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Abstract

The stochastic discrete time filter also known as the Bayesian or optimal filter has a wide

range of applications in modern technology. In general, the filter recursion is intractable

and therefore in practice, it has to be approximated by some numerical method. Typically,

the accuracy of the approximation can be increased only by allowing the evaluation of the

approximation to become computationally more expensive. Moreover, in some applications

the filter is run for an indefinite time. In such a case it is desired that with a fixed com-

putational cost the error of the approximation is guaranteed to remain below some level

and that this level can be made as small as desired by letting the computational cost of the

approximating algorithm increase. If this can be done, then the approximation is said to be

uniformly convergent.

It has been pointed out by several authors that the ability to approximate the filter in

a uniformly convergent manner is closely related to the stability of the exact filter with

respect to its initial conditions. This relation is manifested in the literature by results stating

that under some assumptions a stable filter admits uniformly convergent approximations.

This thesis addresses both of the above mentioned problems, the stability of the discrete

time filter with respect to its initial conditions and the uniform convergence of certain filter

approximations.

The main result regarding the stability establishes easily verifiable sufficient conditions

for the filter stability. The stability in this case means that the total variation distance

between two filters with different initial distributions converges to zero almost surely. Also

rates for the convergence are provided by the analysis. Similarly, the main result regarding

the uniform convergence establishes sufficient conditions for the uniform convergence of

certain filter approximation algorithms. The uniform convergence is proved in the mean

sense, not almost surely. Although the stability of the filter is not shown to be one of the

sufficient conditions for the uniform convergence, it is shown that similar conditions are

sufficient for both, the stability and the uniform convergence.
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ii ABSTRACT

Perhaps the most important conclusion of the stability theorem is that under some as-

sumptions the filter is shown to be stable provided that the tails of the observation noise

distributions are sufficiently light compared to the tails of the signal noise distributions. In

particular, the signal is not required to be ergodic or mixing and the state space is not re-

quired to be compact. Moreover, it is not assumed in general that the observation noise

enters the filter framework with a sufficiently small coefficient. This is assumed only if the

observation noise and the signal noise distributions have equally light tails.

The uniform convergence is proved for a general class of filter approximation methods

and in particular, it is shown that the conditions are satisfied by a certain auxiliary particle

filter type algorithm and by a certain sampling/importance resampling filter type sequential

Monte Carlo algorithm. These algorithms are assumed to employ either the multinomial

resampling scheme or the tree based branching algorithm. The uniform convergence is

obtained with respect to the sample size but because the computational cost of these filter

approximation algorithms is determined by the sample size, the convergence is also uniform

with respect to the computational cost. Moreover, the uniform convergence results are

illustrated by some computer simulations.
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Chapter 1

Introduction

Let S be a locally compact, second countable topological space and S the associated Borelσ-

field. It is assumed that there is a probability measure P0 on S and transition probabilities

Ki : S ×S → [0,1], i ∈ N, such that for all x ∈ S, Ki(x , · ) is a probability measure on S
and for all A∈ S , Ki( · ,A) is measurable. We consider the product space

(ΩX ,FX )¬

 

∞
∏

i=0

Si ,

∞
⊗

i=0

Si

!

,

where (Si ,Si)¬ (S,S ), i ≥ 0. Let PX denote the unique probability measure on the product

σ-field FX satisfying

PX (A) =

∫

A0

∫

A1

· · ·
∫

An

Kn(xn−1, dxn) · · ·K1(x0, dx1)P0(dx0)

for all rectangles A=
∏∞

i=0
Ai , such that Ai ∈ S , i > 0, and Ai = S, i > n ∈ N. The existence

and uniqueness of this probability measure is an elementary result for which the proof can

be found e.g. in [53, Corollary 2, page 165]. Thus we have constructed a probability space

(ΩX ,FX ,PX ).

Define X ¬ (X i)i≥0 ¬ (X0, X1, . . .), where X i : ΩX → S, i ∈ Z+ ¬ N∪ {0} is the projection

of ΩX to the ith coordinate space, i.e., for all ω = (ω1,ω2, . . . ) ∈ ΩX , one has X i(ω) =

ωi . The resulting stochastic process X is called the signal process. It is observed that X is

Markovian and for all A ∈ S and i > 0

P(X i ∈ A | X i−1) = Ki(X i−1,A),

1



2 CHAPTER 1. INTRODUCTION

for which the proof can be found, e.g. in [53, Proposition V.2.1.].

We also consider another probability space (ΩV ,FV ,PV ) such that ΩV ¬ R
∞, FV ¬

B(R∞), and PV ¬
∏∞

i=1
PVi

. Above, B(R∞) denotes the Borel field in R∞ = R ×R × · · ·
generated by the Euclidean topology and PVi

, i > 0 is a probability measure on the Borel

field B(Rdm) in Rdm , where dm ∈ N. For the existence and uniqueness of PV , see e.g. [53,

Proposition V.1.2.]. We define a stochastic process Y ¬ (Yi)i>0 ¬ (Y1, Y2, . . .) such that for

all i > 0

Yi ¬ hi(X i) + Vi , (1.1)

where hi : S → Rdm is measurable and Vi : ΩV → Rdm is the projection of ΩV to the ith

coordinate space Rdm . The processes Y and V ¬ (Vi)i>0 are referred to as the observation

process and the observation noise process, respectively.

Let (Ω̃, F̃ , P̃) be a third probability space which for the moment is left unspecified. De-

fine

(Ω, F , P) ¬ (ΩX ×ΩV × Ω̃, FX ⊗FV ⊗ F̃ , PX ×PV × P̃).

Throughout the remainder of this work, the signal process X , the observation process Y and

the observation noise process V defined above are interpreted as their natural extensions

on the product space Ω without separate notation. For example, the natural extension

X ∗
i

: ΩX × ΩV × Ω̃ → S of X i : ΩX → S is defined for all ω = (ωX ,ωV , ω̃) ∈ ΩX × ΩV × Ω̃
as X ∗

i
(ω) = X i(ωX ). For all i ∈ Z+, we let Yi ⊂ F denote the σ-field generated by the

observations Y1, Y2, . . . , Yi and in particular, Y0 = {;,Ω}. Because S and Rdm are complete

and separable, there exists for all i ∈ Z+ a regular conditional distribution πi such that

∫

ϕ dπi = E

�

ϕ(X i)
�

� Yi

�

,

for all bounded and measurable functions ϕ : S→ R. For the proof, see e.g. [64, Theorem

3, page 224 and Corollary, page 228]. The conditional distribution πi is referred to as the

filtering distribution and the sequence π ¬ (πi)i≥0 is referred to as the filter process or more

shortly the filter.

In practice, the filtering problem arises when there is an unknown quantity which is to be

estimated based on a set of observations that are obtained through some noisy observation

procedure. Classical examples of such applications are for instance the tracking of aircraft

using radar observations or the positioning of mobile devices using the Global Positioning

System. In this case, the unknown quantity is modelled by a stochastic process X and the

observations corrupted by a random noise are modelled by a stochastic process Y . Both of
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these processes are assumed to be of the form defined above. Because of the interpretation

that πi is the conditional distribution of an unobserved random variable X i given the set of

observations Y1, Y2 . . . , Yi , the filter π is also known as the Bayesian filter and πi is called the

Bayesian posterior distribution. Roughly speaking, πi can be considered as a representation

of all the knowledge of X i given the information provided by the observations Y1, Y2, . . . , Yi .

It should be noted that in practice, one is typically not interested in πi itself but some point

estimates of X i or some other statistics. Such quantities can be computed or approximated

once the distribution πi is available and therefore we find ourselves ultimately interested in

computing the filtering distribution πi .

According to the definition, X is Markovian and therefore the filter process π has a

recursive representation

πi =Qi(πi−1), π0 = P0 (1.2)

where the random mapping Qi will be specified later in Section 2.1. From the practical point

of view, the recursive formulation is appealing, because in order to compute πi, only Yi and

πi−1 need to be stored into the memory of the computer instead of the whole observation

sequence Y1, Y2, . . . , Yi , which would inevitably lead to unbounded memory consumption.

In general, however, there is no guarantee that πi−1 can be stored in finite memory or that

the mapping Qi can be evaluated. Therefore in practice, Qi is approximated by Qθ
i

such

that the evaluation of Qθ
i

is tractable and the outcome can be stored in a finite memory.

Here θ ∈ (0,∞) is a parameter of the approximation such that a larger value of θ implies

more accurate approximation but also in practice a higher computational cost of evaluating

the approximation. This approximation can be deterministic in the sense that a certain

realisation of the observations Y1, Y2, . . . , Yi always produces the same outcome, or it can be

random. In order to incorporate this randomness into the analysis, the probability space

(Ω̃, F̃ , P̃) was introduced earlier. Similarly, it is observed that the randomness of the signal

is represented by the probability space (ΩX ,FX ,PX ) and the randomness of the observation

noise is represented by the probability space (ΩV ,FV ,PV ).

Obviously, the approximate mapping Qθ
i

must satisfy some criteria before it can be pro-

posed to be used for approximating the intractable filter recursion, or before it can even be

justly said to produce an approximation of the filter. One justification is to show that for all

i > 0,

lim
θ→∞

d
�

Qi ◦Qi−1 ◦ · · · ◦Q1(π0), Qθ
i
◦Qθ

i−1
◦ · · · ◦Qθ

1
(π0)

�

= 0, P-a.s. (1.3)

where d is a distance defined for probability measures. If d is finite, then according to the
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dominated convergence theorem, (1.3) also implies the convergence in the mean sense, i.e.

lim
θ→∞

E

�

d
�

Qi ◦Qi−1 ◦ · · · ◦Q1(π0), Qθ
i
◦Qθ

i−1
◦ · · · ◦Qθ

1
(π0)

��

= 0.

In this case, the approximation is said to converge. From the practical point of view the

convergence implies that on a finite time interval, the error of the approximation can be

made as small as desired by letting the computational cost of evaluating the approximation

increase.

In many cases, the filter will be run for an indefinite time and therefore a stronger form

of convergence, namely uniform convergence, is desired. By this we mean that

lim
θ→∞

sup
i>0

d
�

Qi ◦Qi−1 ◦ · · · ◦Q1(π0), Qθ
i
◦Qθ

i−1
◦ · · · ◦Qθ

1
(π0)

�

= 0, P-a.s.,

and the uniform convergence in the mean sense is defined analogously. The practical in-

terpretation of the uniform convergence is that the error of the approximation with a fixed

computational cost is guaranteed to remain below some level and that this level can be

made as small as desired by letting the computational cost of evaluating the approximation

increase.

It has been observed by several authors that the ability to approximate the filter in a

uniformly convergent manner is closely related to the stability properties of the exact filter

with respect to its initial conditions. This relation is manifested by results stating that under

some conditions a stable filter admits uniformly convergent approximations. Therefore the

stability of the filter plays an important role in the analysis of the uniform convergence of

various filter approximation methods. The filter is said to be stable if for all probability

measures π̄0 defined on S one has

lim
i→∞

d
�

Qi ◦Qi−1 ◦ · · · ◦Q1(π0), Qi ◦Qi−1 ◦ · · · ◦Q1(π̄0)
�

= 0, P-a.s.

There is also another motivation for the study of stability. In some applications, it may be

the case that the signal is modelled relatively accurately by the transition probabilities Ki

but the initial distribution π0 of the signal is unknown and therefore an erroneous initial

distribution π̄0 is used instead. In the case of a stable filter, the effect of the incorrect initial-

isation will eventually disappear and therefore the filter with incorrect initial distribution is

guaranteed to perform well in the long run. Considerations regarding the modelling errors

are of course not restricted to the choice of initial distribution. In practice, one also makes

errors when specifying the transition probabilities Ki , measurement functions hi , and the

measurement noise distributions. Such considerations are, however, left beyond the scope
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of this thesis.

In this thesis, the focus will be on the stability of the discrete time filter with respect to its

initial conditions and on the uniform convergence of certain filter approximation methods.

1.1 Literature review

The theory of the discrete time filter and its numerical approximations is inherently related

to probability theory, which is a combination of real analysis and measure theory. Many

elementary results and details regarding these branches of mathematics have been excluded

from this work but they can be found e.g. in [7, 61, 29, 43, 33] regarding real analysis and

measure theory and in [64, 53, 57, 9, 69] regarding general probability theory. Certainly

other excellent references exist as well but the ones listed above in particular have been

found useful by the author in the course of writing this thesis. Let us then review in more

detail the existing literature regarding filter stability and the uniform convergence of filter

approximations and point out the references that are most relevant to this work.

Although the computation of π in general is intractable, there are cases for which π

can be computed exactly. Perhaps the best-known example of such a situation is the linear-

Gaussian case, where X0 is assumed to be a normally distributed random variable with a

known mean and a known covariance, and for all i > 0, X i and Yi are assumed to be linear

functions of X i−1 and X i , respectively, with additive Gaussian noise with a known mean and

a known covariance. In this case, πi , i > 0 can be shown to be a normal distribution with

a mean and a covariance that can be computed exactly using the well known Kalman filter

recursion [see e.g. 40, 2, 38, 49, 41]. Because of the tractability of the linear-Gaussian

case the first filter approximation methods were based on linearisation such as the extended

Kalman filter (EKF) [see e.g.‚ 2] or linearisation and the use of Gaussian mixtures [1]. As

a result of the increased computational power of computers a novel approach to filter ap-

proximation was introduced in [32] by Gordon, Salmond, and Smith. This method was

called the bootstrap filter as it was essentially an application of the weighted bootstrap prin-

ciple described in [65]. Earlier, the weighted bootstrap principle was referred to as the

sampling/importance resampling (SIR) algorithm in [62] and therefore the bootstrap filter

has also become known as the SIR filter [see e.g., 13, 58].

Ever since the introduction of the bootstrap filter, several improvements have been pro-

posed regarding the choice of the sampling or the importance distributions [68, 28], the

resampling scheme [15, 42, 48, 13], or some more innovative improvements such as the

addition of Markov chain Monte Carlo (MCMC) steps [8], bridging density approach [31]

or application of kernel density estimation methods [52, 37]. More comprehensive reviews
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on the existing methods can be found in [59, 27, 3]. Because the methods mentioned

above are all based on the simulation of random variables, the methods have become com-

monly known as sequential Monte Carlo (SMC) methods. The Monte Carlo method itself is

a random variable simulation based method for approximating integrals and dates back to

1940’s. The theory of the Monte Carlo method is extensive and more details can be found

e.g. in [34, 60, 63, 51, 30].

The application of the Monte Carlo method, the weighted bootstrap, or the SIR algo-

rithm represents a statistical approach to the filter approximation problem. Another ap-

proach, based on a more stochastic point of view was developed simultaneously in [19]

which is also one of the earliest contributions regarding the convergence of SMC methods.

In [19], an algorithm called the interacting particle filter (IPF) was introduced and it was

shown to be convergent. The IPF algorithm was essentially the bootstrap filter, but the termi-

nology originates from the interpretation that the random samples are regarded as particles

that evolve in the state space according to some stochastic dynamics and the term interacting

refers to the fact that the particles are not independent of each other. Later, the convergence

results were extended to cover more general classes of filter approximation algorithms by

allowing various branching schemes to be employed by the approximating algorithm [see

e.g., 20, 18]. In [16, 17], the convergence results are further extended to more general

and practical class of SIR filters. Although historically the term particle has been used when

referring to a realisation of a random variable taking values in the state space, in principle,

particles can be endowed with a much more elaborate structure. For instance, they can be

defined as normal distributions in the state space. In [15], this possibility for generalisation

has been retained in the convergence analysis, and not only sufficient but also necessary

conditions for the convergence of a particle filter are given without making any assumptions

on the structure of the particles.

Compared to the results on the convergence of filter approximations, the results on the

uniform convergence are naturally more scarce and restricted. As mentioned in the pre-

vious section, there is a close relation between the ability to approximate the filter in a

uniformly convergent manner and the stability of the filter with respect to its initial con-

ditions. One of the earliest contributions regarding the uniform convergence of particle

filter approximations is [20] which introduced a finite memory length Monte Carlo particle

filter and proved that the approximation is uniformly convergent if the filter itself is stable.

Later the connection between the stability and the uniform convergence has been studied

e.g. in [22, 47, 56].

In the case of linear filters, i.e. the linear-Gaussian model in discrete time, the analysis of

the filter stability is reduced to considering the stability of the difference equations describ-

ing the behaviour of the mean and the covariance process of the filter. For these processes
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it is known that the stability is equivalent to the complete stabilisability and detectability

of the signal and observation model. See e.g., [2, pages 76-82] for the discrete time case

and [46, Theorem 4.11] and [54] for the continuous time case. For the nonlinear filter,

the mean and the covariance are not sufficient for characterising the filtering distribution

entirely and therefore similar approaches cannot be applied.

In [66], the stability of the filter for linear-Gaussian model with non-Gaussian initial

distribution has been considered in the sense that the error between the mean of the exact

filtering distribution and the estimate given by the Kalman recurrence vanishes as time goes

to infinity. Similar result for the continuous time case is given in [54]. Also the stability of

a more general class of nonlinear continuous time filters is studied in [54] by Ocone and

Pardoux and it is shown that if the signal process satisfies certain ergodicity assumptions,

then the filter is stable. The theory in [54] is developed on the results by Stettner [67] and

Kunita [44] who have studied the possibility to lift the ergodicity properties of the signal to

the filter process. However, a gap in the proof of one of the key results in [44] has been

discovered recently, as pointed out in [10] and some of the results in [54] and [67] are

affected by the gap as well. This problem remains unsolved, but it has been pointed out

in [10] that a solution to the problem would imply a number of desired properties for the

filter process, including stability.

The problems in the analysis of the filter stability are mainly due to the nonlinearity of

Qi which follows from the normalisation incorporated in Qi (see Section 2.1 for details).

A distance defined for finite measures known as the Hilbert metric is scaling invariant and

thus the problems arising from the normalisation can be avoided with the Hilbert metric.

Moreover, it is known that the Hilbert metric can be used for bounding the total variation

distance between two measures from above and therefore it provides a powerful tool for the

stability analysis [see e.g., 47]. Atar and Zeitouni [5] use the Hilbert metric to prove the

filter stability under various conditions. Most notably, the signal is assumed to be ergodic

and in addition mixing or to take values in a compact state space. It should be noted that

also the mixing condition can usually be shown to hold only for signals taking values in

a compact state space. More details on the mixing condition can be found e.g. in [47]

where the mixing condition on the signal kernel is replaced by the mixing condition on the

unnormalised filter process kernel which is a slightly weaker but nevertheless rather strong

condition. Also the method in [47] uses the Hilbert metric. A downside of the Hilbert metric

is that it is typically applicable only for compact state spaces. For this reason the references

above appear to require either a compact state space explicitly or some mixing conditions

that usually hold only for compact state spaces.

Another approach to study the filter stability without using the Hilbert metric was devel-

oped by Del Moral, Guionnet and Miclo in [22] and [23, Ch. 2] (see also [21, Ch. 4]). This
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method was based on the use of the Dobrushin ergodic coefficient [25, 26] and by using this

approach the stability of filter with exponential convergence rate was proved in [22, 23, 21].

Nevertheless, the signal was assumed to satisfy some mixing type conditions. It should be

pointed out that the method of the Dobrushin ergodic coefficient described in [22] forms

also the basis for the analysis in this work.

In addition to pioneering the use of the Hilbert metric, it was also shown in [5] that in

the case of a bounded one dimensional state space the convergence rate can be increased

without bound by letting the observation noise go to zero. This is one of the first results

explicitly stating a relation between the filter stability and the accuracy of the observations.

This relation was again pointed out in [4], where the filtering of a one dimensional ergodic

diffusion in a noncompact state space was considered. It was shown that the filter is sta-

ble, provided that the observation noise is sufficiently small. It was also shown that the

convergence rate can be increased without a bound by letting the observation noise go to

zero.

All the stability results mentioned above assumed that the signal itself is well-behaved,

e.g. ergodic or mixing. One of the first contributions regarding the nonergodic case is [11]

where the Hilbert metric was used for proving the exponential stability of the filter in the

case of possibly nonergodic signal. Because of the use of the Hilbert metric, the observa-

tion noise was assumed to be bounded which ensures a compact support for the filtering

distribution and therefore the Hilbert metric is applicable. Also the boundedness of the ob-

servation noise can be interpreted as a requirement for sufficiently accurate observations.

