respectively, where I2 is the identity matrix with dimensions
2×2. By using the exact discretization [22], the discrete-time
state-space representation of (4) is given by1

i(k + 1) = Ai(k) +Bu(k), (6)

1The αβ-subscript has been dropped for convenience and unless stated
otherwise, all currents will be in the orthogonal αβ-reference frame.
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Fig. 1: Three-level NPC converter with an RL load.

ū1

ū2
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Fig. 2: Example of a lattice generated by V , the columns of which form the
basis for the lattice. The (transformed) unconstrained optimum is indicated by
the black solid circle and the lattice points (representing feasible solutions)
are depicted by the grey solid circles.

where

A = eFTs and B = −F−1(I2 −A)G, (7)

with eFTs being the matrix exponential of FTs and Ts the
sampling interval.

B. Cost Function and Optimization Problem

By using the state-space representation of (6), MPC predicts
the evolution of the sampled state vector i(k) over the pre-
diction horizon Np as a function of the manipulated variable
u(l), with l = k, k+1, . . . , k+Np−1. To this end, we define
the switching sequence as the sequence of switch positions
over the prediction horizon Np as

U(k) =
[
uT (k) uT (k + 1) · · · uT (k +Np − 1)

]T
,
(8)

where U(k) ∈ U = U × U × · · · × U = UNp .
The control objectives are captured by a cost (or objective)

function. In power electronics, the control objectives typically
include reference tracking and the minimization of the switch-
ing effort, which relates to the switching losses. The cost
function is chosen as:

J(i(k),U(k)) =

k+Np−1∑
l=k

‖ie(l + 1)‖22 + λu ‖∆u(l)‖22 , (9)

where ie(l+1) = iref (l+1)−i(l+1) represents the tracking
error between the reference iref and the predicted current. The
switching effort is represented by ∆u(l) = u(l) − u(l − 1).
The weighting factor λu > 0 adjusts the trade-off between the
tracking error and the switching losses.

Minimizing (9) over the switching sequence U(k), i.e.,2

Uopt(k) = arg min
U(k)

J (10a)

subject to (6) and U(k) ∈ U, (10b)

yields the optimal solution Uopt(k) (in other words, the
optimal switching sequence) that is predicted to achieve the

2Hereafter, the arguments of J are dropped for convenience.

optimal behavior (as defined by the cost function) of the
system. For short horizons, Uopt(k) can be found by enumer-
ating all of the possible solutions in U. Note the exponential
increase in the number of possible solutions: the set U has
33Np elements.

Since the optimal control problem in (10) is solved in an
open-loop manner, feedback is implemented by adopting the
receding horizon policy. This means that once the optimal
switching sequence Uopt(k) has been calculated, only the first
switching command uopt(k) is applied to the converter. The
remaining entries are discarded, and the optimization problem
is solved again at the next sampling instant with new state
measurements and references.

III. INTEGER LEAST-SQUARES PROGRAM

A. Integer Least-Squares Problem
The model of (6) can be included in the cost function (9).

After some mathematical manipulations [5], the cost function
is rewritten as

J = UT (k)HU(k) + 2ΘT (k)U(k) + θ(k) (11)

with

H = ΥTΥ+ λuS
TS (12)

Θ(k) = ΥT [Γi(k)− Y ref (k)]− λuS
TEu(k − 1) (13)

θ(k) = ‖Γi(k)− Y ref (k)‖22 + λu ‖Eu(k − 1)‖22 , (14)

where Y ref (k) is introduced as the reference current over the
prediction horizon

Y ref (k) =
[
iTref (k + 1) iTref (k + 2) · · · iTref (k +Np)

]T
.

(15)
The definition of the matrices Γ ∈ R2Np×2, Υ ∈ R2Np×3Np ,
E ∈ R3Np×3, and S ∈ R3Np×3Np can be found in the
Appendix.