In [12], a method which had earlier appeared in [5] and [4] was used for relaxing the

assumption about the boundedness of the observation noise. This method was based on

bounding the total variation distance between measures by using the exterior product of the

unnormalised densities. The filter was shown to be exponentially stable provided that the

observation noise is sufficiently small. More recently, the stability in the case of nonergodic

signal has been studied also in [56] where the method of the Dobrushin ergodic coefficient

is further developed and it is shown that the stability of the filter for nonergodic signal does

not necessarily require the observation noise to be small as long as it is sufficiently light

tailed compared to the signal noise. In this work, we further extend the results reported

in [56].

Of all the references mentioned above, the uniform convergence of filter approximations

is addressed only in [20], [23], [22], [21, Ch. 7], [47] and [56]. In [20], [23], [22], [21]

and [47] the stability of the filter with some additional assumptions imposed on the ap-

proximating algorithm has been shown to imply the uniform convergence. In [56], the

stability and the uniform convergence have been studied separately but it is shown that sim-

ilar conditions on the filter framework appear to imply both the stability and the uniform
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convergence. Moreover, the uniform convergence of particle filter approximations has also

been proved in [45] in the case of a mixing signal.

1.2 Contributions and organisation

This work is based on the method of the Dobrushin ergodic coefficient described in [22]

and it can be regarded as an extension and a refinement of the results reported in [56]. The

main contributions regarding the filter stability are due to the fact that to a large extent

the analysis of the stability in this work is done in the almost sure sense and therefore it is

substantially different from the approach described in [56]. Several benefits are obtained

from this approach:

• The extension of the stability theorem to more general signal and observation noise

distributions is straightforward because almost sure bounds for the signal and obser-

vation noise terms are easily obtained in the almost sure sense (see Proposition 2.10).

• The analysis provides convergence rates directly in the almost sure sense which im-

plies the convergence in the mean sense by the dominated convergence theorem.

• The stability analysis is similarly based on the filter approximation by truncation as

in [56] but in addition, almost sure nonuniform bounds for the error of the truncated

filter approximation are obtained. This implies the almost sure convergence of the

truncated filter approximation. Also rates for the convergence are obtained.

• The stability result in [56] holds only for filters whose initial distribution is compa-

rable to the exact initial distribution in the sense of the Hilbert metric. This rather

restrictive assumption is avoided by the approach used here.

Also in the analysis of the uniform convergence, there are many similarities between

this work and [56]. The main contributions regarding the uniform convergence are the

following:

• The uniform convergence of a certain rejection method based SMC algorithm has been

proved in [56]. The convergence is proved with respect to the number of accepted

samples which does not represent the computational cost of the approximation. In

fact, the possibility that the average number of the rejected samples, and consequently

the computational cost, increases over time has not been addressed. Therefore to

some extent the uniform convergence with respect to the computational cost has not

been proved. In this work, the uniform convergence is proved for a general class

of filter approximation algorithms, including a SIR filter type algorithm. For this
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algorithm, the computational cost is determined by the sample size and therefore the

uniform convergence is obtained with respect to the computational cost.

• The conditions for the approximating algorithm are given in a general form. Because

of this generality, the uniform convergence can be proved straightforwardly for several

different filter approximation methods. Examples of such approximation algorithms

are the above mentioned SIR filter type algorithms with different resampling schemes

or certain rejection method based approximations. Note that in the case of the re-

jection method, the uniform convergence can only be obtained with respect to the

expected computational cost.

The remainder of this work is organised as follows.

Chapter 2: This chapter is focused on the filter stability. Moreover, it includes some back-

ground and preliminaries that are needed also in Chapter 3. Section 2.1 defines and

proves the well known recursive formulation of the discrete time filter which provides

the basis for the analysis of both the stability and the uniform convergence. Sec-

tion 2.2 defines the elementary concepts of random probability measures and various

forms of their convergence. These definitions are needed in order to specify rigorously

what is meant by the stability and the uniform convergence. Section 2.3 introduces

the method of approximating the filter by truncating the support of the filtering dis-

tribution. Moreover, the section includes a discussion about the principles of how the

truncated approximation can be applied to proving the stability. In Section 2.4, the

filter framework under consideration is specified in detail by stating a list of assump-

tions about the signal process and the observation process. The chapter is concluded

in Section 2.5 which states the main stability result and a corollary which establishes

convergence rates for the stability.

Chapter 3: This chapter is focused on the uniform convergence of filter approximations.

Section 3.1 includes some preliminary results accompanied by a theorem which es-

tablishes easily verifiable sufficient conditions for the uniform convergence of the

truncated filter with respect to the truncation radius. Section 3.2 specifies the set

of approximating algorithms under consideration by imposing some general condi-

tions on the approximating algorithms. Also, the section states the main result on the

uniform convergence as well as a practical corollary which establishes the uniform

convergence of certain point estimates. In Section 3.3 the set of uniformly conver-

gent filter approximations is exemplified by introducing a feasible SIR filter type algo-

rithm which is shown to satisfy the conditions for uniform convergence. The chapter

is concluded in Section 3.4 by illustrating the uniform convergence results by some
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computer simulations.

Chapter 4: This chapter concludes the thesis with some remarks and conclusions regarding

the results. A discussion about the stability and the uniform convergence results are

provided in Section 4.1 and Section 4.2, respectively. Section 4.3 points out some

topics for future research.

1.3 Notations

Although this work follows the typical notational conventions used in the related literature,

some of the notations may not be entirely self-explanatory, in particular, to a reader who

is unfamiliar with the topic. Therefore this section explains some of the general notations

used throughout the remainder of this work.

The symbols R, R
+

, N, Z+ and Q are used for denoting the sets of real numbers, non-

negative real numbers, natural numbers, nonnegative integers and rational numbers, respec-

tively. The space Rn is assumed to be endowed with the topology induced by the Euclidean

norm which is denoted by ‖ ·‖. The measurability of functions taking values in some subset

of Rn is always considered in terms of the Borel field in the given subset of Rn. The Borel

field in Rn is denoted byB(Rn).

The set of continuous and bounded functions ϕ : S → R is denoted by Cb(S) and the

subset of Cb(S) consisting of the compactly supported functions is denoted by Cc(S). These

spaces are endowed with the topology induced by the supremum norm





ϕ






∞ ¬ sup
x∈S

�

�ϕ(x)
�

� .

The set of probability measures and finite measures on an arbitrary σ-field S are de-

noted by MP(S ) and MF(S ), respectively. The set of bounded and measurable mappings

ϕ : S→ R is denoted by B(S ). For all ϕ ∈ B(S ) and for all measures µ on S we define

µ(ϕ)¬

∫

ϕ dµ

When confusion will not arise, the parentheses can be omitted. If, in particular, ϕ = 1A

where 1A denotes the indicator function of a set A∈ S , then the shorthand notation µ(A)¬

µ(1A) is used. The Lebesgue measure on B(Rn) is denoted by λn and for all λn-integrable

functions ϕ, the conventional notation
∫

ϕ(x)dx =
∫

ϕ dλn is used.

Suppose that K : S ×S → [0,1] is a transition probability. Then, for all ϕ ∈ B(S ) we
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define the function K(ϕ) : S→ R in B(S ) such that

K(ϕ)(x) =

∫

ϕ(y)K(x , dy),

for all x ∈ S. Moreover, for all µ ∈ MP(S ), we define a probability measure µK ∈ MP(S )
such that

µK(ϕ) =

∫∫

ϕ(y)K(x , dy)µ(dx), (1.4)

for all ϕ ∈ B(S ). Accordingly, for multiple transition probabilities K1, K2, . . . , Ki , the meas-

ure µK1K2 · · ·Ki satisfies

µK1K2 · · ·Ki(ϕ) =

∫∫

· · ·
∫

ϕ(x i)Ki(x i−1, dx i) · · ·K2(x1, dx2)K1(x0, dx1)µ(dx0),

for all ϕ ∈ B(S ).
Let ν ∈ MP(S ) be arbitrary. For all nonnegative ψ ∈ B(S ) and for all µ ∈ MF(S ), we

define a probability measure ψ ·µ ∈ MP(S ) such that

(ψ ·µ)(ϕ) =







µ(ψϕ)

µ(ψ)
if µ(ψ)> 0

ν(ϕ) otherwise ,

for all ϕ ∈ B(S ).
For any set A of random variables defined in Ω, the notation σ(A) is used for denoting

the σ-field generated by the random variables in A.

For all ϕ,ψ ∈ B(B(Rd)), the convolution of ϕ and ψ is denoted by ϕ ∗ψ, i.e. for all

x ∈ Rd ,

(ϕ ∗ψ)(x) =
∫

ϕ(x − y)ψ(y)dy.

Also, we define exp(x) ¬ ex for all x ∈ R.



Chapter 2

Stability

This chapter is focused on the stability of the discrete time filter with respect to its ini-

tial conditions but it also contains general background and preliminaries that are needed

in Chapter 3. The proof of the stability is based on approximating the exact filter recur-

sion by truncating the support of the filtering distribution such that the resulting support

is a compact subset of the state space. Because of the compactness of the support, it is

not difficult to show that the resulting approximation is stable. In fact, it follows that the

approximation is sufficiently stable as well as a sufficiently good approximation of the exact

filter recursion in the sense that it can be parameterised such that

• the distance between approximate filters with different initial distributions converges

to zero as time increases

• the approximation error converges to zero for all initial distributions as time increases.

This observation then implies the stability for the exact filter by a simple application of the

triangle inequality.

This chapter is organised as follows. Section 2.1 defines and proves the well known

recursive formulation of the discrete time filter which provides the basis for the analysis of

both the stability and the uniform convergence. Section 2.2 defines the elementary concepts

of random probability measures and various forms of their convergence. These definitions

are needed in order to specify rigorously what is meant by the stability and the uniform

convergence. Section 2.3 introduces the method of approximating the filter by truncating

the support of the filtering distribution. Moreover, the section includes a discussion about

the principles of how the truncated approximation can be applied to proving the stability. It

should be pointed out that the majority of the material covered by sections 2.1, 2.2, and 2.3

13
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consist of known results and preliminaries that are also needed in Chapter 3. In Section 2.4,

the filter framework under consideration is specified in detail by stating a list of assumptions

about the signal process and the observation process. These assumptions are then retained

throughout the remainder of this work. Also a number of important intermediate results are

proved. In Section 2.5, the main result regarding the filter stability is proved accompanied

by a corollary which establishes convergence rates for the stability.

2.1 Exact filter recursion

Throughout the remainder of this work it is assumed that the random variable Vi , i > 0 has

a continuous positive density ρVi
with respect to λdm

. In this case, we define

gi,y(x) ¬ ρVi
(y − hi(x)),

for all i > 0, y ∈ Rdm and x ∈ Rds . Moreover, we define the shorthand notation

gi(x)¬ gi,Yi
(x),

for all i > 0 and x ∈ Rds . In the literature, the function gi is commonly referred to as the

likelihood function. For convenience, we also define for all i > 0, X0:i−1 ¬ (X0, X1, . . . , X i−1)

and Y1:i ¬ (Y1, Y2, . . . , Yi). In this case, it follows from the definition of X , Y and V that

P(Yi ∈ Ai | X0:i , Y1:i−1) = P(Yi ∈ Ai | X i) =

∫

Ai

gi,y(X i)dy. (2.1)

We then have the following fundamental and well known result which yields a recursive

formulation of the discrete time filter. The proof of the theorem has been included for

completeness and it can also be found e.g. in [15].

Theorem 2.1. For all i > 0,

πi = gi ·πi−1Ki , P-a.s.

Proof. Let us define a signed measure Q :B((Rds)i)→ R such that for all A∈B((Rds)i)

Q(A) =

∫

{Y1:i∈A}
ϕ(X i)dP,

where {Y1:i ∈ A} ¬ {ω ∈ Ω | (Y1(ω), Y2(ω), . . . , Yi(ω)) ∈ A}. Suppose that A1:i =
∏i

j=1
A j ,
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where A j ∈B(Rdm), 1≤ j ≤ i. In this case,

Q(A1:i) =

∫

ϕ(X i)P(Y1:i ∈ A1:i | X0:i)dP.

By defining {Yi ∈ Ai}¬ {ω ∈ Ω | Yi(ω) ∈ Ai}, we can write

P(Y1:i ∈ A1:i | X0:i) = E



E





i
∏

j=1

1{Yj∈A j}

�

�

�

�

�

X0:i , Y1:i−1





�

�

�

�

�

X0:i





= E





i−1
∏

j=1

1{Yj∈A j}

�

�

�

�

�

X0:i



P(Yi ∈ Ai | X i), (2.2)

from which it follows by repeating the same reasoning for the remaining conditional expec-

tation in (2.2) and by using (2.1) that

P(Y1:i ∈ A1:i | X0:i) =

i
∏

j=1

P(Yj ∈ A j | X i) =

∫ i
∏

j=1

gi,yi
(X i)dy1:i,

where the integral is a shorthand notation for an i times iterated integral with respect to

the Lebesgue measure. By using the definition of X , Fubini’s theorem, and Carathéodory’s

extension theorem, one has for all A∈B((Rds)i)

Q(A) =

∫

A





∫

ϕ(x i)

i
∏

j=1

g j,y j
(x j)Ki(x i−1, dx i)Ki−1(x i−2, dx i−1) · · ·π0(dx0)



dy1:i .

Similarly, the above reasoning in the case ϕ ≡ 1 yields for all A∈B((Rds)i)

PY1:i
(A) =

∫

A





∫ i
∏

j=1

g j,y j
(x j)Ki(x i−1, dx i)Ki−1(x i−2, dx i−1) · · ·π0(dx0)



dy1:i ,

where PY1:i
denotes the distribution of Y1:i . Then, [see e.g., 64, pages 219 and 230]

πiϕ =
dQ

dPY1:i

(Y1:i) =

∫

ϕ(x i)
∏i

j=1
g j,Yj
(x j)Ki(x i−1, dx i)Ki−1(x i−2, dx i−1) · · ·π0(dx0)

∫ ∏i

j=1
g j,Yj
(x j)Ki(x i−1, dx i)Ki−1(x i−2, dx i−1) · · ·π0(dx0)

,

from which the claim follows by induction.

For all i > 0 we define Qi to be the mapping πi−1 7→ πi = gi ·πi−1Ki , which yields the

recursive formulation of π given in (1.2).

It is also observed that by the independence of X and V and the Markovian property of
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X , one has for all ϕ ∈ B(S ) and i > 0

E
�

ϕ(X i) | Y1:i−1

�

= E
�

E
�

ϕ(X i) | X0:i−1, V1:i−1

�

| Y1:i−1

�

= E
�

E
�

ϕ(X i) | X i−1

�

| Y1:i−1

�

= πi−1Kiϕ. (2.3)

Therefore it follows from (2.1) and Fubini’s theorem that

P({Yi ∈ A} ∩ {Y1:i−1 ∈ B}) =
∫

{Y1:i−1∈B}
E
�

P(Yi ∈ Ai | X i , Y1:i−1) | Y1:i−1

�

dP

=

∫

{Y1:i−1∈B}

∫

A

∫

gi,y (x i)πi−1Ki(dx i)dy dP,

from which we conclude that

P(Yi ∈ A | Yi−1) =

∫

A

∫

gi,y(x i)πi−1Ki(dx i)dy,

and consequently

E
�

ϕ(Yi) | Yi−1

�

=

∫

ϕ(y)

∫

gi,y (x i)πi−1Kt(dx i)dy. (2.4)

This equality will be needed later in Section 3.1.

2.2 Convergence of random probability measures

In order to define the uniform convergence of filter approximations rigorously we need to

specify what is meant by the convergence of probability measures on S . Therefore, a topo-

logical structure in MP(S ) is required. Once the topological structure is fixed, we have

access to the associated Borel field which also enables a rigorous definition of random prob-

ability measures. Moreover, if the topology in MP(S ) is metrisable, then also the stability of

the filter is well defined.

2.2.1 Weak convergence

The space MP(S ) is endowed with the weak topology which is the smallest topology that

makes the mappings µ ∈ MP(S ) 7→ µ(ϕ) ∈ R continuous for all ϕ ∈ Cb(S). Equivalently,

the weak topology can be defined as a topology whose base consists of the sets

Vϕ1,ϕ2,...,ϕn;ǫ1,ǫ2,...,ǫn
(µ)¬

¦

ν ∈ MP(S )
�

�

�

�νϕi −µϕi

�

�< ǫi , 1≤ i ≤ n
©
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where µ ∈ MP(S ), {ϕ1,ϕ2, . . . ,ϕn} is a finite subset of Cb(S), and ǫ1,ǫ2, . . . ,ǫn are positive

real numbers [see e.g., 57, 7]. Naturally, the weak convergence of a sequence in MP(S ) is

then defined to mean the convergence in the weak topology. Another equivalent characteri-

sation of the weak convergence is obtained by observing that a sequence (µi)i≥0 in MP(S )
converges weakly to µ ∈ MP(S ) if and only if

lim
i→∞

µiϕ = µϕ, ∀ϕ ∈ Cb(S). (2.5)

In fact, (2.5) is used as the definition of weak convergence in several references instead of

the topological definition given above [see e.g, 7, 9].

Because S is locally compact and second countable, it is Polish [see e.g., 7, Theorem

7.6.1]. This implies that Cc(S) is separable and therefore there exists a countable and dense

subset Φ̂ = {ϕ̂1, ϕ̂2, . . .} ⊂ Cc(S) [see e.g., 7, Theorem 7.6.3]. In this case, one can define a

function dw : MP(S)×MP(S)→ [0,1] as

dw(µ,ν) ¬
1

2

∞
∑

i=1

�

�µϕ̂i − νϕ̂i

�

�

2i




ϕ̂i







∞
. (2.6)

By the denseness of Φ̂ and Riesz’s representation theorem [see e.g., 7, Theorem 7.5.4], it

follows that dw is a metric in MP(S ). Note that the choice of the set Φ̂ is not unique and

therefore also the definition of dw is not unique. Moreover, different metrics in MP(S ) are

obtained by using different permutations of the functions in Φ̂. However, it can be shown

that all the resulting metrics are topologically equivalent and that the induced topology is

precisely the weak topology. Thus in the case of Polish state space S, (2.5) is equivalent to

lim
i→∞

dw(µi ,µ) = 0. (2.7)

2.2.2 Random probability measures and transition probabilities

The topological structure of MP(S ) defined above also enables us to introduce the associ-

ated Borel field in MP(S ) which is denoted byMP(S ). In this case, we say that a mapping

µ : Ω → MP(S ) is a random probability measure if it is F/MP(S )-measurable. The fol-

lowing well known result gives a convenient formulation for the measurability of random

probability measures.

Theorem 2.2. Suppose that G ⊂ F . The mapping µ : Ω→ MP(S ) is G/MP(S )-measurable

if and only if µϕ : Ω→ R is G/B(R)-measurable for all ϕ ∈ Cb(S).

Proof. Suppose that µ is G/MP(S )-measurable. Because µ 7→ µϕ, as a continuous function,
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isMP(S )/B(R)-measurable, the composition ω 7→ µ(ω) 7→ (µ(ω))(ϕ) must be G/B(R)-
measurable.

To prove the converse implication, suppose that (µ(·))(ϕ) is G/B(R)-measurable for

all ϕ ∈ Cb(S) and let M be the smallest σ-field in MP(S ) making µ 7→ µϕ M/B(R)-
measurable for all ϕ ∈ Cb(S). Then µ is G/M -measurable [see e.g, 7, Theorem 1.7.4] and

it suffices to show thatMP(S )⊂M . It is an elementary exercise to show that the collection

U of the sets






µ ∈ MP(S )

�

�

�

�

�

1

2

i
∑

j=1

�

�µϕ̂ j − q j

�

�

2 j




ϕ̂ j







∞
< r







,

where i ∈ N, r ∈ Q, q j ∈ Q, is a countable base for the weak topology. Thus for all i ∈ N
and (q1, . . . ,qi) ∈ Qi , the mapping

µ 7→
1

2

i
∑

j=1

�

�µϕ̂ j − q j

�

�

2 j




ϕ̂ j







∞

isM/B(R)-measurable and henceU ⊂M . ThereforeM contains the weak topology and

becauseMP(S) is the smallest such σ-field, one must haveMP(S)⊂M .

According to the definition of π, it is now obvious that for all ϕ ∈ Cb(S) the mapping

πiϕ : Ω → R is Yi/B(R)-measurable and hence, according to Theorem 2.2, πi : Ω →
MP(S) is Yi/MP(S)-measurable random probability measure. Therefore π can be justly

called a probability measure valued Yi-adapted stochastic process.

Because S is separable and complete, it can be shown that if µ : Ω → MP(S ) is

G/MP(S )-measurable, then for all A ∈ S , (µ( · ))(A) is G/B(R)-measurable [see e.g., 39,

Lemma 1.4]. Therefore the mapping µ̃ : Ω×S → [0,1] defined for all ω ∈ Ω and A∈ S as

µ̃(ω,A) ¬ (µ(ω))(A) is a transition probability. In a similar fashion we can define random

transition probabilities by saying that K : Ω×S×S → [0,1] is a G -measurable random tran-

sition probability if for all (ω, x) ∈ Ω× S, K(ω, x , · ) ∈ MP(S ) and for all A ∈ S , K( · , · ,A)
is G ⊗S -measurable. In this case, K(ω, · , · ) is a transition probability for all ω ∈ Ω, and

K( · , x ,A) as well as K(ϕ)( · , x) ¬
∫

ϕ(y)K( · , x , dy) are G -measurable random variables.

More details can be found e.g. in [53, Proposition III.2.1]. Throughout the remainder of

this work, the dependency on ω will not explicitly appear in the notations of random prob-

ability measures and transition probabilities. In other words, we will write µ(A) instead of

(µ( · ))(A), µ(ϕ) instead of (µ( · ))(ϕ), K(x ,A) instead of K( · , x ,A), and K(ϕ)(x) instead of

K(ϕ)( · , x).
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2.2.3 Convergence in total variation

A stronger form of convergence is obtained by using the metric induced by the norm ‖ ·‖TV

which is defined for signed measures as





µ






TV
¬

1

2
sup
‖ϕ‖∞≤1

�

�µ(ϕ)
�

� . (2.8)

To avoid confusion, it should be noted that ‖·‖TV is half the total variation norm defined

e.g. in [50, page 315]. For convenience, the multiplication by 1/2 is used here because

it scales the induced metric to the interval [0,1]. Therefore in this work, following the

example set by several other authors, ‖·‖TV will be called the total variation norm and the

induced metric will be called the total variation distance.

A sequence (µi)i≥0 in MP(S ) is said to converge to µ ∈ MP(S ) in total variation, if

lim
i→∞





µi − µ






TV
= 0. (2.9)

According to (2.6) and (2.8) one clearly has

dw(µ,ν) ≤




µ− ν






TV
,

and thus the convergence in total variation implies weak convergence. It should also be

pointed out that in the case of a locally compact and second countable state space S, the

total variation can be shown to satisfy





µ






TV
=

1

2
sup
ϕ∈Φ̂

�

�µ(ϕ)
�

�





ϕ






∞
,

and thus for all G/MP(S )-measurable random probability measures µ and ν the total

variation distance




µ− ν






TV
is clearly a G/B(R)-measurable random variable.

The following lemma summarises some elementary properties of the total variation dis-

tance. These properties in particular are important for the remainder of this work. Parts of

the proof can also be found in [55, Lemma 2.8].

Lemma 2.3. Suppose that µ, ν ∈ MP(S ), D ∈ S and ψ : S → [0,∞) such that 0 <

µ(ψ),ν(ψ)<∞. Then

(i)




µ− 1D ·µ






TV
= µ(∁D);

(ii)




ψ ·µ−ψ · ν






TV
≤




ψ






∞
µ(ψ)





µ− ν






TV
.
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Proof. For all µ,ν ∈ MP(S ), one has





µ− ν






TV
= sup

A∈S

�

µ(A)− ν(A)
�

= sup
A∈S

�

ν(A)− µ(A)
�

.

Therefore,





µ− 1D · µ






TV
= sup

A∈S

�

(1D ·µ)(A)− µ(A)
�

≥ (1D ·µ)(D)−µ(D) = µ(∁D),




µ− 1D · µ






TV
≤ sup

A∈S

�

µ(A∩ D)− (1D · µ)(A)
�

+ sup
A∈S

�

µ(A∩ ∁D)
�

= µ(∁D),

which yields (i). To prove (ii), we observe that





µ− ν






TV
= sup

0≤ϕ≤1

�

µϕ− νϕ
�

= sup
0≤ϕ≤1

�

νϕ−µϕ
�

.

If µ(ψ)/ν(ψ)≥ 1, then





ψ · µ−ψ · ν






TV
=





ψ






∞
µ(ψ)

sup
0≤ϕ≤1

 

µ(ψϕ)




ψ






∞
−
µ(ψ)

ν(ψ)

ν(ψϕ)




ψ






∞

!

≤




ψ






∞
µ(ψ)

sup
0≤ϕ≤1

 

µ(ψϕ)




ψ






∞
−
ν(ψϕ)




ψ






∞

!

≤




ψ






∞
µ(ψ)





µ− ν






TV

If µ(ψ)/ν(ψ)≤ 1





ψ ·µ−ψ · ν






TV
=





ψ






∞
µ(ψ)

sup
0≤ϕ≤1

 

µ(ψ)

ν(ψ)

ν(ψϕ)




ψ






∞
−
µ(ψϕ)




ψ






∞

!

≤




ψ






∞
µ(ψ)

sup
0≤ϕ≤1

 

ν(ψϕ)




ψ






∞
−
µ(ψϕ)




ψ






∞

!

≤




ψ






∞
µ(ψ)





µ− ν






TV
.

2.2.4 Convergence almost surely and in the mean sense

In the filtering context the convergence is considered for random, rather than deterministic,

probability measures. The weak convergence and the convergence in total variation defined

above can be naturally extended for random measures by saying that (2.7) or (2.9) holds

P-almost surely. Another way to take the randomness of the measures into account in the

convergence is to consider the convergence of the expected distance between measures, i.e.

lim
i→∞

E
�

dw(µi ,µ)
�

= 0 (2.10)

lim
i→∞

E

�



µi − µ






TV

�

= 0. (2.11)
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Because dw and ‖ ·‖TV take values in [0,1], it follows by the dominated convergence the-

orem that if (2.7) or (2.9) holds P-a.s., then (2.10) or (2.11) holds, respectively. On the

other hand, it can be shown that for all q > 0 and p > 1,

lim
i→∞

iq+p
E
�

dw(µi,µ)
�

= 0 =⇒ lim
i→∞

iqdw(µi, µ)
P-a.s.
= 0,

and similarly for the total variation distance

lim
i→∞

iq+p
E

�



µi − µ






TV

�

= 0 =⇒ lim
i→∞

iq




µi −µ






TV

P-a.s.
= 0.

In other words, the almost sure convergence of probability measures implies the conver-

gence in the mean sense and a sufficiently fast convergence in the mean sense implies

almost sure convergence.

We also consider a convergence of the form

lim
i→∞

E







1

2
sup
‖ϕ‖∞≤1

E

��

�µiϕ−µϕ
�

�

�

� G
�






= 0, (2.12)

where G ⊂ F . This form of convergence is found to be stronger than (2.10) by observing

that

E
�

dw(µi ,µ)
�

= E

�

E

�

dw(µi ,µ)
�

� G
��

= E





1

2

∞
∑

j=1

E

��

�µiϕ̂ j − µϕ̂ j

�

�

�

� G
�

2 j




ϕ̂ j







∞





≤ E







1

2
sup
‖ϕ‖∞≤1

E

��

�µiϕ− µϕ
�

�

�

� G
�






. (2.13)

The convenience of (2.12) is that it is independent of the choice of Φ̂ and therefore it can

be used for obtaining more practical results, as will be seen later in Section 3.2. Moreover,

it is observed that

1

2
sup
‖ϕ‖∞≤1

E

��

�µiϕ−µϕ
�

�

�

� G
�

≤ E

�





µiϕ−µϕ






TV

�

�

� G
�

,

and hence (2.11) is also a stronger form of convergence than (2.12). In conclusion, the

strongest form of convergence described above is the almost sure convergence in total

variation and therefore it should be of primary interest. However, in certain occasions

convergence results can only be obtained in a weaker sense, as will be seen later e.g. in

Section 3.1.



22 CHAPTER 2. STABILITY

2.3 Approximation by truncation

Having established the exact filter recursion and the required concepts of convergence, we

are now ready to start constructing filter approximations that play an important role both in

the proof of the filter stability and in the proof of the uniform convergence. First we define

a method for approximating π which is based on truncating the support of the filtering

distribution. At the end of this section, the resulting truncated approximation is motivated

by describing the principles of how it can be applied to the filter stability analysis.

2.3.1 Truncated filter

Throughout the remainder of this work it is assumed that S = Rds and that for all x ∈ Rds ,

Ki(x , ·) has a positive density ki(x , ·) with respect to λds
such that for all i > 0,





ki







∞ ¬ sup
x ,y∈Rds

ki(x , y)<∞.

For all ∆ > 0 we define a MP(B(Rds))-valued stochastic process π∆ = (π∆
i
)i≥0 by the

recursion

π∆
i
¬ g∆

i
·π∆

i−1
Ki , (2.14)

where π∆
0
= π0, g∆

i
¬ 1Ci(∆)

gi and Ci(∆) ∈B(Rds) is compact. Obviously, π and π∆ are not

equal in general and therefore π∆ is called the truncated approximation of π with parameter

∆ which is referred to as the truncation radius. At this point, the specific construction of

the sets Ci(∆) is not of interest and therefore the detailed specification of Ci(∆) is left for

Section 2.4. Also note that if Ci(∆) = R
ds then π∆ equals the exact filter.

For all i > 0, we let Q∆
i

: MP(B(Rds))→ MP(B(Rds)) denote the mapping π∆
i−1
7→ π∆

i
.

Moreover, for all i ≥ j ≥ 0, we define Q∆
j,i
¬ Q∆

i
◦ · · · ◦Q∆

j
and Q j,i ¬ Qi ◦ · · · ◦Q j , where

Q∆
0

and Q0 are assumed to be identity mappings. Also, for all i < j, Q∆
j,i

and Q j,i are defined

to be identity mappings. In this case, we further define a mapping Π∆
i, j

: MP(B(Rds)) →
MP(B(Rds)) as

Π∆
i, j
(µ)¬Q∆

j+1,i
(Q1, j(µ)). (2.15)

Essentially, (2.15) defines for all j ≥ 0 a probability measure valued stochastic process

(Π∆
i, j
(µ))i≥0 starting from µ ∈ MP(B(Rds)). An intuitive interpretation for these processes

is that for the jth process, the j first steps of recursion are exact and the remaining steps

are approximate. In particular, we use the shorthand notations π∆
i, j
¬ Π∆

i, j
(π0) and π̄∆

i, j
¬

Π∆
i, j
(π̄0), where π̄0 ∈ MP(B(Rds)) is arbitrary. Clearly, π∆

i,0
= π∆

i
and π∆

i,i
= πi and therefore

we define analogously π̄i ¬ π̄
∆
i,i

and π̄∆
i
¬ π̄∆

i,0
. An illustration of the notation is given in
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π∆
0,0

Q∆1 //

Q1   B
BB

BB
BB

B
π∆

1,0

Q∆2 // π∆
2,0

Q∆3 // π∆
3,0

Q∆4 // · · ·

π∆
1,1

Q∆2 //

Q2   B
BB

BB
BB

B
π∆

2,1

Q∆3 // π∆
3,1

Q∆4 // · · ·

π∆
2,2

Q3   B
BB

BB
BB

B

Q∆3 // π∆
3,2

Q∆4 // · · ·

π∆
3,3

Q∆4 // · · ·

Figure 2.1: The exact filter process and approximations based on truncation.

Figure 2.1. It is important to point out that although Π∆
i,i
(π0), according to Theorem 2.1,

is the conditional distribution of the signal X with initial distribution π0 at time i, Π∆
i,i
(µ)

is not in general the conditional distribution of the signal X with initial distribution µ at

time i. This is because the mappings Π∆
i, j

depend on Y through the likelihood functions gi,Yi

and regardless of the choice of µ, Y is always assumed to be determined by the observation

noise V and the signal X which is assumed to have the initial distribution π0. Hereafter, the

process (Π∆
i,i
(µ))i≥0, regardless of the choice of µ, will be called the exact filter with initial

distribution µ. It should not, however, be confused with the filter π by which we mean the

process (Π∆
i,i
(π0))i≥0.

Let us then derive an alternative formulation of the processes (Π∆
i, j
(µ))i≥0, j ≥ 0. For all

i ≥ j > 0 and ∆ > 0, we define a mapping S∆
j,i

: Rds ×B(Rds) → [0,1], such that for all

x ∈ Rds and A ∈B(Rds)

S∆
j,i
(x ,A) ¬

K j(g
∆
j

K j+1(g
∆
j+1
· · ·Ki(g

∆
i
))1A)(x)

K j(g
∆
j

K j+1(g
∆
j+1
· · ·Ki(g

∆
i
)))(x)

,

and a mapping ψ∆
j,i

: Rds → R such that for all x ∈ Rds

ψ∆
j,i
(x)¬







K j(g
∆
j

K j+1(g
∆
j+1
· · ·Ki(g

∆
i
)))(x) if i ≥ j

1 if i < j.

An alternative representation of (Π∆
i, j
(µ))i≥0 is then obtained according to the following

lemma. This representation was originally proposed in [22] and it also appears in [56].
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Lemma 2.4. For all i ≥ j > 0 and µ ∈ MP(B(Rds)),

Q∆
j,i
(µ) = (ψ∆

j,i
·µ)S∆

j,i
S∆

j+1,i
· · ·S∆

i,i
. (2.16)

Proof. For all i ≥ j > 0

Q∆
j,i
(µ)(ϕ) =

µ(K j(g
∆
j
· · ·Ki(g

∆
i
ϕ)))

µ(K j(g
∆
j
· · ·Ki(g

∆
i
)))

=
1

µ(ψ∆
j,i
)
µ

 

ψ∆
j,i

ψ∆
j,i

K j

 

g∆
j
ψ∆

j+1,i

ψ∆
j+1,i

K j+1

 

· · ·
g∆

i−1
ψ∆

i,i

ψ∆
i,i

Ki

�

g∆
i
ψ∆

i+1,i
ϕ
�

!!!

.

The substitution of

S∆
j,i
(ϕ)(x) =

1

ψ∆
j,i
(x)

K j(g
∆
j
ψ∆

j+1,i
ϕ)(x),

yields

Q∆
j,i
(µ)(ϕ) =

1

µ(ψ∆
j,i
)
µ(ψ∆

j,i
S∆

j,i
(S∆

j+1,i
(· · ·S∆

i,i
(ϕ)))) =

�

(ψ∆
j,i
·µ)S∆

j,i
S∆

j+1,i
· · ·S∆

i,i

�

(ϕ).

The representation given by Lemma 2.4 is motivated by the observation that the map-

ping µ 7→ µK is a contraction with respect to the total variation distance. The contraction

coefficient equals 1−αS(K), where αS(K) ∈ [0,1] is the Dobrushin ergodic coefficient and

it is defined as

αS(K)¬ 1− sup
x ,y∈S
A∈S

�

�K(x ,A)− K(y,A)
�

� .

The proof of the contractivity is given in [25, 26]. Consequently, we can bound the error of

two differently initialised truncated approximation in the total variation distance, according

to the following result. Note that in the following lemma and throughout the remainder of

this work, the products over empty sets are considered to be equal to one.

Lemma 2.5. For all i, j > 0 and µ,µ′ ∈ MP(B(Rds))








Q∆j,i(µ)−Q∆
j,i
(µ′)










TV
≤

i
∏

n= j+1

�

1−αCn−1(∆)
(S∆

n,i
)
�








ψ∆j,i ·µ−ψ
∆
j,i
·µ′









TV
.

Proof. If j > i, the claim is trivial. For all i ≥ j > 0, according to Lemma 2.4,








Q∆j,i(µ)−Q∆
j,i
(µ′)










TV
=








(ψ∆j,i · µ)S
∆
j,i
· · ·S∆

i,i
− (ψ∆

j,i
·µ′)S∆

j,i
· · ·S∆

i,i










TV
.

For all j < n ≤ i the transition probabilities S∆
n,i

are applied to a probability measure on
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Cn−1(∆), and S∆
j,i

is applied to a probability measure on Rds . Thus,








Q∆j,i(µ)−Q∆
j,i
(µ′)










TV
≤
�

1−αRds (S
∆
j,i
)
�

i
∏

n= j+1

�

1−αCn−1(∆)
(S∆

n,i
)
�








ψ∆j,i ·µ−ψ
∆
j,i
· µ′









TV
,

from which the claim follows because αRds (S
∆
j,i
) ∈ [0,1].

For the stability and convergence analysis, it is natural that S∆
j,i

should be as contractive

as possible. In order to bound this contractivity, we need to bound the ergodic coefficients

αC j−1(∆)
(S∆

j,i
) from below. For this purpose, we define

α̃i(∆)¬




ki







−1

∞ inf
y∈Ci(∆)

x∈Ci−1(∆)

ki(x , y), (2.17)

for which we have the following result from [22].

Lemma 2.6. For all i ≥ j > 0,

αC j−i(∆)
(S∆

j,i
)≥ α̃ j(∆)

Proof. For all i ≥ j > 0, x ∈ C j−1(∆) and A∈B(Rds)

S∆
j,i
(x ,A) =

K j(g
∆
j
ψ∆

j+1,i
1A)(x)

K j(g
∆
j
ψ∆

j+1,i
)(x)

=
λds
(k j(x , ·)g∆

j
ψ∆

j+1,i
1A)

λds
(k j(x , ·)g∆

j
ψ∆

j+1,i
)

≥
inf y∈C j(∆)

x∈C j−1(∆)

k j(x , y)

sup y∈C j(∆)

x∈C j−1(∆)

k j(x , y)

λds
(g∆

j
ψ∆

j+1,i
1A)

λds
(g∆

j
ψ∆

j+1,i
)

and thus

αC j−1(∆)
(S∆

j,i
) = inf

M
∑

n=1

min
�

S∆
j,i
(x ,An),S

∆
j,i
(y,An)

�

≥ α̃ j(∆),

where the first equality is equivalent to the definition of the Dobrushin ergodic coefficient

(see Eq. (1.16) and Eq. (1.5′′′) in [25] and Section 3.2 in [26], see also Eq. (6) in [22]).

The infimum is taken over all x , y ∈ C j−1(∆) and all M set partitions of Rds .

According to the elementary inequality
∏

i(1− ai) ≤ exp
�

−
∑

i ai

�

which holds for all

ai ∈ [0,1], one has

lim
i→∞

i
∏

n= j+1

�

1−αCn−1(∆)
(S∆

n,i
)
�

≤ exp



− lim
i→∞

i
∑

n= j+1

α̃n(∆)



 .
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Therefore, if Ci(∆) = S for all i ≥ 0, then Q∆
i
=Qi for all i ≥ 0 as well and it follows directly

from Lemma 2.5 that if
∑∞

i=1
α̃i(∆) =∞, then the filter is stable in the sense that

lim
i→∞





Qi ◦ · · · ◦Q1(π0)−Qi ◦ · · · ◦Q1(π̄0)






TV

P-a.s.
= 0,

for all π̄0 ∈ MP(B(Rds)). This happens if for instance S is compact and ki is bounded away

from zero uniformly with respect to i. A more detailed account on this matter is given

in [22, see e.g., Lemma 2.3, Theorem 2.4].

This section is concluded by stating a result which establishes an upper bound for the

truncation error, i.e. the distance between the truncated filter π∆ and the exact filter π.

Except for some technical details, the proof can also be found in [56].

Proposition 2.7. For all i > 0,





π̄i − π̄∆i






TV
≤

i
∑

j=1

i
∏

n= j+2

(1− α̃n(∆))min









1,








π̄∆j, j − π̄∆j, j−1










TV

α̃ j+1(∆)









. (2.18)

Proof. For all i > 0,





π̄i − π̄∆i






TV
≤

i
∑

j=1








π̄∆i, j − π̄
∆
i, j−1










TV

≤
i
∑

j=1








Q∆j+1,i
(π̄ j, j)−Q∆

j+1,i
(π̄ j, j−1)










TV

≤
i
∑

j=1

i
∏

n= j+2

�

1− α̃n(∆)
�








ψ∆j+1,i
· π̄∆

j, j
−ψ∆

j+1,i
· π̄∆

j, j−1










TV

≤
i
∑

j=1

i
∏

n= j+2

�

1− α̃n(∆)
�

min









1,








ψ∆j+1,i










∞








π̄∆j, j − π̄∆j, j−1










TV

π̄∆
j, j−1
(ψ∆

j+1,i
)









,

where the first inequality is due to the triangle inequality (see Figure 2.1), the second in-

equality follows from the definition of π̄∆
i, j

, the third inequality follows from Lemma 2.5

and the last inequality follows from Lemma 2.3(ii) and the fact that ‖·‖TV is subunitary.
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Moreover, it is observed that π̄∆
j, j−1

= 1C j(∆)
· π̄∆

j, j
, and hence for all i ≥ j > 0

ψ∆
j+1,i
(x)

π̄∆
j, j−1
(ψ∆

j+1,i
)
=

K j+1(g
∆
j+1
ψ∆

j+2,i
)(x)

π̄∆
j, j−1
(1C j(∆)

K j+1(g
∆
j+1
ψ∆

j+2,i
))

≤




k j+1







∞
inf x∈C j(∆)

y∈C j+1(∆)

k j+1(x , y)

λds
(g∆

j+1
ψ∆

j+2,i
)

π̄∆
j, j−1
(λds
(g∆

j+1
ψ∆

j+2,i
))

=
1

α̃ j+1(∆)
.