The integer program in (10) can then be reformulated as an
ILS problem [5]:

Uopt(k) = arg min
U(k)

‖V U(k)− V Uunc(k)‖22 (16a)

subject to U(k) ∈ U, (16b)
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(a) An initial lattice point is chosen
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ū2

(b) The sphere is tightened

ū1

ū2
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(c) The sphere is tightened until only one
lattice point lies within the sphere

Fig. 3: Illustration of the sphere decoding principle in two dimensions.

where
Uunc(k) = −H−1Θ(k) ∈ R3Np (17)

is known as the unconstrained optimum. The latter is the opti-
mal solution if the integer constraints on U(k) are relaxed. The
lower-triangular generator V matrix results from a Cholesky
decomposition of the positive-definite matrix H−1,

V −1V −T = H−1 (18)

and generates a truncated lattice

Λ = {V U(k)|U(k) ∈ U} (19)

from all possible switching sequences. An example of a
lattice is shown in Fig. 2. According to (16), solving the ILS
problem amounts to finding the lattice point closest to the
unconstrained optimum (hence it is also known as the closest
vector problem).

B. Sphere Decoding

By adopting a technique from telecommunications, known
as sphere decoding, the ILS problem underlying long-horizon
FCS-MPC can be solved in a time-efficient manner [5]. The
idea behind sphere decoding is to consider possible solutions
U(k) in U that belong to a sphere with radius ρ, which is
centred at the transformed unconstrained optimum

Ūunc(k) = V Uunc(k), (20)

i.e., we impose ∥∥Ūunc(k)− V U(k)
∥∥
2
≤ ρ. (21)

By tightening the sphere systematically and excluding sub-
optimal solutions, the optimal solution Uopt(k) is found once
only a single lattice point lies within the sphere. An initial
solution is chosen based on either the Babai estimate [23] or
an educated guess [3]. The Babai estimate U bab(k) is found by
rounding the unconstrained optimum to the nearest (untrans-
formed) integer solution, i.e., U bab(k) = bUunc(k)e ∈ U.
The educated guess U ed(k) is based on the assumption that
the switching sequence computed at the previous time step is
similar to the new (and shifted) optimal switching sequence at
the current time step. Note that this makes the educated guess
ill-suited to transients, since the previous and new switching
sequences can look entirely different. Fig. 3 illustrates the
principle of sphere decoding.

0

1

2

3

4

5

6

Sel

M (1,:)

M (2,:)

M (3,:)

M (4,:)

M (5,:)

M (6,:)

M (7,:) ×

×

×

×

+
pi

z

Dot Product Unit

Fig. 4: Illustration of an efficient hardware implementation of the matrix-
vector multiplication with four multipliers.

Because the generator matrix V of (18) is lower-triangular,
the squared distance to a lattice point is given by

d′2(k) =

d2
1︷ ︸︸ ︷

(ūunc,1 − V(1,1)u1)
2 +

d2
2︷ ︸︸ ︷

(ūunc,2 − V(2,1)u1 − V(2,2)u2)
2

+ · · ·

+

d2
3Np︷ ︸︸ ︷

(ūunc,3Np
− V(3Np,1)u1 − · · · − V(3Np,3Np)u3Np

)2,
(22)

where for any matrix Ξ and vector ξ, Ξi,j and ξi indicate the
ijth and ith entries, respectively. When building the switching
sequence U(k) entry by entry, (22) shows that only one term
needs to be added to the squared distance. More specifically,
when adding the ith switch position ui, the term d2i is added
to the squared distance. This allows for a computationally
cheap method to determine whether the intermediate squared
distance d′2i (i.e., the squared terms up to ith switch position)
meets (21) or not. This inexpensive feature is exploited by
the recursive sphere decoding algorithm (SDA), which was
proposed in [5] (see Algorithm 1 therein).

IV. PRACTICAL IMPLEMENTATION OF THE CONTROLLER

A. Implementing Algorithms on an FPGA

Implementing the ILS calculations and sphere decoder
(which form the control algorithm) on an FPGA will require
a trade-off between the number of operations per clock cycle
(the execution speed) and amount of FPGA resources used.
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The algorithm must be designed such that the control algo-
rithm can execute within the chosen sampling interval, while
also being resource efficient in the sense that an increase in
the size of the algorithm results only in a modest increase in
the amount of FPGA resources used.

To illustrate typical design considerations for an algorithm,
consider a matrix-vector multiplication, p = Mz, with M
being a 7 × 4 matrix. The given matrix-vector multiplication
can be seen as 7 dot products, with each dot product containing
4 multiplications.3 Consider the following three design options
for the matrix-vector multiplication.

1) The first and computationally fastest option is to use
7×4 multipliers, which will be able to calculate the en-
tire matrix-vector multiplication in a single clock cycle.
However, increasing the dimensions of the matrix (and
therefore the algorithm size) will significantly increase
the resources required.

2) The second and lowest resource usage implementation
would be to use only a single multiplier for all of the
required multiplications. This approach would require
7× 4 clock cycles to calculate the vector-matrix multi-
plication. Increasing the dimension of the matrix would
rapidly increase the number of clock cycles required to
compute the matrix-vector multiplication.

3) The final and most balanced option is to use 4 multipli-
ers. This allows calculating a single dot product in one
clock cycle, and the matrix-vector multiplication would
thus require 7 clock cycles. The final implementation
option is a good compromise between resource usage
and computation speed; the required resources and clock
cycles scale well with an increase in problem size.

Fig. 4 illustrates how option 3 can be implemented in
hardware. At each clock cycle, the algorithm computes the
ith entry of the vector p, denoted pi, with i = 1, 2, . . . , 7..
The multiplexer selects the ith column of matrix M , denoted
by M (i,:), that is used by the so-called Dot Product Unit.

B. Unconstrained Optimum

The first step towards solving the ILS problem is to calculate
the transformed unconstrained optimum of (20), which is
based on (13) and (17).

First consider (13). Its second term simplifies to

Z := STEu(k − 1) =
[
uT (k − 1) 01×3(Np−1)

]T ∈ R3Np .
(23)

Note that Θ(k) is a column vector of dimension 3Np. Its jth
entry Θj is given by

Θj =Υ(1,j)(Γ(1,1)i1 + Γ(1,2)i2 − Yref,1) + · · ·
+Υ(2Np,j)(Γ(2Np,1)i1 + Γ(2Np,2)i2 − Yref,2Np

)− λuZj ,
(24)

where j = 1, 2, . . . , 3Np. To achieve a resource efficient
implementation, as mentioned in Section IV-A, only one entry

3In terms of resource usage, we will only consider the effect of multi-
plications (and not additions). Additions can be implemented using cheap
logic elements, while multiplications usually require embedded multipliers
on FPGAs.

Algorithm 1 Unconstrained optimum

1: function [Uunc, Ūunc] = UNCOPT(i)
2: for j = 1 to 3Np do
3: Θj = Υ(1,j)(Γ(1,1)i1 + Γ(1,2)i2 − Yref,1) + · · ·
4: . Eq. (24)
5: end for
6: for q = 1 to 2 do
7: if q = 1 then
8: M = −H−1

9: else if q = 2 then
10: M = −V H−1

11: end if
12: for j = 1 to 3Np do
13: uj = M(j,1)Θ1 + · · ·+M(j,3Np)Θ3Np

14: . Eqs. (25) and (26)
15: end for
16: if q = 1 then
17: Uunc = U
18: else if q = 2 then
19: Ūunc = U
20: end if
21: end for
22: end function

Algorithm 2 Initial radius

1: function ρ2ini = INIRAD(Ūunc, Ūbab, Ūed)
2: for q = 1 to 2 do
3: ρ2 = 0
4: if q = 1 then
5: U ini = U bab

6: else if q = 2 then
7: U ini = U ed

8: end if
9: for j = 1 to 3Np do

10: ρ2 = (ūunc,j − V(j,1)uini,1 − · · · )2 + ρ2

11: . Eq. (29)
12: end for
13: if q = 1 then
14: ρ2bab = ρ2

15: else if q = 2 then
16: ρ2ed = ρ2

17: end if
18: end for
19: if ρ2ed ≤ ρ2bab then
20: ρ2ini = ρ2ed
21: else
22: ρ2ini = ρ2bab
23: end if
24: end function

of Θ(k) is calculated per clock cycle. The same logic circuit
is reused repeatedly and the coefficients are changed at every
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clock cycle.4

Similarly, the jth entry uunc,j of Uunc(k) in (17) is given
by

uunc,j = −H−1
(j,1)Θ1−H−1

(j,2)Θ2−· · ·−H−1
(j,3Np)

Θ3Np
. (25)

The jth entry ūunc,j of Ūunc(k) in (20) can be calculated as5

ūunc,j = −(V H−1)(j,1)Θ1 − · · · − (V H−1)(j,3Np)
Θ3Np .