Note that the bound for the error at time i given by Lemma 2.7 is expressed solely

in terms of α̃ j(∆), 1 < j ≤ i, and the local errors




π̄∆
j, j
− π̄∆

j, j−1





, 0 < j ≤ i. Moreover,

Proposition 2.7 yields the following less complicated corollary.

Corollary 2.8. For all i > 0,





π̄i − π̄∆i






TV
≤

i
∑

j=1








π̄∆j, j − π̄∆j, j−1










TV

α̃ j+1(∆)
. (2.19)

Proof. Follows directly from Proposition 2.7, because (1− α̃ j(∆)) ∈ [0,1].

2.3.2 Application to the stability analysis

Let us briefly describe the principle of how the truncated filter can be applied to proving the

stability of the filter. By the triangle inequality





πi − π̄i







TV
≤




πi −π∆i






TV
+




π∆
i
− π̄∆

i







TV
+




π̄∆
i
− π̄i







TV
. (2.20)

Based on the numerous results on the filter stability in the case of compact state space, it is

natural to conjecture that under some assumptions the second term on the right hand side

of (2.20) converges to zero as i →∞. A rigorous proof of this intuitive statement is given

later in Proposition 2.14. Moreover, it is intuitive that the remaining two terms in the right

hand side of (2.20) do not in general converge to zero as i →∞. In fact, it can be shown

that in some cases these terms converge to one as i → ∞. For details, see Example 3.1 in

Section 3.1.

Because the error due to the truncation is expected to decrease as the set Ci(∆) is made

larger, Ci(∆) will be parameterised by ∆ such that for all ∆ < ∆′, Ci(∆) ⊂ Ci(∆
′). Also,
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instead of (2.20) we consider the decomposition





πi − π̄i







TV
≤




πi −π
∆i

i







TV
+




π
∆i

i
− π̄∆i

i







TV
+




π̄
∆i

i
− π̄i







TV
, (2.21)

where ∆i ≤∆i+1 for all i > 0. It can be shown under some assumptions that if (∆i)i>0 is a

sufficiently fast increasing sequence, then the first and the last terms on the right hand side

of (2.21) converge to zero as i →∞. On the other hand, it may be the case that if (∆i)i>0

increases too fast, the convergence of the middle term does not hold. Therefore the proof

of the filter stability boils down to proving that there exists a rate for (∆i)i>0 such that all

terms on the right hand side of (2.21) converge to zero.

In order to avoid confusion, it should be emphasised that by definition

π
∆i

i
=Q

∆i

i
◦Q

∆i

i−1
◦ · · · ◦Q

∆i

1 (π0),

which in general is not equal to Q
∆i

i
◦Q

∆i−1

i−1
◦ · · · ◦Q

∆1

1 (π0). In other words, π
∆i

i
is obtained

by using the same truncation radius ∆i in all steps of the recursion up to time i and not by

using ∆ j in the jth step of the recursion for all 0< j ≤ i.

2.4 Filter framework specification

So far, we have considered a rather general filter framework. In the following, the filter

framework is further specified by introducing the following assumptions:

(A1) For all i > 0, the signal process X satisfies

X i = fi(X i−1) +Wi ,

where Wi is an independent random variable with a distribution PWi
∈ MP(B(Rds))

and fi : Rds → Rds is continuous. Moreover, there exist α > 0 and δ ≥ 0 such that





 fi(x)− fi(y)




≤ α




x − y




+δ

for all x , y ∈ Rds and i > 0.

(A2) There exist β ,β0 > 0, and γ ≥ 0 such that for all i > 0, hi = h̃i + h̄i , where h̄i : Rds →
Rds is such that supx∈Rds





h̄i(x)




≤ γ and h̃i : Rds → Rds is a bijection such that h̃i and

h̃−1
i

are Lipschitz with coefficients β0 and β , respectively.
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(A3) There exist m1, M1, a1,A1, b1, B1 > 0 such that for all i > 0

m1exp
�

−a1 ‖x‖b1

�

≤ ρWi
(x)≤ M1exp

�

−A1 ‖x‖B1

�

,

where ρWi
is the density of PWi

with respect to λds
.

(A4) There exist m2, M2, a2,A2, b2, B2 > 0 such that for all i > 0

m2exp
�

−a2 ‖x‖b2

�

≤ ρVi
(x)≤ M2exp

�

−A2 ‖x‖B2

�

, (2.22)

where ρVi
is the density of PVi

with respect to λdm
.

The stochastic process W = (Wi)i>0 is called the signal noise process and it follows from (A1)

and (1.1) that for all i > 0 the observation Yi can be expressed as a function of X0, Vi and

W1,W2, . . . ,Wi . This implies that Yi is measurable with respect to the σ–field Fi which is

defined for i = 0 as F0 = σ(X0) and for all i > 0 as

Fi ¬ σ(X0, V1, V2, . . . , Vi ,W1,W2, . . . ,Wi).

Throughout the remainder of this work it is assumed that (A1), (A2), (A3), and (A4) are

satisfied by the filter framework under consideration. Note that because of the assumed

bijectivity of h̃i in (A2), it is required in practice that ds = dm.

Let us also further specify the truncated approximation π∆ by defining the sets Ci(∆),

i ≥ 0 for all ∆ > 0 as

Ci(∆)¬







¦

x ∈ Rds

�

� ‖Yi − h̃i(x)‖ ≤∆
©

if i > 0
¦

x ∈ Rds

�

� ‖x‖ ≤ β∆+βγ
©

if i = 0.
(2.23)

The interpretation of Ci(∆) is that it is the preimage of the Yi centered ball of radius ∆ with

respect to h̃i . Throughout the remainder of this work, the truncated filter π∆ is assumed to

employ this particular definition of Ci(∆).

It is natural to conjecture that the error of the truncated approximation π∆ decreases

as ∆→∞. This will be rigorously proved later in Lemma 2.13 but at this point it suffices

to note that for this reason we are interested in π∆ only for large values of ∆. Therefore it

suffices to consider π∆ only for ∆>∆0, where it is assumed for convenience that ∆0 > γ.
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Under the assumptions given above, a tractable lower bound for α̃i(∆), and thus for

αC j−1(∆)
(S∆

j,i
), can be obtained. For this purpose we define ǫ : R

+
×R

+
→ R

+
as

ǫ(x , y)¬
m1

M1

exp
�

−a1(L(x) + y)b1

�

, (2.24)

where

L(x) = (αβ + β)(x + γ) +δ.

Also, for all i > 0 we define a random variable ξi taking values in R
+

as

ξi ¬







β




Vi





+




Wi





+αβ




Vi−1





 if i > 1

β




Vi





+




Wi





+α




X0





 if i = 1,
(2.25)

and a shorthand notation

ǫi(∆)¬ ǫ(∆,ξi).

According to these definitions, we have the following result [see also 56, Lemma 3.3].

Lemma 2.9. For all i > 0, and ∆ > 0, one has α̃i(∆) ≥ ǫi(∆).

Proof. According to (2.23) and (A2), for all i > 0, x i ∈ Ci(∆),





x i − X i





 ≤ β




h̃i(x i)− Yi + h̄i(X i) + Vi





 ≤ β∆+ βγ+ β




Vi





 .

If i = 0, then for all x0 ∈ C0(∆)





x0 − X0





≤




x0





+




X0





≤ β∆+βγ+




X0





 ,

Therefore, according to (A1) and (2.25) for all i > 0,





x i − fi(x i−1)




≤




x i − X i





+




 fi(X i−1) +Wi − fi(x i−1)






≤




x i − X i





+α




x i−1 − X i−1





+ δ+




Wi







≤ (αβ + β)(∆+ γ) +δ+ ξi .

The claim then follows by substituting the last form into

α̃i(∆)≥
m1

M1

inf
y∈Ci(∆)

x∈Ci−1(∆)

exp
�

−a1





y − fi(x)






b1

�

,

which holds by (2.17), (A1) and (A3).
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According to Lemma 2.9, a new bound for the error




π̄i − π̄∆i






TV
can be obtained by

replacing α̃i(∆) with ǫi(∆) in Lemma 2.7. Moreover, it follows from Lemma 2.9 that the

next step in the course of bounding α̃i(∆) and αC j−1(∆)
(S∆

j,i
) from below is to find a lower

bound for ǫi(∆). For this purpose it is sufficient to bound ξi from above. According to the

following result such an upper bound can be obtained by using the assumptions (A3) and

(A4). It should also be pointed out that at this point the analysis most significantly departs

from the analysis given in [56].

Proposition 2.10. For all ε ∈ (0,min(A1,A2)), there are positive random variables c1 = c1(ε),

c2 = c2(ε), and c3 such that for all i > 0, one has ξi ≤ ξi,ε, P-a.s. where

ξi,ε ¬
�

c1 + (A1 − ε)−1 ln i
�1/B1

+ (αβ +β)
�

c2 + (A2 − ε)−1 ln i
�1/B2

+ c3.

Proof. Let the densities of the random variables




Wi





 and




Vi





 be denoted by ρ‖Wi‖ and

ρ‖Vi‖, respectively. According to the assumptions (A3) and (A4), for all x > 0

ρ‖Wi‖(x)≤ M1S̃ds
xds−1exp

�

−A1 xB1

�

,

ρ‖Vi‖(x)≤ M2S̃dm
xdm−1exp

�

−A2 xB2

�

,

where S̃d denotes the surface area of a d dimensional unit sphere. Hence, for all ε′ > 0

sup
i>0

E

h

exp
�

(A1 − ε′)




Wi







B1

�i

≤ M1S̃ds

∫

xds−1exp
�

(A1 − ε′)xB1 − A1 xB1

�

dx <∞.

Thus for all q > 1

E





∞
∑

i=1

i−qexp
�

(A1 − ε′)




Wi







B1

�



 ≤ sup
i>0

E

h

exp
�

(A1 − ε′)




Wi







B1

�i
∞
∑

i=1

i−q <∞,

implying that
∞
∑

i=1

i−qexp
�

(A1 − ε′)




Wi







B1

�

<∞, P-a.s.

Therefore,

c ¬ sup
i>0

i−qexp
�

(A1 − ε′)




Wi







B1

�

<∞, P-a.s.

from which we have for all ε′ ∈ (0,A1)





Wi







B1 ≤
ln c

A1 − ε′
+

q ln i

A1 − ε′
.

For all ε ∈ (0,A1), one can define q = (A1 − ε/2)/(A1 − ε) > 1, ε′ = ε/2 ∈ (0,A1) and
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c1 = ln c/(A1 − ε/2). In this case,





Wi







B1 ≤ c1 + (A1 − ε)−1 ln i.

The above reasoning can also be applied to




Vi





 yielding c2 and finally by setting c3 =

α




X0





 the claim is found to hold for all i > 0.

So far the interest has been in bounding α̃i(∆) from below. This has been done in order

to control the bounds for the error of the truncated approximation given by Proposition 2.7

and Corollary 2.8. In the next proposition, Lemma 2.9 and Proposition 2.10 are applied to

Corollary 2.8 in order to further refine the bound for the truncation error.

Proposition 2.11. If b2 = B2, then for all ε ∈ (0,min(a1, a2)), there exists a positive random

variable c4 = c4(ε), such that for all ∆ >∆0 and i > 0





π̄i − π̄∆i






TV
≤ c4

i
∑

j=1

exp
�

(−A2 + ε)(∆− γ)B2 + 2a1(L(∆)+ ξ j+1,ε)
b1

�

1− π̄ j−1(∁C j−1(∆))
, P-a.s. (2.26)

Proof. First, we observe that according to Lemma 2.3(i), for i > 0 and t > 1








π̄∆i,i − π̄
∆
i,i−1










TV
= π̄i(∁Ci(∆))

=

∫
h
∫

∁Ci(∆)
gi(x i)ki(x i−1, x i)dx i

i

π̄i−1(dx i−1)
∫ �∫

gi(x i)ki(x i−1, x i)dx i

�

π̄i−1(dx i−1)

≤





ki







∞

∫
h
∫

∁Ci(∆)
gi(x i)dx i

i

π̄i−1(dx i−1)

∫

Ci−1(∆)

h
∫

Ci(∆/t)
gi(x i)ki(x i−1, x i)dx i

i

π̄i−1(dx i−1)
. (2.27)

Let us first consider the numerator. According to (A2), the transformation T (z) = h̃−1
i
(Yi−z)

is Lipschitz with coefficient β and therefore λds
-almost everywhere differentiable according

to Rademacher’s theorem [see e.g., 29, Theorem 11.1, Corollary 11.9]. Let J T denote the

Jacobian of T . Then, by the change of variables with respect to the transformation T , one

has for all ∆ >∆0,

∫

∁Ci(∆)

gi(x i)dx i =

∫

‖z‖>∆
ρVi
(z− h̄i(T (z))) |J T (z)|dz

≤ M2 ‖J T‖∞
∫

‖z‖≥∆
exp
�

−A2





z − h̄i(T (z))






B2

�

dz

≤ M2 ‖J T‖∞
∫

‖z‖≥∆
exp
�

−A2(‖z‖− γ)B2

�

dz
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where the first inequality follows from (A4) and the fact that according to (A2) ‖J T‖∞ <
ds!β

ds <∞. Then, by switching to polar coordinates, one can check that for all ε > 0, there

exists c = c(ε) such that for all ∆ >∆0

∫

∁Ci(∆)

gi(x i)dx i ≤ cexp
�

(−A2+ ε)(∆− γ)B2

�

. (2.28)

Let us then consider the denominator, for which we have

∫

Ci−1(∆)

∫

Ci(∆/t)

gi(y)ki(x , y)dyπ̄i−1(dx)≥

λds
(Ci(∆/t))π̄i−1(Ci−1(∆)) inf

y∈Ci(∆)
z∈Ci−1(∆)

ki(z, y) inf
x∈Ci(∆)

gi(x).

Moreover, according to (A2) and (A4)

inf
x∈Ci(∆/t)

gi(x)≥ m2 inf
x∈Ci(∆/t)

exp
�

−a2





Yi − h̃i(x)− h̄i(x)






b2

�

≥ m2 inf
x∈Ci(∆/t)

exp
�

−a2

�



Yi − h̃i(x)




+




h̄i(x)






�b2
�

≥ m2exp
�

−a2(∆/t + γ)b2

�

. (2.29)

The substitution of (2.28) and (2.29) into (2.27) yields








π̄∆i,i − π̄
∆
i,i−1










TV
≤

cexp
�

(−A2+ ε)(∆− γ)B2 + a2(∆/t + γ)b2

�

α̃i(∆)m2λds
(Ci(∆/t))(1− π̄i−1(∁Ci−1(∆)))

. (2.30)

It should be pointed out that in order to ensure that the numerator converges to zero as

∆→∞ it is required that B2 ≥ b2. On the other hand, (A4) implies B2 ≤ b2 and thus we

must have b2 = B2 which was assumed. Set t = (2a2/ε)
1/B2 which clearly is greater than

one for all ε ∈ (0, a2). It can be shown that there exists c′ = c′(ε) such that

exp
�

(−A2 + ε)(∆− γ)B2 + a2(∆/t + γ)b2

�

≤ c′exp
�

(−A2+ 2ε)(∆− γ)B2

�

. (2.31)

For all x ∈ Bds
(h̃−1

i
(Yi),∆/β0), according to (A2)

∆≥ β0





h̃−1
i
(Yi)− x





≥




Yi − h̃i(x)




 .

Consequently Bds
(h̃−1

i (Yi),∆/β0)⊂ Ci(∆) and therefore

λds
(Ci(∆/t))≥ λds

(Bds
(h̃−1

i
(Yi),∆/β0 t))≥ λds

(Bds
(0,∆0/β0 t)), (2.32)
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where the last inequality uses the assumption that ∆ > ∆0 and the translation invariance

of the Lebesgue measure. By applying Lemma 2.9 to α̃i(∆) and by substituting (2.32) and

(2.31) into (2.30), it follows that there exists c′′ = c′′(ε) such that








π̄∆i,i − π̄
∆
i,i−1










TV
≤ c′′

exp
�

(−A2+ ε)(∆− γ)B2 + a1(L(∆)+ ξi)
b1

�

(1− π̄i−1(∁Ci−1(∆)))
. (2.33)

The claim then follows by substituting this inequality into (2.19) of Corollary 2.8 and by

replacing ξi and ξi+1 with ξi+1,ε which, according to Proposition 2.10, is their common

upper bound.

Proposition 2.11 gives a bound for the distance between the exact filter and the trun-

cated approximation, but according to the discussion in Section 2.3.2, we are also inter-

ested in the distance between two truncated filters with different initial distributions. For

this reason, we have the following result which is adapted from the proof of Proposition 3.1

in [56].

Lemma 2.12. There exists r ∈ (0,∞) such that for all ∆> 0, i > 0, n≥ 0

E





i
∏

j=1

(1− ǫn+ j(∆))

�

�

�

�

�

Fn



≤ (1− ǫ̃(∆))i−1,

where ǫ̃(∆)¬ ǫ(∆, r)/2.

Proof. Because ǫi(∆) ∈ [0,1], i > 0, the claim holds trivially for i = 1. For all i > 1 we

define the shorthand notations τi(∆) = 1− ǫi(∆) and τ(x , y) = 1− ǫ(x , y). Because ξi is

Fi measurable and Fi ⊂Fi+1, i > 0, it follows that τ j(∆) and ǫ j(∆) are Fi measurable for

all i ≥ j > 0. Therefore, for all i > 1 and n≥ 0

E





n+i
∏

j=n+1

τ j(∆)

�

�

�

�

�

Fn



 = E



E
�

τn+i(∆)τn+i−1(∆) | Fn+i−2

�

n+i−2
∏

j=n+1

τ j(∆)

�

�

�

�

�

Fn



 . (2.34)

Because τi(∆) ∈ [0,1], we can write for all ∆, x > 0

τn+i−1(∆)τn+i(∆) = τn+i−1(∆)τn+i(∆)
�

1{τ(∆,x)≥τn+i(∆)} + 1{τ(∆,x)<τn+i(∆)}
�

≤ τn+i−1(∆)
�

τ(∆, x)1{τ(∆,x)≥τn+i(∆)} + 1{τ(∆,x)<τn+i(∆)}
�

= τn+i−1(∆)
�

τ(∆, x) + (1− τ(∆, x))1{τ(∆,x)<τn+i(∆)}
�

≤ τn+i−1(∆)τ(∆, x) + (1−τ(∆, x))1{τ(∆,x)<τn+i(∆)}.
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Therefore,

E
�

τn+i−1(∆)τn+i(∆) | Fn+i−2

�

≤
τ(∆, x)E

�

τn+i−1(∆) | Fn+i−2

�

+ (1−τ(∆, x))pn+i(x), (2.35)

where, by the definition of τ

pn+i(x) ¬ P(τn+i(∆)> τ(∆, x) | Fn+i−2) = P(ξn+i > x | Fn+i−2) = P(ξn+i > x).

It follows from (A3) and (A4) that there exists r ∈ (0,∞) such that pi(r)< 1/4 for all i > 0

and we can define ǫ̃(∆) = ǫ(∆, r)/2. In this case, it follows from (2.35) that for all ∆> 0

E
�

τn+1(∆)τn+2(∆) | Fn

�

≤ τ(∆, r) +
1

4
(1−τ(∆, r))< 1− ǫ̃(∆)

where the first inequality follows from (2.35) and the second inequality is easily checked

to hold according to the definition of ǫ̃(∆). Thus the claim holds for i = 1,2. To complete

the proof, it is assumed that the claim holds for 0 < i < m. Then, by setting i = m+ 1 the

substitution of (2.35) into (2.34) yields

E





n+m+1
∏

j=n+1

τ j(∆)

�

�

�

�

�

Fn



 ≤ τ(∆, r)E





n+m
∏

j=n+1

τ j(∆)

�

�

�

�

�

Fn





+
1

4
(1− τ(∆, r))E





n+m−1
∏

j=n+1

τ j(∆)

�

�

�

�

�

Fn





≤ τ(∆, r)(1− ǫ̃(∆))m−1 +
1

4
(1− τ(∆, r))(1− ǫ̃(∆))m−2

≤ (1− ǫ̃(∆))m.