(26)
As (25) and (26) have the same algebraic structure and only
differ regarding the coefficients, the hardware multipliers and
adders used for (25) can be reused for (26). The calculation
of the unconstrained optimum in the FPGA is shown in
Algorithm 1. Note that the Babai estimate is calculated at the
same time as the entries of the unconstrained optimum are
calculated.

C. Initial Radius

Both the Babai estimate U bab and the educated guess U ed

are considered when determining the initial radius ρini of
the sphere (see Section III-B for details on the two initial
solutions). Defining the radii

ρbab(k) =
∥∥Ūunc(k)− V U bab(k)

∥∥
2

and

ρed(k) =
∥∥Ūunc(k)− V U ed(k)

∥∥
2
,

(27)

the initial radius is taken as the minimum of the two corre-
sponding radii, i.e.,

ρini(k) = min{ρbab(k), ρed(k)}. (28)

During steady-state operation, the educated guess proves to be
a good initial solution, whereas the Babai estimate is better
during transients.

It can be seen from (22) that the (squared) radius is the sum
of the squared terms from j = 1 to 3Np, i.e.,

ρ2 =

3Np∑
j=1

(ūunc,j−V(j,1)uini,1−· · ·−V(j,3Np)uini,3Np
)2, (29)

where U ini ∈ {U bab,U ed}. By following the same principle
of reusing multipliers, only one squared term is calculated per
clock cycle, as stated in Algorithm 2.

D. Non-Recursive Sphere Decoding Algorithm

The SDA proposed in [5] is very efficient, albeit recursive.
In high-level programming languages, such as C/C++, the
SDA can be implemented with the help of a stack. Implement-
ing recursion in VHDL, however, requires the sphere decoder
to be synthesized 3Np-times. This would use an unacceptable
amount of resources, and thus recursion should be avoided.

An alternative SDA was proposed in [15], which is shown
in Algorithm 3 and explained hereafter. Lines 2–5 initialize

4Note that (24) is the only equation that will require modification if the
system is changed (assuming the system has three phases). All the equations
hereafter remain the same regardless of the application, for instance when an
electric machine or a grid-connected converter is considered instead of an RL
load.

5If the Babai estimate is not used, only the transformed unconstrained
optimum Ūunc(k) is required.

Algorithm 3 Non-Recursive Sphere Decoder

1: function Uopt = SPHDEC(ρ2, Ūunc)
2: j = 1
3: optimal_solution_found = false
4: set each element in b to − 1
5: set each element in d2 to 0
6: while optimal_solution_found = false do
7: uj = bj
8: d′2 = (ūunc,j − V (j,1:j)U1:j)

2 + d2j . Eq. (22)
9: if d′2 ≤ ρ2 then . Eq. (21)

10: if j = 3Np then
11: Uopt = U
12: ρ2 = d′2

13: bj ++
14: else
15: j ++
16: d2j = d′2

17: end if
18: else
19: bj ++
20: end if
21: for q = 3Np downto 2 do
22: if bq > 1 then
23: bq = −1
24: j = q − 1
25: bj ++
26: end if
27: end for
28: if b1 > 1 then
29: optimal_solution_found = true
30: end if
31: end while
32: end function

uj = −1 uj = 0 uj = 1level pointer j

branch pointer bj

explored
branches

unexplored
branch

Fig. 5: Illustration of a level in a search tree being explored. Nodes that
are shaded have been visited by the algorithm, whereas unshaded nodes are
unvisited.

the algorithm. The SDA can be visualised traversing a search
tree with depth 3Np. Fig. 5, which will be used to explain the
algorithm, illustrates an extract of a level in a search tree. The
algorithm assembles the switching sequence U(k) entry by
entry, where the jth level of the search tree corresponds to the
entry uj . The admissible single-phase switch positions U =
{−1, 0, 1} are considered at each level and are represented
by the branches of the search tree. The algorithm uses two
different pointers to keep track of the explored branches. The
first pointer is the level pointer, denoted by j = 1, 2, . . . , 3Np,



7

b3 = 1

b2 = 1

b1 = −1

j = 3

u1 = −1

u1 = 0

u1 = 1

(a) The sphere decoder is currently at a leaf node, where the
switching sequence is U(k) = [−1 1 1]T . Once the evaluation
has been finished, the bottom branch pointer is incremented to
b3 = 2 (/∈ U ) and backtracking starts.

b3 = �1

b2 = �1

b1 = 0
j = 1

u1 = �1

u1 = 0

u1 = 1

(b) The bottom branch pointer is now set back to b3 = −1 and
the current level is decreased to j = 2. Next, the branch pointer
at the second level is incremented to b2 = 2 (/∈ U ). The sphere
decoder sets b2 = −1 and backtracks to the top level, where the
branch pointer is incremented to b1 = 0. Backtracking is finished
and the new (partial) switching sequence is U(k) = [0].

Fig. 6: Illustration of backtracking for the non-recursive sphere decoder. The black lines represent the branches of the search tree that are currently explored.

which refers to the level of the search tree that is currently
explored (i.e., the jth entry of U(k)). The second pointer is
the branch pointer, denoted by bj = −1, 0, 1, which refers to
the next branch to be explored at level j of the search tree
(i.e., the switch position to be evaluated at the jth entry of
U(k); see line 7). There are 3Np such pointers stored in the
array b.

When a branch is explored, a node is visited where the
(intermediate) squared radius d′2 is calculated with (22) in
line 8 (shaded nodes in Fig. 5 represent the nodes where d′2

has been calculated). If d′2 exceeds the radius of the sphere
(the condition in line 9 is not satisfied), the sub branches
attached to the particular node are, by definition, suboptimal
and can be pruned. After pruning the branch from the search
tree, thereby reducing the number of possible solutions that
have to be considered, the branch pointer is updated to refer
to the next (adjacent) branch (line 19). If there is no adjacent
branch left on the particular node to be explored, the sphere
decoder backtracks (i.e., moves up one level in the search tree).
The backtracking procedure will be explained later. In the case
that the solution that is being built is still contained within the
sphere (the condition in line 9 is satisfied), we increment the
level pointer and move further down the tree (line 15). The
squared terms of the ILS problem in line 8 are stored in the
array d2, where d2j in line 16 is the accumulated squared term
up to (not including) the jth level.

Once a bottom node has been reached (implying the con-
dition in line 10 has been satisfied), known as a leaf node,
a full switching sequence has been assembled. At the leaf
node, the incumbent optimal solution is updated and the
sphere is tightened (lines 11 and 12). The branch pointer is
also incremented (line 13), since the next admissible switch
position on the leaf node will be investigated. Note that a
certificate for optimality (i.e., the incumbent optimal solution
is indeed optimal) is only obtained once all the possible
branches have been investigated. This happens if the top-
level branch pointer exceeds b1 > 1 in line 28. The sphere
decoder then terminates, and a certificate for optimality has
been obtained.

Backtracking is achieved by evaluating 3Np−1 if-statements
(lines 21–26). Backtracking works as follows: if a branch
pointer exceeds 1, which means that the switch position does
not belong to the single-phase set U , the branch pointer is set
equal to −1. The current level is decreased by one and the next
branch of the node is evaluated. This procedure is done from

bottom to top. Fig. 6 illustrates and explains the backtracking
procedure.

All of the lines in Algorithm 3 are executed within one
clock cycle. This means that for each clock cycle one node of
the search tree is visited.

V. COMPUTATIONAL BURDEN AND FPGA RESOURCE
USAGE

The controller was directly written in VHDL and imple-
mented on an Altera-Intel Cyclone V 5CSEMA5F31C6N
FPGA.6 This low-cost FPGA has 32070 adaptive logic mod-
ules (ALMs) and 87 variable-precision digital signal process-
ing (DSP) blocks. Following a timing analysis7, the lower
bound and upper bound on the maximum clock frequency,
at which the FPGA can operate reliably, is 16.1MHz and
31.1MHz, respectively. A conservative approach is taken and
the clock frequency is set to 15MHz.