In order to see how this result is related to the distance between two truncated filters, it

is observed that according to Lemma 2.12

E





i
∏

j=1

(1− ǫn+ j(∆))



≤ (1− ǫ̃(∆))i−1, (2.36)

holds for all ∆ > 0, n≥ 0 and i > 0. By applying (2.36) and Lemma 2.9 to Lemma 2.5, one

has for all i > 0

E

�



π∆
i
− π̄∆

i







TV

�

≤ E





i
∏

j=2

(1− ǫ j(∆))



≤ (1− ǫ̃(∆))i−2. (2.37)
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In other words, under the assumptions (A1), (A2), (A3), and (A4) the truncated filter is

exponentially stable in the mean sense.

2.5 Stability theorem

Because (ξi,ε)i≥0 is an increasing sequence in R, it follows that the bound for




π̄i − π̄∆i






TV

given by Proposition 2.11 is also increasing for a fixed value of ∆. Therefore, following

the discussion in Section 2.3.2, we consider a sequence (π̄∆ j) j≥0 of truncated filters where

π̄∆ j = (π̄
∆ j

i
)i≥0 and (∆ j) j≥0 is an increasing sequence in [∆0,∞). Because (ξi,ε)i≥0 is

nondecreasing, it follows from Proposition 2.11 that a sufficient condition for

lim
i→∞








π̄i − π̄
∆i

i










TV
= 0,

is to have

lim
i→∞

exp
�

(−A2 + ε)(∆i − γ)B2 + 2a1(L(∆i) + ξi+1,ε)
b1

�

i
∑

j=1

(1− π̄ j−1(∁C j−1(∆i)))
−1 = 0,

(2.38)

which implies

lim
i→∞

exp
�

(−A2+ ε)(∆i − γ)B2 + 2a1(L(∆i) + ξi+1,ε)
b1

�

= 0. (2.39)

We immediately observe that if b1 > B2, (2.39) does not hold for any increasing sequence

(∆i)i≥0. This is an important observation because it implies that our approach for proving

the filter stability is fruitless for filter frameworks where b1 > B2. In the case b1 ≤ B2, (2.39)

can be shown to hold under some additional conditions.

The following result gives a bound for the distance between the exact filter and the

truncated approximations with time dependent truncation radius. Moreover, it follows from

the proof that a sufficiently fast convergence in (2.39) implies (2.38).

Lemma 2.13. If b2 = B2 and (∆i)i≥0 is a sequence in R
+

such that

lim
i→∞

exp
�

(−A2 + ε)(∆i − γ)B2 + 2a1(L(∆i) +ξi+1,ε)
b1

�

= 0, P-a.s. (2.40)

where ε ∈ (0,min(a1, a2,A1,A2)), then there exists a positive random variable c5 = c5(ε, π̄0)

such that for all i > 0








π̄i − π̄
∆i

i










TV
≤ c5iexp

�

(−A2+ ε)(∆i − γ)B2 + 2a1(L(∆i) + ξi+1,ε)
b1

�

, P-a.s.
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Proof. If (2.40) holds, then limi→∞ C0(∆i) = R
ds and by the continuity of measures

lim
i→∞

π̄0(∁C0(∆i)) = 1− π̄0(R
ds) = 0.

Thus there clearly exists Nε,π̄0
∈ N, such that for all i > Nε,π̄0

π̄0(∁C0(∆i))<
ε

1+ ε
(2.41)

and

c′′exp
�

(−A2 + ε)(∆i − γ)B2 + 2a1(L(∆i) + ξi+1,ε)
b1

�

≤
ε

(1+ ε)2
, (2.42)

where c′′ is the constant appearing in (2.33). Then, according to (2.33), for all 0 < j ≤ i,

where i > Nε,π̄0
,

π̄ j(∁C j(∆i))≤
c′′exp

�

(−A2 + ε)(∆i − γ)B2 + a1(L(∆i) + ξ j)
b1

�

1− π̄ j−1(∁C j−1(∆i))

≤
c′′exp

�

(−A2 + ε)(∆i − γ)B2 + 2a1(L(∆i) +ξi+1,ε)
b1

�

1− π̄ j−1(∁C j−1(∆i))

≤
ε

(1+ ε)2(1− π̄ j−1(∁C j−1(∆i)))
. (2.43)

Because (2.41) is equivalent to 1/(1− π̄0(∁C0(∆i)))< 1+ ε, it follows that

π̄1(∁C1(∆i))≤
ε

1+ ε
.

By induction, it then follows that for all 0< j ≤ i, one has π̄ j(∁C j(∆i))≤ ε/(1+ ε), i.e.

1

1− π̄ j(∁C j(∆i))
< 1+ ε.

Therefore, according to Proposition 2.11, for all i > Nε,π̄0
,








π̄i − π̄
∆i

i










TV
≤ c4

i
∑

j=1

(1+ ε)exp
�

(−A2 + ε)(∆i − γ)B2 + 2a1(L(∆i) + ξ j+1,ε)
b1

�

≤ c4(1+ ε)iexp
�

(−A2+ ε)(∆i − γ)B2 + 2a1(L(∆i) + ξi+1,ε)
b1

�

(2.44)

which yields the claim.
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Let us consider the case B2 = b1. In this case, a necessary condition for (2.40) is that

sup
i≥0

ξi+1,ε

∆i

<∞.

According to Proposition 2.10, this implies the existence of c > 0 such that ∆
B1

i
> c ln(i+1),

for all i ≥ 0. Such a constant exists if ∆i , i > 0 is defined to be of the form

∆i = (s ln i+∆
B1

0 )
1/B1 , (2.45)

where s > 0. Thus in order to prove the stability according to the discussion in Section 2.3.2,

it is sufficient to show that s can be chosen in such a manner that the convergence in (2.40)

is sufficiently fast and that

lim
i→∞








π
∆i

i
− π̄∆i

i










TV
= 0. (2.46)

According to the following result, (2.46) holds if s is sufficiently small.

Proposition 2.14. Suppose that ∆
B1

i
= s ln i +∆

B1

0 , where s−1 > a1(αβ + β)
B1 and b1 = B1.

Then for all p ∈ (0,1− sa1(αβ + β)
b1) and ε ∈ (0, m1/2M1), there exists a positive random

variable c6 = c6(ε, p) such that








π
∆i

i
− π̄∆i

i










TV
≤ c6exp

�

(−m1/2M1 + ε)i
p
�

, P-a.s. (2.47)

Proof. By using the inequality (1− a)≤ exp(−a), it can be shown that for all i > 1

(1− ǫ̃(∆i))
i−2 ≤ exp

�

−
m1

2M1

i1−qi

�

exp

�

m1

M1

i−qi

�

,

where

qi = sa1(αβ +β)
b1

 

1+
∆

B1

0

s ln i

!

�

1+
(αβ + β)γ+ δ+ r

(αβ +β)∆i

�b1

.

Because, clearly qi > sa1(αβ +β)
b1 , it follows that

sup
i>1

exp

�

m1

M1

i−qi

�

<∞.

Also, because limi→∞ 1− qi = 1− sa1(αβ + β)
b1 , it follows that there exists c = c(p) > 0

such that for all i > 0

(1− ǫ̃(∆i))
i−2 ≤ cexp

�

−
m1

2M1

ip

�

, (2.48)
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where 0< p < 1− sa1(αβ +β)
b1 . Thus, according to (2.37) and (2.48)

E

�






π
∆i

i
− π̄∆i

i










TV

�

≤ (1− ǫ̃(∆i))
i−2 ≤ cexp

�

−
m1

2M1

ip

�

.

Therefore, for all ε ∈ (0, m1/2M1),

E





∞
∑

i=1

exp

��

m1

2M1

− ε
�

ip

�







π
∆i

i − π̄
∆i

i










TV



 ≤
∞
∑

i=1

cexp(−εip)<∞,

and thus there exists a positive random variable c6 such that

c6 ¬ sup
i>0

exp

��

m1

2M1

− ε
�

ip

�







π
∆i

i − π̄
∆i

i










TV
<∞ P-a.s.

Before stating the main stability result, we define θ : R
+
×R

+
→ R as

θ(x , y)¬ 2

 

y1/b1 +

�

a1

A1

�1/b1

+
a

1/b1

1 (αβ +β)

x1/b1

!b1

−
x y

a1(αβ +β)
b1

,

and θ1 : R
+
→ R as θ1(x) ¬ θ(x , 1). Clearly θ1 is continuous, strictly decreasing, and

lim
x→0
θ1(x) = − lim

x→∞
θ1(x) =∞,

and therefore we can also define κp ¬ θ
−1
1 (−p). Moreover, we write

∆i(s) ¬ (s ln i +∆
B1

0 )
1/B1 ,

in order to explicitly illustrate the fact that the truncation radii depend on s.

Theorem 2.15. If one of the conditions

(i) b1 = B1 < b2 = B2;

(ii) b1 = B1 = b2 = B2, and A2 > κ1,

holds, then

lim
i→∞





πi − π̄i







TV
= 0, P-a.s. (2.49)

Proof. Let us write,

κ(ε, i, s) ¬ (−A2+ ε)

�

1−
γ

∆i(s)

�B2

+ 2a1(αβ + β)
b1

�

1+
γ

∆i(s)

�b1
�

1+
δ+ξi+1,ε

(αβ + β)(∆i(s) + γ)

�b1

∆i(s)
b1−B2 . (2.50)
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In this case, according to Proposition 2.14 and Lemma 2.13, it suffices to show that there

exists 0< s < a−1
1 (αβ +β)

−b1 and a sufficiently small ε > 0 such that

lim
i→∞

iexp
�

κ(ε, i, s)∆i(s)
B2

�

= lim
i→∞

exp

��

ln i

∆i(s)
B2
+ κ(ε, i, s)

�

∆i(s)
B2

�

= 0. (2.51)

Because supi>0∆i(s) =∞, it suffices to show that

lim
ε→0

lim
i→∞

s ln i

∆i(s)
B2
+ sκ(ε, i, s) = lim

ε→0
lim
i→∞

s ln i
�

s ln i +∆
B1

0

�B2/B1

+ sκ(ε, i, s) < 0. (2.52)

From Proposition 2.10 we have

lim
i→∞

ξi+1,ε

(αβ +β)(∆i(s) + γ)
=











1

s1/B1(A1 − ε)1/B1(αβ +β)
+

1

s1/B1(A2 − ε)1/B1

if B1 = B2

1

s1/B1(A1 − ε)1/B1(αβ +β)
if B2 > B1.

(2.53)

It then follows from (2.50), (2.52), and (2.53), that

lim
ε→0

lim
i→∞

s ln i

∆i(s)
B2
+ sκ(ε, i, s) =







1+ θ(A2, sa1(αβ +β)
b1) if b1 = B2

−sA2 if b1 < B2.
(2.54)

Therefore, (2.52) holds for all 0 < s < a−1
1 (αβ + β)

−b1 , if b1 < B2, which completes the

proof for the case (i). Let us then consider the case (ii). Because θ1 is decreasing and

A2 > κ1, one has θ1(A2) < θ1(κ1) = −1 implying that θ(A2, 1) + 1 < 0. Moreover, because

θ(A2, · ) is continuous, there exists x∗ < 1 such that θ(A2, x∗)+1< 0. The inequality (2.52)

then holds for s = x∗/a1(αβ +β)
b1 .

It is also possible to establish rates for the convergence in (2.49) according to the fol-

lowing corollary.

Corollary 2.16. If one of the conditions

(i) b1 = B1 < b2 = B2 and A2 > p(a
1/B1

1 (αβ + β))B2;

(ii) b1 = B1 = b2 = B2 and A2 > κp

holds, then there exists a positive random variable c7 such that for all i > 0





πi − π̄i







TV
≤ c7iexp

�

−p(ln i)B2/B1

�

, P-a.s. (2.55)
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Proof. Similarly as in the proof of Theorem 2.15, for all p > 0

lim
ε→0

lim
i→∞

sp(ln i)B2/B1

∆i(s)
B2

+ sκ(ε, i, s) =







p+ θ(A2, sa1(αβ + β)
B1) if b1 = B2

ps1−B2/B1 − sA2 if b1 < B2.
(2.56)

If A2 > κp, then θ1(A2) < θ1(κp) = −p, implying θ(A2, 1) + p < 0. By the continuity of

θ(A2, · ), there exists s < a−1
1 (αβ + β)

−B1 such that θ(A2, sa1(αβ + β)
B1) + p < 0. Thus, in

the case (i), s can be chosen such that the limit in (2.56) is negative. In the case (ii), one

can choose s ∈ ((A2/p)
−B1/B2 , a−1

1 (αβ+β)
−B1) which is nonempty. Also in this case, one can

check that the limit in (2.56) is negative. The negativity of this limit implies the existence

of ε > 0 and c > 0 such that for all i > 0

exp
�

κ(ε, i, s)∆i(s)
B2

�

≤ cexp
�

−p(ln i)B2/B1

�

.

Then, according to Proposition 2.14 and Lemma 2.13, there exist c5, c̄5, c6 > 0 such that





πi − π̄i







TV
≤




πi −π
∆i(s)

i







TV
+




π
∆i(s)

i
− π̄∆i(s)

i







TV
+




π̄i − π̄
∆i(s)

i







TV

≤ c5 iexp
�

−p(ln i)B2/B1

�

+ c6exp
�

(−m1/2M1 + ε)i
q
�

+ c̄5 iexp
�

−p(ln i)B2/B1

�

,

where q ∈ (0,1− sa1(αβ +β)
B1), from which the claim follows.

Note that in the case (ii), the rate of convergence can be written as





πi − π̄i







TV
≤ c7i−p+1, P-a.s.

It should also be noted that regarding the stability, (i) in Corollary 2.16 does not impose

any restrictions on A2 in addition to the positivity. This is because for all A2 > 0, there exists

p > 0 such that (i) holds, and the right hand side of (2.55) is convergent for all p > 0 if

B2 > B1. On the other hand, in the case (ii) the convergence holds only if p > 1. Because

κp as a function of p is continuous and increasing, there exists p > 1 such that A2 > κp if

and only if A2 > κ1, which is consistent with Theorem 2.15.





Chapter 3

Uniform convergence

This chapter establishes sufficient conditions for the uniform convergence of two classes of

filter approximations. The convergence is considered in the sense of (2.11) and (2.12). The

first class of filter approximations consists only of the truncated filter described in Chapter 2

and the motivation for proving the uniform convergence in this case is purely theoretical.

This is because in general, the truncated filter is intractable and therefore it is not of any

practical interest. The theoretical significance is due to the fact that if the truncated filter is

uniformly convergent, then any uniform approximation of the truncated filter is a uniform

approximation of the exact filter as well. Therefore the second class of filter approximations

for which the uniform convergence is proved consists of uniformly convergent approxima-

tions of the truncated filter that can be parameterised such that the approximation error

converges to zero as ∆→∞. This class of filter approximations is characterised by a set of

properties that the approximating algorithm is assumed to have. These properties are gen-

eral and they do not imply any specific filter approximation algorithm, but it is shown that

for example a certain feasible SIR filter type algorithm has these properties and therefore it

is uniformly convergent.

This chapter is organised as follows. In Section 3.1, some preliminary results are given

accompanied by a theorem which establishes easily verifiable sufficient conditions for the

uniform convergence of the truncated filter with respect to the truncation radius. In Section

3.2, the set of approximating algorithms is specified by introducing some properties that the

approximating algorithm is assumed to have. Moreover, the main result on the uniform con-

vergence is stated as well as a practical corollary which establishes the uniform convergence

of certain point estimates. In Section 3.3, the set of uniformly convergent filter approxima-

tions is exemplified by introducing a feasible SIR filter type algorithm which is shown to

43
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satisfy the conditions for uniform convergence. The chapter is concluded in Section 3.4

where the uniform convergence results are illustrated by some computer simulations.

3.1 Uniformly convergent approximation by truncation

The upper bound of the truncation error provided by Proposition 2.11 increases without

bound as i →∞ for a fixed ∆ > 0. Therefore Proposition 2.11 cannot be used for proving

the uniform convergence of π∆. Because of this observation it is natural to ask whether the

bound of Proposition 2.11 is unnecessarily loose or is it in fact the case that the approxima-

tion error of π∆ does not converge uniformly to zero as ∆→∞. Unfortunately the second

alternative appears to be the case in general as illustrated by the following example.

Example 3.1. Let N
�

x , y
�

denote the normal distribution with mean x and covariance y

and let σ2
∞ denote the posterior variance of a time invariant Kalman filter [see e.g., 2] for the

model

X i = aX i−1 +Wi

Yi = X i + Vi ,

where Wi ∼ N
�

0, σ2
S

�

, Vi ∼ N
�

0, σ2
M

�

independently and 0 < a < 1. If X0 ∼ N
�

0, σ2
∞
�

,

then for all i > 0

πi = N
�

aX̂ i−1 + cK(Yi − aX̂ i−1), σ
2
∞
�

,

where cK = (a
2σ2
∞ +σ

2
S
)/(a2σ2

∞ +σ
2
S
+σ2

M
) is the time invariant Kalman gain and X̂ i is the

mean of πi . By defining Zi = Yi − aX̂ i−1, it follows that





πi −π∆i






TV
≥ πi(∁Ci(∆)) =

∫ Yi−∆

−∞
dπi +

∫ ∞

Yi+∆

dπi

= Φ(Zi(1− cK)−∆; 0, σ2
∞)−Φ(Zi(1− cK) +∆; 0, σ2

∞) + 1,

where Φ( · ; x , y) denotes the distribution function of N
�

x , y
�

. Clearly, for all ∆> 0

lim
|z|→∞

Φ(z(1− cK)−∆; 0, σ2
∞)−Φ(z(1− cK) +∆; 0, σ2

∞) = 0

and therefore, for all 0 < ε < 1, there exists z∗(ε) > 0, such that




πi −π∆i






TV
> 1 − ε,

whenever
�

�Zi

�

� > z∗(ε). In the literature, the random variable Zi is commonly referred to as

the innovation and it can be shown that Zi are mutually independent random variables with
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common distribution N
�

0, a2σ2
∞ +σ

2
S
+σ2

M

�

. Therefore,

P

��

�Zi

�

�> z∗(ε)
�

= 2Φ(−z∗(ε); 0, a2σ2
∞ +σ

2
S
+σ2

M
)> 0,

and it follows by the Borel-Cantelli lemma that almost surely




πi −π∆i






TV
> 1−ε for infinitely

many i > 0. This implies that

sup
i>0





πi −π∆i






TV
> 1− ε, P-a.s.

Because this holds for all 0< ε < 1, it follows that

sup
i>0





πi −π∆i






TV
= 1, P-a.s.

From this we conclude that π∆ cannot converge almost surely to π in a uniform manner.

The preceding example shows that in general π∆ does not satisfy

lim
∆→∞

sup
i>0





πi −π∆i






TV
= 0, P-a.s., (3.1)

but it will be shown later by Proposition 3.4 that under some assumptions

lim
∆→∞

sup
i>0

E

�



πi −π∆i






TV

�

= 0 (3.2)

holds. Therefore the significance of Example 3.1 is twofold. Firstly, it shows that the almost

sure uniform convergence in (3.1) is genuinely stronger than the uniform convergence in

(3.2) in the sense that by the dominated convergence theorem (3.1) implies (3.2) but ac-

cording to Example 3.1 the converse implication does not hold. Secondly, it shows the

futility of trying to find room for improvements in the proof of (3.2) in order to establish

(3.1).

Let us then turn to the proof of (3.2). Similarly as the proof of the filter stability, the

proof of (3.2) is based on Proposition 2.7 and bounding α̃i(∆) from below by ǫ(∆,ξi) but

otherwise the approach is somewhat different. In the previous chapter ξi was bounded

from above according to Proposition 2.10 which gave an upper bound for ε(∆,ξi) in the

almost sure sense. Here, instead of bounding ξi we derive upper bounds for the tails of

the distribution of ξi . This enables us to bound the expectations of nonnegative functions

of ξi from above. It should be pointed out that the analysis in [56] is similarly based on

bounding the distribution of ξi instead of using the almost sure bounds for ξi . Therefore
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many similarities between the following analysis and [56] can be found. Let us start with

the following result.

Lemma 3.2. Suppose that aA, aB, bA, bB > 0. If fA, fB : R → R
+

satisfy fA(x) = fB(x) = 0

for all x < 0 and

sup
x≥0

fA(x)exp
�

ax bA

�

<∞

sup
x≥0

fB(x)exp
�

a′x bB

�

<∞
(3.3)

for all a < aA, a′ < aB, then

sup
x≥0

( fA ∗ fB)(x)exp
�

axB
�

<∞

for all a < A, where B =min(bA, bB) and

A=











aAaB

�

aA
1/B + aB

1/B
�−B

if bA = bB

aA if bA < bB

aB if bA > bB.

Proof. According to (3.3), fA and fB are bounded and integrable, implying that fA ∗ fB is

bounded. Therefore the claim holds for a ≤ 0. Fix a′′ < a < aA and a′′′ < a′ < aB.

According to (3.3), there exists c > 0 such that, for all t ∈ (0,1) and y ≥ 0

( fA ∗ fB)(y)≤ c

∫ t y

0

exp
�

−a(y − x)bA − a′x bB

�

dx + c

∫ y

t y

exp
�

−a(y − x)bA − a′x bB

�

dx .

(3.4)

For the first integral one has

∫ t y

0

exp
�

−a(y − x)bA − a′x bB

�

dx ≤ exp
�

−a(1− t)bA y bA

�

∫ ∞

0

exp
�

−a′x bB

�

dx , (3.5)

and because a′′′ < a′, there can be shown to exist c′ > 0 such that the second integral

satisfies

∫ y

t y

exp
�

−a(y − x)bA − a′x bB

�

dx <

∫ ∞

t y

exp
�

−a′x bB

�

dx < c′exp
�

−a′′′t bB y bB

�

. (3.6)

By the substitution of (3.5) and (3.6) into (3.4), it follows that there exists c′′ > 0 such that

( fA ∗ fB)(y)≤ c′′exp
�

−a(1− t)bA y bA

�

+ c′′exp
�

−a′′′t bB y bB

�

. (3.7)

Consider the case bA < bB. Because convolution commutes, bA and bB are interchangeable
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and the same reasoning applies to the case bB < bA as well. Because a′′ < a, we can take

t ∈ (0,1− (a′′/a)1/bA ). In this case, it is easy to check that

sup
y≥0

exp
�

−a(1− t)bA y bA + a′′ y bA

�

+ exp
�

−a′′′t bB y bB + a′′ y bA

�

<∞,

and thus, by (3.7), the claim holds for bA 6= bB. In the case bA = bB = B, we choose

t = aA
1/B/(aA

1/B + aB
1/B). In this case, aA(1− t)B = aB tB = A and therefore, for all a′′′′ < A,

we can choose a ∈ (a′′′′(1− t)−B, aA) and a′′′ ∈ (a′′′′t−B, aB). The substitution of a and a′′′

in (3.7) yields

( fA ∗ fB)(y)≤ 2c′′exp
�

−a′′′′ yB
�

.

In order to apply this result to bounding the distribution of ξi , we define

A3 ¬







A1A2

�

A
1/B1

1 (αβ +β) + A
1/B1

2

�−B1

if B1 = B2

A1 if B1 < B2.

In this case, we have the following proposition, which essentially states the conclusion of

Lemma 3.2 in a form more suitable for our purposes.

Proposition 3.3. For all a < A3, and i > 1

sup
x≥0

ρξi
(x)exp

�

axB1

�

<∞. (3.8)

Proof. By the associativity of the convolution operation, ρξi
= ((ραβ‖Vi−1‖ ∗ρβ‖Vi‖)∗ρ‖Wi‖).

Moreover, ραβ‖Vi‖(x) = ρ‖Vi‖(x/αβ)/αβ and ρβ‖Vi‖(x) = ρ‖Vi‖(x/β)/β . Thus, according

to (A3) and (A4), one has for all ε > 0, and i > 0

sup
x≥0

ρ‖Wi‖(x)exp
�
�

A1 − ε
�

xB1

�

<∞

sup
x≥0

ρβ‖Vi‖(x)exp

��

A2

βB2
− ε
�

xB2

�

<∞

sup
x≥0

ραβ‖Vi‖(x)exp

��

A2

(αβ)B2
− ε
�

xB2

�

<∞

and, according to Lemma 3.2, for all i > 1 and ε > 0

sup
x≥0

(ραβ‖Vi−1‖ ∗ρβ‖Vi‖)(x)exp
��

A2/(αβ +β)
B2 − ε

�

xB2

�

<∞.

The claim follows by applying Lemma 3.2 once more to the convolution of ραβ‖Vi−1‖∗ρβ‖Vi‖
and ρ‖Wi‖.
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By defining

A∗
2
¬






2+

 

1+
a

1/b1

1

A
1/b1

3

!b1






a1(αβ +β)

b1 ,

we are ready to prove the uniform convergence of the truncated filter according to the

following theorem, which can be regarded as a refinement of the Proposition 3.4 in [56].

Theorem 3.4. If one of the following conditions

(i) b1 = B1 < B2;

(ii) b1 = B1 = B2 and A2 > A∗
2
,

holds, then there exists c8, c9 > 0 such that for all i ≥ 0

E

�



πi −π∆i






TV

�

≤ c8exp
�

−c9∆
B1

�

. (3.9)

Proof. Let us write

Ji(∆) =min









1,








π∆i,i −π∆i,i−1










TV

ǫi+1(∆)









.

Because Ji(∆) is Fi+1-measurable, it follows from Proposition 2.7, Lemma 2.9, and Lemma

2.12 that

E

�



πi −π∆i






TV

�

≤
i
∑

j=1

E



E





i
∏

n= j+2

(1− ǫn(∆))

�

�

�

�

�

F j+1



 J j(∆)





=

i
∑

j=1

E



E





i− j−1
∏

n=1

(1− ǫn+ j+1(∆))

�

�

�

�

�

F j+1



 J j(∆)





≤
i
∑

j=1

(1− ǫ̃(∆))(i− j−2)+
E

�

J j(∆)
�

, (3.10)

where ( · )+ ¬ max(0, · ). Next we derive an upper bound for E

�

J j(∆)
�

which is independ-

ent of j and therefore can be brought outside the summation. For the remaining sum, it

follows by the convergence of geometric series that

i
∑

j=1

(1− ǫ̃(∆))(i− j−2)+ ≤ 2+
1

ǫ̃(∆)
. (3.11)

It can be shown that for all ε > 0 there exists c = c(ε) > 0 such that for all ∆ > ∆0 and
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i > 0 one has

ηε(∆) ¬ cexp
�

(−A2 + ε)(∆− γ)B2

�

≥
∫

‖y‖>∆−γ
ρVi
(y)dy.

Moreover, it is elementary to show that for all u, v ≥ 0,

min(1,uv) ≤min(1,u) +min(1, v). (3.12)

Therefore, by applying (3.12) to E
�

Ji(∆)
�

, one has

E
�

Ji(∆)
�

≤ E









min









1,








π∆i,i −π∆i,i−1










TV

ηε(∆)
q









+min

�

1,
ηε(∆)

q

ǫi+1(∆)

�









, (3.13)

where q ∈ R. According to Lemma 2.3(i),








π∆i,i −π∆i,i−1










TV
= πi(∁Ci(∆)), and therefore

E









min









1,








π∆i,i −π∆i,i−1










TV

ηε(∆)
q

















≤ E
















π∆i,i −π∆i,i−1










TV

ηε(∆)
q









=
E
�

πi(∁Ci(∆))
�

ηε(∆)
q

. (3.14)

Moreover, according to (2.4), for all i > 0

E
�

πi(∁Ci(∆))
�

= E






E







∫

∁Ci(∆)
gi,Yi

dπi−1Ki

∫

gi,Yi
dπi−1Ki

�

�

�

�

�

�

Yi−1













= E







∫







∫

∁Ci(∆)
gi,y dπi−1Ki

∫

gi,y dπi−1Ki

∫

gi,y dπi−1Ki





dy







= E





∫





∫

∁Ci(∆)

gi,y dπi−1Ki



dy





= E

�∫ �∫

gi,y(x)1∁Di(∆)
(x , y)dy

�

πi−1Ki(dx)

�

, (3.15)

where Di(∆) ¬ {(x , y) ∈ Rds × Rdm | ‖y − h̃i(x)‖ ≤ ∆}, and the last equality follows from

Fubini’s theorem. By the change of variable, the inner integral satisfies

∫

gi,y(x)1∁Di(∆)
(x , y)dy =

∫

1∁Di(∆)
(x , z + hi(x))ρVi

(z)dz ≤
∫

‖z‖>∆−γ
ρVi
(z)dz ≤ ηε(∆),

(3.16)
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where the first inequality follows from the observation that

‖z‖+ γ≥ ‖z‖+




h̄i(x)




≥




z + h̄i(x)




 ,

and therefore

1∁Di(∆)
(x , z + h(x)) = 1{(x ,z)|‖z+h̄i(x)‖>∆}(x , z)≤ 1{(x ,z)|‖z‖>∆−γ}(x , z).

By putting (3.14), (3.15), and (3.16) together one has

E









min









1,








π∆i,i −π∆i,i−1










TV

ηε(∆)
q

















≤ ηε(∆)1−q = c1−qexp
�

(1− q)(−A2+ ε)(∆− γ)B2

�

.

(3.17)

Let us then consider the second integral in (3.13). According to Proposition 3.3 for all i > 0

E

�

min

�

1,
ηε(∆)

q

ǫi+1(∆)

��

=

∫ ∞

0

min

�

1,
ηε(∆)

q

ǫ(∆, x)

�

ρξi+1
(x)dx

≤ c′
∫ θ∆

0

ηε(∆)
q

ǫ(∆, x)
exp
�

(−A3 + ε)x
B1

�

dx

+ c′
∫ ∞

θ∆

exp
�

(−A3 + ε)x
B1

�

dx

≤ c′
∫ ∞

0

exp
�

(−A3+ ε)x
B1

�

dx
ηε(∆)

q

ǫ(∆,θ∆)

+ c′′exp
�

(−A3+ 2ε)(θ∆)B1

�

, (3.18)

where the second inequality follows from the fact that ηε(∆)
q/ǫ(∆, · ) is nondecreasing.

Therefore, by combining (3.10), (3.11), (3.17), and (3.18), one has

E

�



πi −π∆i






TV

�

≤
�

2+
1

ǫ̃(∆)

��

ηε(∆)
1−q +

c′′′ηε(∆)
q

ǫ(∆,θ∆)
+ c′′exp

�

(−A3+ 2ε)(θ∆)B1

�

�

.

In order to prove the claim, it then remains to show that each of the terms

ηε(∆)
1−q

ǫ̃(∆)
∝ exp

�

(1− q)(−A2+ ε)(∆− γ)B2 + a1(L(∆)+ r)b1

�

ηε(∆)
q

ǫ̃(∆)ǫ(∆,θ∆)
∝ exp

�

q(−A2+ ε)(∆− γ)B2 + a1(L(∆)+ r)b1 + a1(L(∆)+ θ∆)
b1

�

exp
�

(−A3 + 2ε)(θ∆)B1
�

ǫ̃(∆)
∝ exp

�

(−A3 + 2ε)(θ∆)B1 + a1(L(∆)+ r)b1

�

,
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converges to zero at appropriate rate, as ∆→∞. In the case (i) this holds if θ is sufficiently

large, and ε is sufficiently close to zero. In the case (ii), ε must be sufficiently close to zero

and (q,θ) must be a solution of







(1− q)A2 > a1(αβ +β)
b1

qA2 > a1(αβ +β + θ)
b1 + a1(αβ +β)

b1

A3θ
B1 > a1(αβ +β)

b1 ,

One can check that a solution to this system of inequalities exists if A2 > A∗
2
.

3.2 Uniform convergence theorem

In this section, we consider an approximation π̃∆ of π∆ and show that under certain condi-

tions this approximation is uniform and that the error of π̃∆ converges to zero as ∆→∞.

Therefore, provided that the conditions of Theorem 3.4 are satisfied, π̃∆ is a uniformly

convergent approximation of π as well. For this purpose, we define Y ¬
⋃

i≥0Yi and

H ¬ (Hi)i≥0, such that H is a nondecreasing sequence of sub-σ-fields Hi ⊂ F satisfying

H0 = Y . Moreover, we let K∆
i

denote the restriction of Ki to the set Ci(∆), i.e. for all

x ∈ Rds and A∈ B(Rds), one has K∆
i
(x ,A) = Ki(x , Ci(∆)∩ A). Note that K∆

i
(x , · ) is a finite

measure but not necessarily a probability measure onB(Rds).

The following assumptions are made about π̃∆:

(A5) For all i ≥ 0, π̃∆
i

isHi -measurable, π̃∆
0
= π0 and

π̃∆
i
= g∆

i
· ν∆

i
, (3.19)

where ν∆
i
∈ MF(B(Rds)) and 0< ν∆

i
(g∆

i
) <∞, P-a.s.

(A6) There exist a4, M4 > 0 such that for all ∆>∆0 and i > 0

sup
‖ϕ‖∞≤1

E

��

�π̃∆
i−1

K∆
i
(ϕ)− ν∆

i
(ϕ)
�

�

�

� Hi−1

�

≤ M4exp
�

−a4∆
b2

�

.

Moreover, the following additional assumption about the filter framework is considered:

(A4’) For all x ∈ Rds ,

ρX0/β
(x)≤ M2exp

�

−A2 ‖x‖B2

�

,

where ρX0/β
is the density of the random variable X0/β with respect to λds

.
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Note that (A4’) is only related to the filter framework and therefore it does not impose any

additional restrictions on the approximating algorithm. Moreover, (A4’) is not crucial for

the proof of convergence but under this assumption, explicit rates for convergence can be

obtained.

In the proof of the main theorem on the uniform convergence, the following general

result is needed [see also 56, Lemma 5.2]:

Lemma 3.5. Suppose that K is a random transition probability in Rds ×B(Rds) and that µ

and ν are random probability measures on B(Rds) with a random support C ∈ B(Rds) such

that αC(K) is G -measurable where G ⊂ F . Let ψ and θ be bounded, nonnegative random

functions such that µ(ψ) and ν(θ) are positive random variables. Then,

(i)
1

2
sup
‖ϕ‖∞≤1

E

��

�µK(ϕ)− νK(ϕ)
�

�

�

� G
�

≤ (1−αC (K)) sup
‖ϕ‖∞≤1

E

��

�µϕ− νϕ
�

�

�

� G
�

;

(ii)
1

2
sup
‖ϕ‖∞≤1

E

��

�(ψ ·µ)(ϕ)− (θ · ν)(ϕ)
�

�

�

� G
�

≤ sup
‖ϕ‖∞≤1

E





�

�µ(ψϕ)− ν(θϕ)
�

�

µψ

�

�

�

�

�

G


.

Proof. To prove (i), it is observed that for all x ∈ C

�

�µK(ϕ)− νK(ϕ)
�

�=
�

�µ(Kϕ− Kϕ(x))− ν(Kϕ− Kϕ(x))
�

�

≤

�

�

�

�

�

µ(Kϕ− Kϕ(x))




1C (Kϕ− Kϕ(x))






∞
−

ν(Kϕ− Kϕ(x))




1C (Kϕ− Kϕ(x))






∞

�

�

�

�

�

× sup
‖ϕ̄‖∞≤1





1C (Kϕ̄− Kϕ̄(x))






∞ ,

and

sup
‖ϕ̄‖∞≤1





1C (Kϕ̄− Kϕ̄(x))






∞ ≤ sup
x ,z∈C

‖ϕ̄‖∞≤1

�

�Kϕ̄(z)− Kϕ̄(x)
�

�

= 2 sup
x ,z∈C

A∈B(Rds )

|K(z,A)− K(x ,A)|= 2(1−αC (K)).

Because αC (K) is G -measurable, the claim follows by taking conditional expectations. To

prove (ii) it is observed that [see e.g., 15, 47],

�

�(ψ · µ)(ϕ)− (θ · ν)(ϕ)
�

�≤
�

�µ(ψϕ)− ν(θϕ)
�

�

µψ
+




ϕ






∞

�

�µψ− νθ
�

�

µψ
. (3.20)
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Because

E





�

�µψ− νθ
�

�

µψ

�

�

�

�

�

G


≤ sup
‖ϕ‖∞≤1

E





�

�µ(ψϕ)− ν(θϕ)
�

�

µψ

�

�

�

�

�

G


 ,

the claim follows by taking conditional expectations in (3.20) and by using the fact that




ϕ






∞ ≤ 1.

By defining

a∗
4
¬ 2





1+

 

1+
a

1/b1

1

A
1/b1

3

!b1





 a1(αβ +β)
b1 + a2,

we are ready to state the main result regarding the uniform convergence.

Theorem 3.6. If one of the following conditions holds:

(i) b1 = B1 < B2 ≤ b2 and a2 < a4;

(ii) b1 = B1 = B2 < b2, a2 < a4, and A∗
2
< A2;

(iii) b1 = B1 = B2 = b2, a∗
4
< a4, and A∗

2
< A2;

then

lim
∆→∞

E





 sup
‖ϕ‖∞≤1

E

��

�πiϕ− π̃∆i ϕ
�

�

�

� Yi

�





= 0. (3.21)

If in addition (A4’) holds, then there exists c10, c11 > 0 such that

E






sup
‖ϕ‖∞≤1

E

��

�πiϕ− π̃∆i ϕ
�

�

�

� Yi

�






≤ c10exp

�

−c11∆
B1

�

. (3.22)

Proof. The proof is based on similar principles as the proof of the filter stability in Chapter 2.

Therefore, following the definition of π∆
i, j

in (2.15), we define for all i ≥ j ≥ 0,

π̃∆
i, j
¬ Q∆

j+1,i
(π̃∆

j
). (3.23)

Accordingly, π̃∆
i,i
= π̃∆

i
and π̃∆

i,0
= π∆

i
. By the triangle inequality,

E






sup
‖ϕ‖∞≤1

E

��

�πiϕ− π̃∆i ϕ
�

�

�

� Yi

�






≤ E






sup
‖ϕ‖∞≤1

E

��

�πiϕ−π∆i ϕ
�

�

�

� Yi

�







+ E






sup
‖ϕ‖∞≤1

E

��

�π̃∆
i
ϕ−π∆

i
ϕ
�

�

�

� Yi

�






. (3.24)
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π̃∆
2,2

Q∆3 // · · ·

π̃∆
1,1

Q∆2 //

>>||||||||

π̃∆
2,1

Q∆3 // · · ·

π̃∆
0,0

Q∆1 //

Q1
!!C

CC
CC

CC
C

>>||||||||

π̃∆
1,0

Q∆2 // π̃∆
2,0

Q∆3 // · · ·

π1,1

Q∆2 //

Q2 ""E
EE

EE
EE

E
π2,1

Q∆3 // · · ·

π2,2

Q∆3 // · · ·

Figure 3.1: The exact filter and its approximations.

See also Figure 3.1 for illustration. For the first expectation on the right hand side of (3.24),

one has

E






sup
‖ϕ‖∞≤1

E

��

�πiϕ−π∆i ϕ
�

�

�

� Yi

�






≤ E






sup
‖ϕ‖∞≤1

�

�πiϕ−π∆i ϕ
�

�






= 2E

�



πi − π̃∆i






TV

�

.

(3.25)

According to Theorem 3.4, E

�



πi −π∆i






TV

�

is uniformly convergent to zero as ∆→∞ for

all cases (i), (ii), and (iii). Therefore it suffices to consider only the second term on the right

hand side of (3.24). Because for all i, j > 0, Yi ⊂H j , one has

sup
‖ϕ‖∞≤1

E

��

�π̃∆
i
ϕ−π∆

i
ϕ
�

�

�

� Yi

�

≤
i
∑

j=1

sup
‖ϕ‖∞≤1

E

�

E

��

�

�π̃∆i, jϕ− π̃
∆
i, j−1

ϕ

�

�

�

�

�

�H j−1

�

�

�

�

�

Yi

�

≤
i
∑

j=1

sup
‖ϕ‖∞≤1

E

��

�

�π̃∆i, jϕ− π̃
∆
i, j−1

ϕ

�

�

�

�

�

�H j−1

�

. (3.26)

According to Lemma 2.4 and (3.23),

π̃∆
i, j
= Q∆

j+1,i
(π̃∆

j, j
) = (ψ∆

j+1,i
· π̃∆

j, j
)S∆

j+1,i
· · ·S∆

i,i

π̃∆
i, j−1

=Q∆
j+1,i
(π̃∆

j, j−1
) = (ψ∆

j+1,i
· π̃∆

j, j−1
)S∆

j+1,i
· · ·S∆

i,i
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and therefore according to Lemma 3.5(i)

sup
‖ϕ‖∞≤1

E

��

�

�π̃∆i, jϕ− π̃
∆
i, j−1

ϕ

�

�

�

�

�

� H j−1

�

≤ 4
�

1−αC j(∆)
(S∆

j+1,i
· · ·S∆

i,i
)
�

J j,i(∆), (3.27)

where

J j,i(∆) ¬
1

2
sup
‖ϕ‖∞≤1

E

��

�

�

�

ψ∆
j+1,i
· π̃∆

j, j

�

(ϕ)−
�

ψ∆
j+1,i
· π̃∆

j, j−1

�

(ϕ)

�

�

�

�

�

� H j−1

�

. (3.28)

It is then observed that according to (A5)

ψ∆
j+1,i
· π̃∆

j, j
=ψ∆

j+1,i
· (g∆

j
· ν∆

j
) = g∆

j
ψ∆

j+1,i
· ν∆

j
,

ψ∆
j+1,i
· π̃∆

j, j−1
=ψ∆

j+1,i
· (g∆

j
· π̃∆

j−1
K j) = g∆

j
ψ∆

j+1,i
· π̃∆

j−1
K j .