A. Off-Line Calculations

All matrices are calculated in advance and stored in the
FPGA in arrays. These include the prediction matrices Γ
and Υ. The Cholesky decomposition of H is calculated via
MATLAB in order to obtain the generator matrix V . The
multiplication of H−1 and V is also done offline. Note
that the matrices S and E are not required for practical
implementation (see (24)). The reference currents over one
fundamental period are also calculated off-line and stored in
arrays.

It is important to note that when the weighting factor λu

is changed, H and V have to be recalculated. This poses a
problem as the switching frequency, by tuning λu, cannot be
adjusted online without recalculating the required matrices.
When a reference change is given, the switching frequency
could change to an undesired frequency. This can be overcome
in two possible ways. For multiple λu values, multiple H and
V matrices can be calculated offline and stored on the FPGA
in lookup tables. Another approach would be to calculate the
matrices online. It is important to note that it is not necessary
to calculate the required matrices within one sampling interval

6Note that the FPGA includes an ARM Cortex processor, which was not
utilized for the implementation of the controller.

7The timing analysis tool does an analysis that is subjected to a variety
of conditions. This includes temperature, voltage, and manufacturing process
conditions.
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Fig. 7: Histogram of the number of clock cycles used by the non-recursive
sphere decoder for a horizon Np = 5.
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Fig. 8: Resource usage of the controller implementation. The FPGA has a
total of 87 DSP blocks and 32070 ALMs.

before the control algorithm is executed; multiple sampling
intervals can be used to calculate the matrices. The new
matrices can be calculated while running the controller by
either utilizing the ARM core (if available) or a low-resource
implementation on the FPGA itself. The current matrices, from
the previous weighting factor, are used by the controller until
the new matrices are available.

B. On-line calculations

The number of clock cycles available for on-line calcula-
tions is given by Tsfclk, where fclk is the clock frequency of
the control algorithm. To guarantee optimality of the solution,
the sphere decoder must finalize its calculations within the
allocated number of clock cycles.

1) Pre-processing calculations: Irrespective of the sam-
pling interval and clock frequency, calculations for the un-
constrained optimum and initial radius are limited to one term
per clock cycle (see Sections IV-B and IV-C).

Five clock cycles are used to read in the sampled αβ-
currents. This includes processing and converting the ADC
value, applying the Clarke transformation, and compensating
for the measurement and calculation delays (see Section 4.2.8
in [3] for more details). A total of 5 × 3Np clock cycles is
required to calculate the unconstrained optimum Uunc(k), the
transformed unconstrained solution Ūunc(k), and the squared
radii ρ2ed(k) and ρ2bab(k). One clock cycle is used to determine
the initial radius ρ2ini(k), and another cycle is used to send
Ūunc(k) and ρ2ini(k) to the SDA. In total, 7+ 5× 3Np clock
cycles are required before the sphere decoder starts.

2) Sphere Decoding: The remaining clock cycles after the
pre-processing calculations are available for sphere decoding.
To evaluate the number of clock cycles required for sphere
decoding, the sphere decoder that is implemented on the FPGA
is given typical unconstrained optima and initial radii of the
ILS problem during steady-state conditions. The sampling in-
terval is set to Ts = 25 µs to demonstrate that the optimization
problem can be solved within such a short time.

Fig. 7 shows the histogram of the number of clock cycles
required for sphere decoding within one fundamental period
during steady-state operation. The data are captured from the
FPGA for the horizon Np = 5. In 89.5% of the occur-
rences, the sphere decoder requires only 45 clock cycles to
issue a certificate of optimality. This translates to only 3 µs.

The calculations during the first 82 clock cycles (for pre-
processing calculations) require 5.4 µs. Thus, in 89.5% of
the occurrences, the controller requires only 8.4 µs to find the
optimal switch positions — well below 25 µs. The maximum
number of clock cycles the sphere decoder required to solve
the optimization problem was 120 cycles. This translates to
13.4 µs in total (including the pre-processing calculations),
which is still well within the chosen sampling interval.