Thus, according to Lemma 3.5(ii) and the fact that π̃∆
j−1

K j(g
∆
j
ψ∆

j+1,i
) is H j−1-measurable,

we have

J j,i(∆) =
1

2
sup
‖ϕ‖∞≤1

E

��

�

�

�

g∆
j
ψ∆

j+1,i
· ν∆

j

�

(ϕ)−
�

g∆
j
ψ∆

j+1,i
· π̃∆

j−1
K j

�

(ϕ)

�

�

�

�

�

�H j−1

�

≤
1

π̃∆
j−1

K j(g
∆
j
ψ∆

j+1,i
)

sup
‖ϕ‖∞≤1

E

��

�

�ν∆j (g
∆
j
ψ∆

j+1,i
ϕ)− π̃∆

j−1
K j(g

∆
j
ψ∆

j+1,i
ϕ)

�

�

�

�

�

�H j−1

�

=








g∆
j
ψ∆

j+1,i










∞
π̃∆

j−1
K j(g

∆
j
ψ∆

j+1,i
)

sup
‖ϕ‖∞≤1

E









�

�

�

�

�

�

�

ν∆
j
(g∆

j
ψ∆

j+1,i
ϕ)








g∆
j
ψ∆

j+1,i










∞

−
π̃∆

j−1
K∆

j
(g∆

j
ψ∆

j+1,i
ϕ)








g∆
j
ψ∆

j+1,i










∞

�

�

�

�

�

�

�

�

�

�

�

�

�

�

H j−1









,

where the last equality follows from the fact that








g∆
j
ψ∆

j+1,i










∞
is H j−1-measurable. Also,

observe that K j can be replaced by K∆
j

because g∆
j

is supported by C j(∆). Therefore, it

follows from (A6) that

J j,i(∆)≤








g∆
j
ψ∆

j+1,i










∞
π̃∆

j−1
K j(g

∆
j
ψ∆

j+1,i
)

M4exp
�

−a4∆
b2

�

. (3.29)

Moreover,








g∆
j
ψ∆

j+1,i










∞
π̃∆

j−1
K j(g

∆
j
ψ∆

j+1,i
)
=








g∆
j
ψ∆

j+1,i










∞
π̃∆

j−1
K j(g

∆
j
)

π̃∆
j−1

K j(g
∆
j
)

π̃∆
j−1

K j(g
∆
j
ψ∆

j+1,i
)
≤








g∆
j










∞
π̃∆

j−1
K j(g

∆
j
)








ψ∆j+1,i










∞
π̃∆

j, j−1
(ψ∆

j+1,i
)
.

(3.30)

In order to bound the second product term in (3.30) it is observed that similarly as in the
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proof of Proposition 2.7, for all j > 0

ψ∆
j+1,i
(x)

π̃∆
j, j−1
(ψ∆

j+1,i
)
=

K j+1(g
∆
j+1
ψ∆

j+2,i
)(x)

π̃∆
j, j−1
(1C j(∆)

K j+1(g
∆
j+1
ψ∆

j+2,i
))

≤




k j+1







∞
inf x∈C j(∆)

y∈C j+1(∆)

k j+1(x , y)

λds
(g∆

j+1
ψ∆

j+2,i
)

π̃∆
j, j−1
(λds
(g∆

j+1
ψ∆

j+2,i
))
≤

1

ǫ j+1(∆)
, (3.31)

where the last inequality follows from Lemma 2.9. In order to bound the first product term

in (3.30) it is observed that for all j > 0,

π̃∆
j−1

K j(g
∆
j
)≥
∫

C j−1(∆)





∫

C j(∆)

g j(y)k j(x , y)dy



 π̃∆
j−1
(dx)

≥ λds
(C j(∆))π̃

∆
j−1
(C j−1(∆)) inf

x∈C j(∆)
g j(x) inf

y∈C j(∆)

x∈C j−1(∆)

k j(x , y). (3.32)

Note that the first inequality can be replaced by equality for all j > 1 but because π̃∆
0
= π0,

the equality does not hold for j = 1. For all x ∈ Bds
(h̃−1

j
(Yj),∆0/β0), one has

‖Yj − h̃ j(x)‖ = ‖h̃ j(h̃
−1
j
(Yj))− h̃ j(x)‖ ≤ β0‖h̃−1

j
(Yj)− x‖ ≤∆0,

that is, Bds
(h̃−1

j
(Yj),∆0/β0) ⊂ C j(∆0) and thus for all ∆ >∆0, Bds

(h̃−1
j
(Yj),∆0/β0) ⊂ C j(∆)

which implies λds
(C j(∆)) ≥ λds

(Bds
(h̃−1

j
(Yj),∆0/β0)) = Ṽds

(∆0/β0), where Ṽds
(∆0/β0) de-

notes the volume of a ds dimensional ball of radius ∆0/β0. According to the assumptions

(A2) and (A4)

inf
x∈C j(∆)

g j(x)≥ inf
x∈C j(∆)

m2exp
�

−a2





Yj − h j(x)






b2

�

≥ inf
x∈C j(∆)

m2exp
�

−a2

�

‖Yj − h̃ j(x)‖+ ‖h̄ j(x)‖
�b2
�

≥ m2exp
�

−a2(∆+ γ)
b2

�

.

Because π̃∆
j
(C j(∆)) = 1, j > 0, one has π̃∆

j−1
(C j−1(∆))≥ π0(C0(∆0)) and therefore, accord-

ing to (3.32)

π̃∆
j−1

K j(g
∆
j
)≥ Ṽds

(∆0/β0)π0(C0(∆0))m1m2exp
�

−a2(∆+ γ)
b2

�

ǫ j(∆), (3.33)

where (2.17) and Lemma 2.9 have also been used. From (3.28) it follows that J j,i(∆) ≤ 1
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and therefore by putting (3.29), (3.30), (3.31), and (3.33) together one has for all j > 0

J j(∆)¬min

�

1,
Γ(∆)

ǫ j(∆)ǫ j+1(∆)

�

≥ J j,i(∆). (3.34)

where

Γ(∆) ¬ cexp
�

a2(∆+ γ)
b2 − a4∆

b2

�

,

with c ¬ M2M4/Ṽds
(∆0/β0)π0(C0(∆0))m1m2. By induction, it follows that

1−αC j(∆)
(S∆

j+1,i
· · ·S∆

i,i
)≤

i
∏

n= j+1

�

1−αCn−1(∆)

�

S∆
n,i

��

≤
i
∏

n= j+2

(1− ǫn(∆)),

where the second inequality follows from Lemma 2.6 and Lemma 2.9. Therefore, and also

because J j(∆) is F j+1-measurable it follows from (3.26), (3.27), and (3.34) that

E






sup
‖ϕ‖∞≤1

E

��

�π̃∆
i
ϕ−π∆

i
ϕ
�

�

�

� Yi

�






≤ 4

i
∑

j=1

E



E





i
∏

n= j+2

(1− ǫn(∆))

�

�

�

�

�

F j+1



 J j(∆)





≤ 4

i
∑

j=1

(1− ǫ̃(∆))(i− j−2)+
E

�

J j(∆)
�

,

(3.35)

where the second inequality follows from Lemma 2.12 similarly as in (3.10). According to

(3.11)

i
∑

j=1

(1− ǫ̃(∆))(i− j−2)+
E

�

J j(∆)
�

≤ E
�

J1(∆)
�

+

�

2+
1

ǫ̃(∆)

�

sup
j>1

E

�

J j(∆)
�

, (3.36)

and by applying (3.12)

E

�

J j(∆)
�

≤ E



min



1,

p

Γ(∆)

ǫ j(∆)







+ E



min



1,

p

Γ(∆)

ǫ j+1(∆)







 . (3.37)

Similarly as in (3.18), for all θ > 0

E



min



1,

p

Γ(∆)

ǫ j(∆)







 ≤
p

Γ(∆)

ǫ(∆,θ∆)
+

∫ ∞

θ∆

ρξ j
(x)dx , (3.38)
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where, according to Proposition 3.3, the integral can be bounded for all j > 1 by

∫ ∞

θ∆

ρξ j
(x)dx ≤ c′exp

�

(−A3 + 2ε)(θ∆)B1

�

, (3.39)

where ε > 0. Thus, by combining (3.35), (3.36), and (3.39) it is observed that for all θ ,

ε > 0, there exists c′′ > 0 such that

E






sup
‖ϕ‖∞≤1

E

��

�π̃∆
i
ϕ−π∆

i
ϕ
�

�

�

� Yi

�






≤

c′′
�
�

1+
1

ǫ̃(∆)

�
�
p

Γ(∆)

ǫ(∆,θ∆)
+ exp

�

(−A3 + 2ε)(θ∆)B1

�

�

+

∫ ∞

θ∆

ρξ1
(x)dx

�

. (3.40)

In order to prove (3.21) it suffices to consider the convergence of the terms

p

Γ(∆)

ǫ̃(∆)ǫ(∆,θ∆)
∝ exp

�

a2

2
(∆+ γ)b2 −

a4

2
∆b2 + a1(L(∆)+ r)b1 + a1(L(∆)+ θ∆)

b1

�

exp
�

(−A3 + 2ε)(θ∆)B1
�

ǫ̃(∆)
∝ exp

�

(−A3 + 2ε)(θ∆)B1 + a1(L(∆)+ r)b1

�

.

If (i) or (ii) is satisfied, θ is sufficiently large, and ε is sufficiently close to zero, then these

terms converge to zero as ∆ → ∞. In the case (iii), this holds if ε is sufficiently close to

zero, and θ is a solution of

(

a4/2 > a2/2+ a1(αβ +β + θ)
b1 + a1(αβ +β)

b1

A3θ
b1 > a1(αβ +β)

b1 .

A solution to this system of inequalities exists if a4 > a∗
4
, which completes the proof of

(3.21). If (A4’) holds, then the conclusion of Proposition 3.3 applies to ξ1 as well and

therefore (3.39) holds also for j = 1. This implies that integral on the right hand side of

(3.40) disappears and (3.22) follows similarly as (3.21).

Theorem 3.6 also implies an analogue of (3.2) where the total variation distance is

replaced by the metric dw. This follows by observing that according to (2.13),

E

�

dw(π̃
∆
i

,πi)
�

≤
1

2
E






sup
‖ϕ‖∞≤1

E

��

�π̃∆
i
ϕ−πiϕ

�

�

�

� Yi

�






.

In practice, however, one is typically not interested in evaluating the metric dw which is
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mostly of theoretical interest. Instead, it is common to take the mean of πi as the estimate of

X i because it minimises the expectation of the squared Euclidean distance to the true value

of the signal [see e.g., 41]. The following corollary establishes the uniform convergence of

the approximate posterior mean to the exact posterior mean in the sense of the expected

Euclidean distance. For this purpose, we let X̂ i and X̂∆
i

denote the means of πi and π̃∆
i

,

respectively.

Corollary 3.7. If (A4’) and (i), (ii), or (iii) of Theorem 3.6 holds, then there exist c12, c13 > 0

such that

E

�



X̂ i − X̂∆
i







�

≤ c12exp
�

−c13∆
B1

�

.

Proof. Let I : Rds → Rds denote the identity mapping and I j : Rds → R the projection to the

jth axis. Moreover, we use the shorthand notations X̃ ¬ h̃−1
i
(Yi), and X̃ j ¬ I j(X̃ ). In this

case,

E

�



X̂ i − X̂∆
i







�

≤
ds
∑

j=1

E

��

�πi(I j)− π̃∆i (I j)
�

�

�

.

By the triangle inequality and the fact that X̃ is Yi -measurable, one has

�

�πi(I j)− π̃∆i (I j)
�

�≤
�

�πi(1Ci(∆)
(I j − X̃ j))− π̃∆i (1Ci(∆)

(I j − X̃ j))
�

�

+
�

�πi(1∁Ci(∆)
(I j − X̃ j))

�

�+
�

�π̃∆
i
(1∁Ci(∆)

(I j − X̃ j))
�

� , (3.41)

where π̃∆
i
(1∁Ci(∆)

(I j − X̃ j)) = 0. According to (A2), for all x ∈ Ci(∆)

β∆≥ β




Yi − h̃i(x)




≥




h̃−1
i
(Yi)− x





≥
�

�X̃ j − I j(x)
�

� ,

and thus 1Ci(∆)
(x)(I j(x)− X̃ j) < β∆ for all x ∈ Rds . Therefore, it follows from (3.41) by

taking expectations that

E

��

�πi(I j)− π̃∆i (I j)
�

�

�

≤ β∆E






sup
‖ϕ‖∞≤1

E

��

�πiϕ− π̃∆i ϕ
�

�

�

� Yi

�






+E

��

�πi(1∁Ci(∆)
(I j − X̃ j))

�

�

�

.

(3.42)

For the second term we observe similarly as in (3.15) that

E

��

�πi(1∁Ci(∆)
(I j − X̃ j))

�

�

�

≤ E

�

πi

�

1∁Ci(∆)





I − X̃






��

= E





∫∫

∁Di(∆)

gi,y(x)




x − h̃−1
i
(y)




dy πi−1Ki(dx)



 ,
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and for the inner integral one has by the change of variables

∫

∁Di(∆)

gi,y(x)




x − h̃−1
i
(y)




dy ≤
∫

‖z‖>∆−γ
β(‖z‖+ γ)ρVi

(z)dz

≤ cexp
�

(−A2+ ε)(∆− γ)B2

�

. (3.43)

The claim then follows by applying Theorem 3.6 to the first term on the right hand side of

(3.42) and (3.43) to the second term.

3.3 Uniformly convergent sequential Monte Carlo approx-

imation

In this section, we further specify the properties of π̃∆ and obtain a general formulation

of a feasible filter approximation algorithm which can be parameterised to satisfy (A5) and

(A6). The resulting approximation is a sequential Monte Carlo algorithm which consists of

an importance sampling step and a resampling scheme. Therefore it can be regarded as a

modification of the well known SIR filter introduced in [32]. To avoid confusion, it should

be emphasised that in the following, π̃∆ is formulated as an auxiliary particle filter (APF)

type algorithm. The auxiliary particle filter was introduced in [58] and it can be considered

as a generalisation of the original SIR filter [see e.g., 36, 35]. The approximation π̃∆ is

defined as follows:

Definition 3.8. The filter approximation π̃∆ = (π̃∆
i
)i≥0 is a stochastic probability measure

valued process satisfying:

(i) Initialisation: Define π̃∆
0
¬ π0 and {X̄ j

0}Nj=1
, where N = N(∆) ∈ N, to be a set of

independent random variables with the common distribution π̄0 ∈ MP(R
ds) such that

w̄0(x)¬
dπ0

dπ̄0

(x) < W̄ ,

where 0< W̄ <∞. Also, define W̄
j

0 ¬ w̄0(X̄
j

0).

(ii) Importance sampling: For all i > 0 and 1 ≤ j ≤ N, define X
j

i
to be a random variable

with a distribution K̃i(X̄
j

i−1, · ) such that the Radon-Nikodým derivative

w∆
i
(x , y)¬

dK∆
i
(x , · )

dK̃i(x , · )
(y)
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exists, is positive for all x ∈ Ci−1(∆), and satisfies supi>0





w∆
i







∞ < ∞. Also, define

W
j

i
¬ w∆

i
(X̄

j

i−1
, X

j

i
).

(iii) Weight update: For all i > 0, define

π̃∆
i
¬

N
∑

j=1

W̃
j

i
δ{X j

i }
,

where δ{x} denotes the unit point mass located at x ∈ Rds and

W̃
j

i
¬

g∆
i
(X

j

i
)W

j

i
W̄

j

i−1
∑N

ℓ=1
g∆

i
(X ℓ

i
)W ℓ

i
W̄ ℓ

i−1

.

(iv) Resampling: For all i > 0, define Pi ¬ (P
1
i
, P2

i
, . . . , PN

i
)T ∈ RN such that

∑N

j=1
P

j

i
= 1

and

sup
i>0

0< j≤N

w̄i(X
j

i
) < W̄ ,

where w̄i : {X j

i }Nj=1
→ R

+
is defined as w̄i(X

j

i ) = W̃
j

i /P
j

i . Moreover, for all i > 0 and

1 ≤ j ≤ N, the random variables {X̄ j

i
}N

j=1
are defined such that, if ζi ¬ (ζ

1
i
,ζ2

i
, . . . ,ζN

i
)T,

where

ζ
j

i
¬

N
∑

ℓ=1

1{X j

i
}(X̄

ℓ
i
),

then there exists c > 0 such that for all z = (z1, z2, . . . , zN )
T where

�

�zi

�

� ≤ 1, i = 1, . . . , N,

one has

zT
E

�

(ζi − N Pi)(ζi − N Pi)
T
�

�Hi

�

z ≤ cN . (3.44)

Also, define W̄
j

i ¬ w̄i(X̄
j

i ).

The main difference between the conventional APF and π̃∆ given in Definition 3.8 is the

appearance of the truncation radius ∆ in step (ii). Moreover, SMC algorithms are typically

parameterised by the sample size, i.e. the number of particles, but here π̃∆ is parameterised

by the truncation radius ∆, and the sample size N is defined as a function of ∆. The

reason for this is that if the function which maps the truncation radius into a sample size is

chosen in a certain way, then π̃∆ can be shown to satisfy (A5) and (A6) and therefore the

approximation is uniformly convergent by Theorem 3.6. It should be noted that a more SIR

filter like formulation is obtained by letting π̄0 = π0 and by choosing P
j

i
= W̃

j

i
for all i > 0

and 1≤ j ≤ N .
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In order to implement the approximation π̃∆ of Definition 3.8 the transition probabilities

K̃i , the resampling probabilities Pi , and the resampling scheme need to be specified. Before

doing this, let us show that π̃∆ indeed can be parameterised to satisfy (A5) and (A6).

Let us define σ-fields Hi ,H̄i ⊂F as

Hi ¬ σ
�

Ym, X j
n
, X̄

j

n−1, 1≤ n≤ i, 1≤ j ≤ N , 0< m
�

H̄i ¬ σ
�

Ym, X j
n
, X̄

j

ℓ
, 1≤ n≤ i, 1≤ j ≤ N , 0≤ ℓ ≤ i, 0< m

�

.