C. Resource Usage

The resource usage of the FPGA for prediction horizons
Np = 1 to 5 is shown in Fig. 8. Increasing the horizon leads
to a linear increase in resource usage. Fixed-point arithmetic
is used due to its speed advantage and low resource usage
compared to floating-point arithmetic. All of the variables are
of signed-fixed-point type, and the bit assignment is shown
in Table I (note that the bit assignment for matrices and
vectors refers to each entry). The variable sizing is done
according to MATLAB simulations with various weighting
factors λu. The integer part is chosen in order to avoid
truncation, which is important when transient conditions are
of concern. The fractional part is chosen such that sufficient
numerical accuracy is achieved. Extra bits are added to both
the integer and fractional parts for additional headroom. The
limiting factor for the prediction horizon was the number of
available DSP blocks, as 100% are used when Np = 5, while
only 21% of the ALMs are used for the same case.

Finally, it is worthwhile to mention that the Cyclone 10
series has FPGAs that offer up to 288 DSP blocks, i.e., more
than three times the DSP blocks of the Cyclone V used in
this work. Since, according to Fig. 8, the DSP block usage
increases linearly with the prediction horizon length, it can
be deduced that a horizon of at least Np = 15 could be
implemented on the largest Cyclone 10 FPGA.

VI. EXPERIMENTAL RESULTS

A block diagram of the experimental setup is shown in
Fig. 9. The flow of the control algorithm, which is clocked
at 15MHz, is illustrated.

The experimental setup consists of the previously mentioned
Cyclone V 5CSEMA5F31C6N FPGA, an Infineon F3L030E07
evaluation board with an F3L75R07W2E3 three-level IGBT
module, an RL load, two Allegro ACS714 Hall effect current
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TABLE I: Bit assignment for signed fixed-point variables

Variable Integer/fractional bits

x 5/20

Γ, Υ, H , V ,
6/17

Θ, Uunc, Ūunc

ρ2, d′2 11/22

TABLE II: System parameters

Parameter Description Value

Vd Bus voltage 100V

R Load resistor 3.5Ω

L Load inductor 2mH

Ts Sampling interval 100 µs
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Fig. 9: Block diagram of the experimental setup.

sensors (CS) and a Texas Instruments ADS7864 ADC. The
system parameters are shown in Table II. Note that the
analysis of computational burden of the sphere decoder in Sec-
tion V-B2 was done at a sampling interval of Ts = 25 µs, but
for the experimental results a sampling interval of Ts = 100 µs
is used. This it due to the observation that longer sampling
intervals are better suited to low switching frequencies [6]. The
bus voltage is realized by two power supplies; one across each
of the top and bottom capacitors. The power supplies ensure
that the neutral point potential has minimum fluctuations,
which were assumed to be zero in Section II-A.

A. Steady-State Operation

In Fig. 10, the current total harmonic distortion (THD) for
the switching frequencies fsw = 125Hz to 450Hz (which
are widely used in medium-voltage applications) and for
prediction horizons Np = 1, 3, and 5 are shown. Solid circles
represent measured values. Appropriate trend lines are plotted.
In total, more than 500 tests were performed. Unless otherwise
stated, all experiments were done with a sinusoidal reference
current of 8A peak and a frequency of 50Hz. Note that the
THD calculations include all harmonics and not just those
at integer multiples of the fundamental component. It can be
seen that, in general, longer horizons tend to reduce the current
THD. The advantage that longer horizons have over Np = 1 is
pronounced between fsw = 225Hz and 400Hz. Concerning
the long horizons, Np = 5 outperforms Np = 3 noticeably
at some frequencies, such as between 125Hz and 175Hz and
also between 250Hz and 300Hz. At a switching frequency of
250Hz, the current THD is decreased from 8.61% to 8.27%
with a horizon of Np = 3 instead of Np = 1. The current

THD is further deceased to 7.94% if a horizon of Np = 5 is
used.

Even though these experimental results might indicate that
longer horizons do not always reduce the current distortion for
a given switching frequency, the reader is reminded that only
the weighting factor λu was adjusted to obtain the desired
switching frequency. It is shown in [6] that the sampling
interval also influences the system performance. This is due
the fact that Ts, along with Np, determines the length of
the horizon in time, NpTs. With an appropriate selection of
both Ts and λu, longer horizons should always offer improved
performance; see Fig. 11 in [6] for Monte Carlo simulations.
Moreover, the advantages of long horizons are much more
pronounced for higher-order systems; see [24] for a quasi-Z-
source inverter and [7] for a three-level inverter with an LC
filter and an induction machine.

The phase currents, switch positions and current spectra for
Np = 5 at fsw = 250Hz with a 9A peak reference are
shown in Fig. 11. Due to the non-periodic switch positions,
the current spectra exhibit noticeable inter-harmonics, see
Fig. 11(c). However, there is some form of periodicity and the
harmonic energy is mostly concentrated at integer multiples of
the fundamental.

B. Transient Response
A major benefit of direct MPC is its fast response during

transients. Solving the optimization problem during transients
requires a greater computational effort than in steady-state
operation because the initial radius of the sphere tends to be
larger, i.e., it includes a higher number of nodes (candidate
solutions). Therefore, practical evaluation is conducted with a
horizon of Np = 5, as this horizon has the highest computa-
tional burden of all the implemented horizons. If the optimal
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Fig. 10: Experimental results of the current THD vs the switching frequency for the horizons Np = 1, 3, and 5.
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Fig. 11: Experimental results during steady-state operation with the horizon Np = 5 and the switching frequency fsw = 250Hz. The switch positions of
phase a are at the top, and phases b and c are shown below.
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Fig. 12: Experimental phase currents and switch positions.

solution is not found during a transient and a suboptimal
switch position was applied, the fast response of MPC could
be inhibited.

In Fig. 12, the current is stepped from 8A to 4A, then to
10A, then to 0A and then back to 8A. The corresponding
switch positions are shown in Fig. 12(b). The reference step
is imposed without prior knowledge and thus cannot be
anticipated by the controller. The negative reference steps
have a settling time of approximately 0.2ms and 0.3ms,
respectively, while both the positive steps have a settling time
of approximately 0.5ms. The step-down cases are faster since

the voltage margin across the inductor is larger due to the
current through the load.

The maximum number of clock cycles required to find
the optimal solution during the transients is 1030 out of the
available 1500 clock cycles. This includes the calculation
of the unconstrained optimum and initial radii. For more
aggressive reference steps to larger currents or if shorter
sampling intervals were used, there is no guarantee that the
optimal solution would be found within the sampling interval.
One could then resort to suboptimal solutions, as proposed in
[25].
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Recently, efforts have been made to alleviate the com-
putational burden during transients [17], [26]. The idea is
to project the unconstrained optimum, which is located far
outside the convex hull of the lattice during transients and
results in a large initial radius, onto the convex hull of the
lattice. The projected point on the lattice then becomes the
new unconstrained optimum. This leads to a much smaller
initial radius and thus to a significantly reduced computation
time required to solve the sphere decoding problem.

VII. CONCLUSIONS

In this paper, it was shown that long-horizon FCS-MPC
can be implemented on a low-cost FPGA. To this end, a
non-recursive variant of the sphere decoding algorithm, which
avoids the recursion with the help of two pointer arrays, was
developed. By reusing multipliers and exploiting the problem
structure at hand, a resource-efficient implementation was
achieved. More specifically, for a prediction horizon of five
steps, 87 DSP blocks and a maximum execution time of
13.4 µs was required to solve the optimization problem during
steady-state operation. A sampling interval of 25 µs could thus
be easily achieved.

It was verified that sphere decoding is highly efficient at
solving the complex optimization problem underlying long-
horizon FCS-MPC in real time. Given the more powerful
FPGA platform’s that exist today, it is expected that horizons
up to Np = 15 can be achieved in real time with a short
sampling interval of Ts = 25 µs.

Finally, it was experimentally verified that long horizons
offer a performance benefit. The practical implementation
of FCS-MPC with long horizons for more complex systems
remains a promising topic for future research.

APPENDIX

The prediction and auxiliary matrices are defined as

Γ =


A
A2

...
ANp

 , Υ =


B 02×3 · · · 02×3

AB B · · · 02×3

...
...

. . .
...

ANp−1B ANp−2B · · · B

 ,

S =


I3 03×3 · · · 03×3

−I3 I3 · · · 03×3

03×3 −I3 · · · 03×3

...
...

. . .
...

03×3 03×3 · · · I3

 and E =


I3

03×3

03×3

...
03×3

 ,

where 0n×m is an n×m zero matrix.
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