It follows then from Definition 3.8 that π̃∆
i

is Hi -measurable and according to (iii) π̃∆
i

is of

the form (3.19) where

ν∆
i
¬

1

N

N
∑

j=1

W
j

i W̄
j

i−1δ{X j

i }
. (3.45)

According to (ii) and (iv), w∆
i
> 0, P-a.s. and thus (A5) is satisfied. Let us then consider

(A6). Because Hi−1 ⊂ H̄i−1, we can write for all i > 0

E

��

�π̃∆
i−1

K∆
i
ϕ− ν∆

i
ϕ
�

�

�

�Hi−1

�

≤ E

�

E

��

�π̄∆
i−1

K∆
i
ϕ− ν∆

i
ϕ
�

�

�

�H̄i−1

�

�

�

�Hi−1

�

+ E

��

�π̃∆
i−1

K∆
i
ϕ− π̄∆

i−1
K∆

i
ϕ
�

�

�

�Hi−1

�

, (3.46)

where

π̄∆
i
¬

1

N

N
∑

j=1

W̄
j

i
δ{X̄ j

i }
, (3.47)

for all i ≥ 0. This random probability measure is the approximation of πi after the resam-

pling step. Because

(π̄∆
i−1

K∆
i
ϕ− ν∆

i
ϕ)2 =

1

N2

N
∑

j=1

�

W̄
j

i−1
K∆

i
ϕ(X̄

j

i−1
)−W

j

i
W̄

j

i−1
ϕ(X

j

i
)
�2

+
1

N2

∑

j 6=ℓ
W̄

j

i−1
W̄ ℓ

i−1

�

K∆
i
ϕ(X̄

j

i−1
)−W

j

i
ϕ(X

j

i
)
��

K∆
i
ϕ(X̄ ℓ

i−1
)−W ℓ

i
ϕ(X ℓ

i
)
�

,

and because

E

�

W
j

i ϕ(X
j

i )

�

�

� H̄i−1

�

=

∫

ϕ(x)w∆i (X̄
j

i−1, x)K̃i(X̄
j

i−1, dx) = K∆i ϕ(X̄
j

i−1),
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it follows from the conditional independence of {X j

i }Nj=1
given Ĥi−1 that

E

�

(π̄∆
i−1

K∆
i
ϕ− ν∆

i
ϕ)2

�

� H̄i−1

�

=
1

N2

N
∑

j=1

�

W̄
j

i−1

�2
�

E

�

�

W
j

i ϕ(X
j

i )
�2
�

�

� H̄i−1

�

−
�

K∆
i
ϕ(X̄

j

i−1)
�2
�

≤
1

N2

N
∑

j=1

�

W̄
j

i−1

�2
∫

�

ϕ(x)w∆
i
(X̄

j

i−1
, x)
�2

K̃i(X̄
j

i−1
, dx) ≤ W̄ 2





w∆
i
ϕ






2

∞
N

,

and finally by Jensen’s inequality

E

��

�π̄∆
i−1

K∆
i
ϕ− ν∆

i
ϕ
�

�

�

� H̄i−1

�

≤
W̄




w∆
i
ϕ






∞p
N

. (3.48)

For the second term in the right hand side of (3.46), one can check that if i = 0, then

E

��

�π̃∆
i
ϕ− π̄∆

i
ϕ
�

�

�

�Hi

�

≤
W̄
p

N
.

For all i > 0, we define W̃i ¬ (W̃
1
i

, W̃ 2
i

, . . . , W̃ N
i
)T, Φi ¬ (ϕ(X

1
i
),ϕ(X 2

i
), . . . ,ϕ(X N

i
))T and

W̄i ∈ RN×N as a diagonal matrix with the elements w̄i(X
1
i
), w̄i(X

2
i
), . . . , w̄i(X

N
i
) on the diag-

onal. In this case, π̃∆
i
ϕ = W̃ T

i
Φi , π̄

∆
i
ϕ = 1

N
ζT

i
W̄ T

i
Φi , W̃i = W̄i Pi , and thus according to (iv),

there exists c ≥ 1 such that

E

�

�

π̃∆
i
ϕ− π̄∆

i
ϕ
�2
�

�

�Hi

�

=
1

N2
ΦT

i
E

�

(W̄iζi − NW̃i)(W̄iζi − NW̃i)
T
�

�Hi

�

Φi

=
1

N2
ΦT

i
W̄iE

�

(ζi − N Pi)(ζi − N Pi)
T
�

�Hi

�

W̄ T
i
Φi ≤

W̄ 2c

N
,

where the inequality follows from the fact that ϕ(X
j

i
)W̄

j

i
/W̄ ≤ 1. Again by Jensen’s inequal-

ity it follows that for all i ≥ 0

E

��

�π̃∆
i
ϕ− π̄∆

i
ϕ
�

�

�

�Hi

�

≤
p

cW̄
p

N
. (3.49)

Because supi>0 sup‖ϕ‖∞≤1





K∆
i
ϕ






∞ ≤ 1 and according to (ii) supi>0





w∆
i







∞ <∞, it follows

by the substitution of (3.48) and (3.49) into (3.46) that there exists c′ = c′(∆) > 0 such

that

sup
‖ϕ‖∞≤1

E

��

�π̃∆
i−1

K∆
i
ϕ− ν∆

i
ϕ
�

�

�

�Hi−1

�

≤
c′(∆)
p

N
, (3.50)
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for all i > 0. Consequently, (A6) holds if

N(∆)≥
�

c′(∆)

M4

�2

exp
�

2a4∆
b2

�

. (3.51)

In conclusion, the particle filter of Definition 3.8 is uniformly convergent if the sample size

N increases sufficiently fast as ∆→∞.

3.3.1 Resampling scheme

The conditions imposed on the resampling scheme in (iv) of Definition 3.8 are similar to

those given in [15] with the exception that here the resampling algorithm is applied to the

probabilities P
j

i
that in general are allowed to be different from the weights W̃

j

i
. This dif-

ference enables the APF type formulation. Following the typical terminology in the particle

filtering related literature, the interpretation of the random variable ζ
j

i
is that it equals the

number of offspring produced by the jth particle at time i. If one chooses Pi = W̃i , then (iv)

implies that the numbers ζ
j

i
are approximately proportional to the weights W̃i , i.e.

π̃∆
i
≈

1

N

N
∑

j=1

ζ
j

iδ{X j

i }
.

If Pi 6= W̃i , then the numbers of particle duplicates are approximately proportional to Pi , i.e.

P ¬
N
∑

j=1

P
j

i
δ{X j

i }
≈

1

N

N
∑

j=1

ζ
j

i
δ{X j

i }
.

According to the principle of the importance sampling, ζi can still be used for approximating

π̃∆
i

if the numbers ζ
j

i
are compensated by appropriate weights. These weights should be

equal to the Radon-Nikodým derivative dπ̃∆
i
/dP which is precisely the function w̄i defined

in (iv) and therefore the approximation π̄∆
i

given in (3.47) is obtained.

The simplest resampling scheme satisfying (iv) is the multinomial resampling method. In

this case ζi is a random variable with a multinomial distribution, i.e.

P(ζ1
i
= n1,ζ2

i
= n2, . . . ,ζN

i
= nN ) =

N !

n1!n2! · · · nN !
(W̃ 1

i
)n1(W̃ 2

i
)n2 · · · (W̃ N

i
)nN .

The proof that the multinomial resampling scheme satisfies (3.44) is simple and can be

found, e.g. in [15, page 28]. In practice, the multinomial resampling algorithm is imple-

mented by letting X̄
j

i
, 1 ≤ j ≤ N be an independent random variable with the distribution

π̃∆
i

.
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Another resampling scheme which satisfies (iv) is the tree based branching algorithm

(TBBA) described in [15]. The proof that TBBA satisfies (3.44) is somewhat more involved

but can also be found in [15].

Several other resampling schemes have been proposed in the literature as well. The

stochastic universal sampling described already in [6] has been later proposed to be used

as a resampling method in SMC algorithms [see e.g., 13, 3]. Very similar, but entirely

deterministic resampling scheme was described earlier in the SMC context in [42] under

the name deterministic resampling. Also the so called stratified resampling scheme was pro-

posed in [42]. Regarding the stratification, it should be noted that the stratified resampling

algorithm described in [42] represents only one possible stratification but in general strat-

ification can be done in a number of ways [see e.g., 14]. For more details on the choice

of the stratification, see e.g. [35]. Another commonly used resampling scheme is the resid-

ual resampling method described in [48]. In theory, π̃∆ is uniformly convergent for any

resampling method which can be shown to satisfy the conditions imposed in (iv) of Defini-

tion 3.8. Of all the resampling methods mentioned above this can be done at least for the

multinomial resampling method and the TBBA.

3.3.2 Importance distribution

The only essential difference between π̃∆ and the conventional APF is the requirement

imposed by the assumption (A5) that the importance distribution specified by the transition

probabilities K̃i must assign zero probability to the set ∁Ci(∆). To see that this is not the case

with the conventional APF in general, it suffices to consider a signal model with Gaussian

noise. As a general rule for specifying an importance distribution satisfying (A5), we define

for all x ∈ Rds

K̃i(x , · ) = Ph̃−1
i
(Z)( · ), (3.52)

where Ph̃−1
i
(Z) denotes the distribution of the random variable h̃−1

i
(Z), and Z is a random

variable with a uniform distribution on the Yi centered ball of radius ∆. This choice of K̃i

obviously satisfies (A5). Moreover, by assuming that for all x ∈ Rds , one has |det(h̃′
i
(x))| >

0, where h̃′
i
(x) denotes the Jacobian matrix of h̃i at x ∈ Rds , the density ρ

X
j

i
of the random

variable X
j

i
with respect to λds

satisfies

ρ
X

j

i
(x) = 1Ci(∆)

(x)|det h̃′
i
(x)|/Ṽds

(∆).

According to (A2),

�

�det h̃′
i
(x)
�

�

−1
= det(h̃′

i
(x))−1 = det(h̃−1

i
)′(h̃i(x))≤ ds!β

ds ,



66 CHAPTER 3. UNIFORM CONVERGENCE

and thus,

sup
i>0





w∆
i







∞ = sup
x ,y∈Rds

i>0

Ṽds
(∆)1Ci(∆)

(y)ki(x , y)

|det h̃′
i
(y)|

≤ c′′∆ds , (3.53)

for some c′′ > 0. The substitution of this approximation into (3.51) yields a lower bound

for the sample size N(∆) which ensures (A6).

The importance distribution described above is specified by the transition probability

K̃i which is independent of its first argument. This is fairly uncommon in APF algorithms

as it is more common to have, e.g. K̃i = Ki which however does not satisfy (A5). On the

other hand, it has been acknowledged in the SMC related literature that the importance

distribution should be adapted. This terminology is taken from [58], and it means that

the importance distribution should depend on the latest observation. This is precisely what

happens with the transition probabilities K̃i described above, as the random variables X
j

i

are generated in the compact neighborhood of the preimage of Yi . To be able to do this, we

pay the price of assuming the existence of the bijective mapping h̃i which in many practical

applications does not exist. It should also be noted that the given importance distribution

only requires the ability to evaluate h̃−1
i

and simulate a random variable on a ds-dimensional

unit ball. This random sample generation is feasible in high dimensions without resorting to

the rejection method. Details on generating these random variables can be found e.g. in [24,

Theorem 4.3, page 229].

3.4 Numerical experiments

In this section, Theorem 3.6 and Corollary 3.7 are illustrated by some numerical experi-

ments. Two simple filter frameworks are considered and the particle filter of Definition 3.8

employing the multinomial resampling scheme and the importance distribution proposed in

Section 3.3.2 is applied to both of the filter frameworks.

In the first experiment a linear-Gaussian model is considered. It is well known that in

this case for all i > 0, πi is equal to a normal distribution whose mean and covariance can be

computed exactly using the Kalman filter recursion. Therefore, numerical approximations

of π in this case are not of any practical interest. On the other hand, the possibility to

compute π exactly enables us to compute also the error of the approximation π̃∆ exactly.

This is the motivation for considering the linear-Gaussian case.

In the second experiment, the uniformly convergent approximation is applied to a non-

linear model with Gaussian noise. In this case, the filter and therefore the approximation

error cannot be computed exactly and therefore a conventional SIR filter with a large sample

size is used as a reference to which the solution of the uniformly convergent approximation

is compared.
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Figure 3.2: Approximate mean errors and average mean errors for the linear-Gaussian

model.

Although both of the above mentioned frameworks assume Gaussian noise distributions

it should be emphasised that this is not required by Theorem 3.6. Indeed, the distributions

could be also e.g. mixtures of Gaussian distributions, double exponential distributions or

convolutions of these distributions with distributions that have a bounded support.

3.4.1 Linear model

Let N
�

x , y
�

denote a normal distribution with mean x and covariance y . Suppose that

X0 ∼ N (0, 1) and for all i > 0

X i = X i−1 +Wi

Yi = 4X i + Vi ,

where Vi ∼ N (0, 1) and Wi ∼ N (0, 2) independently for all i > 0. In this case, X is a

nonergodic and time homogenous Markov chain [see e.g., 50, pages 311-316] and it can be

shown that this model satisfies the conditions of Theorem 3.6.

The approximation error is considered in the sense of Corollary 3.7. Although the Eu-

clidean distance between the approximate and the exact mean can be computed exactly

in the linear-Gaussian case, the computation of the expected value of the distance is in-

tractable. Therefore the expected error was approximated using the Monte Carlo method,

i.e.

E

�



X̂ i − X̂∆
i







�

≈ ei(∆) ¬
1

Nobs

Nobs
∑

j=1








X̂
j

i
− X̂

∆, j

i








 ,

where X̂ i and X̂∆
i

denote the exact and the approximate posterior mean at time i, respec-

tively, and X̂
j

i
and X̂

∆, j

i
denote the jth realisation of the exact and the approximate posterior
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Figure 3.3: Approximate mean errors for the linear-Gaussian model.

mean at time i, respectively. Moreover, Nobs ∈ N denotes the number of data sets used for

approximating the expected distance.

Instead of specifying the sample size N as a specific function of ∆, the numerical exper-

iments were done for all (∆, N) ∈ D ×N where

N = {102, 103, 104, 105}
D = {0.625, 1.250, 1.875, 2.500, 3.125, 3.750, 4.375, 5.000}.

The set N was chosen such that the computational cost of evaluating π̃∆
i

was reasonable

and the definition of D is based on experiments and it was chosen such that the effect of ∆

and N is well illustrated by the experiments.

Figure 3.2 shows the results of the experiment. In Figure 3.2(a) the approximate mean

errors for Nobs = 50 are illustrated on the time interval 1≤ i ≤ 1000 for four different pairs

(∆, N). The results are consistent with Theorem 3.6 and Corollary 3.7 as ei(∆) appears to be

nearly independent of i and therefore uniformly bounded in time. Moreover, this uniform

bound decreases as ∆ and N are increased. Figure 3.2(a) suggests that the time average of

ei(∆), i.e.

e(∆)¬
1

T

T
∑

i=1

ei(∆),

where T is the length of the simulation, is a relatively good approximation of the uniform

bound for the expected error. Figure 3.2(b) shows the approximate average mean errors for

all (∆, N) ∈ D ×N .

It is observed that the twofold construction of the approximation π̃∆ can be seen in

Figure 3.2(b) as for ∆ < 3, the average error e(∆) appears to reach a level which cannot be

improved by increasing the sample size. This level represents the error of the truncated filter
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Figure 3.4: Approximate mean errors and average mean errors for the nonlinear model.

π∆ and therefore the approximation π̃∆, which after all is an approximation of π∆ rather

than π, cannot outperform π∆. Also, it is observed that in order to ensure the convergence

to zero, it is not sufficient to increase only ∆ and keep N fixed. This is illustrated in Figure

3.2(b) as for each fixed value of N the average error curve appears to be increasing for

sufficiently large values of ∆.

Because the study of uniform convergence is motivated by the interest in the behaviour

of the error for long time intervals, the filter in the linear-Gaussian case was also approx-

imated on the time interval 0 < i ≤ 105. The results of this experiment are illustrated in

Figure 3.3 and they appear to be in accordance with Theorem 3.6 as well.

3.4.2 Nonlinear model

Suppose that X0 ∼ N (0, 1) and for all i > 0

X i =
1

2
X i−1 +

25X i−1

1+ X 2
i−1

+ 8cos(1.2i) +Wi

Yi = 4X i + 4sin(2X i) + Vi ,

where Vi ∼ N (0, 0.006) and Wi ∼ N (0, 2), independently. This signal model is adapted

from the popular example of [42]. In this case, π cannot be computed exactly because of

the nonlinearity of fi and hi . Therefore, in order to approximate the error, a conventional

SIR filter with sample size N = 106 was used as a reference. The implemented SIR filter used

the signal transition kernel for the importance distribution and it employed the multinomial

resampling scheme. The experiment was otherwise similar to the linear case, except that
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this time we defined

D = {3.25, 3.50, 3.75, 4.00, 4.25, 4.50, 4.75, 5.00}.

Again, this choice of D was based on the experiments and it was chosen to provide a good

illustration of the effect of ∆ and N . The results of the experiment are shown in Figure 3.4.

Figure 3.4(a) shows the approximate mean errors for four different pairs (∆, N) and Fig-

ure 3.4(b) shows the approximate average mean errors for all (∆, N) ∈ D×N . Also for the

nonlinear case, the results appear to be in accordance with Theorem 3.6. In Figure 3.4(b),

the average error decreases rapidly for all values of N when ∆ ≈ 4. This phenomenon

can be explained by the bounded component h̄i(x) = 4sin(2x) in the observation model.

Roughly speaking, the function h̄i causes the likelihood function gi to be multimodal but the

distance between the modes is bounded. When∆ ≈ 4 or greater, all the modes are included

in the set Ci(∆) but for ∆ < 4 some of the modes may remain outside Ci(∆) and therefore

the error is large. Moreover, it should be noted that according to Figure 3.4(b), the error

for ∆ < 4 appears to be due to the truncation as the average error is nearly independent of

the sample size N .

According to Definition 3.8 the computational cost of the uniformly convergent particle

filter should be approximately the same as for the conventional SIR filter. Some extra cost

may of course be introduced by the requirement that the samples are simulated inside the

set Ci(∆) but for example in the nonlinear framework described above, the evaluation of

the uniformly convergent particle filter was approximately 1.2 times the time of the SIR

filter with the same sample size.



Chapter 4

Conclusions

This thesis has addressed two important problems related to the stochastic discrete time

filters, namely, the stability of the filter with respect to its initial conditions and the uniform

convergence of certain filter approximations. In this chapter, the main results of this work

are reviewed accompanied by some discussion about the conclusions of the results.

This chapter is organised as follows. Section 4.1 consists of discussion about the general

conclusions regarding the stability results and in Section 4.2 a similar discussion about the

uniform convergence results is given. Finally, some topics for future research are pointed

out in Section 4.3.

4.1 Stability

Regarding the stability of the discrete time filter, it was shown that with relatively weak

assumptions on the signal process the filter is stable provided that the observation geome-

try is good enough and that the tails of the observation noise distributions are sufficiently

light compared to the tails of the signal noise distributions. The sufficiently good observa-

tion geometry in this case means the conditions of the assumption (A2). Roughly speaking,

the existence of the bijective component h̃i implies that the observations carry information

about all dimensions of the state space. Moreover, the assumption that h̃−1
i

is uniformly

Lipschitz can be interpreted to mean that the information content of the observations is

bounded from below. If the Lipschitz coefficient β was allowed to increase, the observations

might eventually tell nothing about the state of the signal. Consider for example a constant

function h̃i independent of X i . To some extent the assumption (A2) can be regarded also

as an analog of the observability condition in the stability analysis of the linear filters. Un-

71
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fortunately, it should be acknowledged that many interesting practical applications do not

satisfy the assumption (A2).

Perhaps the most important conclusion regarding the stability is that for the observation

model

Yi = hi(X i) + aVi , a ∈ (0,∞)

it is not in general necessary that a be small. Indeed, Theorem 2.15 states that the filter is

stable for arbitrarily large a provided that the tails of the observation noise are sufficiently

light compared to the tails of the signal noise distributions. Only in the case that the tails

are equally heavy is a required to be small. This observation was originally made in [56]

but the result has been further extended in this work. The approach used here also provided

explicit rates for the convergence of the error in the almost sure sense. Unfortunately, these

convergence rates are not exponential and therefore a comparison with the results given

in [12] suggests that the rates given by Corollary 2.16 are not optimal.

The majority of the literature regarding the filter stability is involved with proving the

sufficiency of certain conditions for the stability but it is equally important to establish neces-

sary conditions as well. To the author’s knowledge, the only general result on the necessity

of conditions is the stabilisability and detectability conditions for the mean and the covari-

ance process of the linear filter. However, the stability of the mean and the covariance

process is not equivalent to the stability of the corresponding probability measure valued

process in the total variation distance. For example, two random walks starting from differ-

ent initial values have a time invariant mean which is equal to the initial value. Therefore

the mean process is not stable but because of the increasing covariance the total variation

distance between the two processes vanishes. Therefore the stabilisability and detectability

are not necessary for the stability in total variation.

It is a simple task to give an example of an unstable filter in some degenerate case,

but for more interesting applications the task is challenging. It is natural to ask if the

analysis given in Chapter 2 could be extended to obtain some necessary conditions as well.

Unfortunately, this seems to be impossible. The reason for this is that most of the analysis

consists of deriving upper bounds for the error, but in order to find necessary conditions one

is in fact interested in finding lower bounds. Therefore the majority of the analysis is not of

any interest when proving necessary conditions. Already the starting point of the analysis,

i.e. the fundamental idea of using the Dobrushin ergodic coefficient is problematic because

only an upper bound for the distance between the images of the Markov operation is given

by the ergodic coefficient and for the necessity one would need a lower bound. Therefore

it seems that in order to prove necessary conditions for the stability, entirely original ideas

are needed.
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4.2 Uniform convergence

Chapter 3 focused on proving the uniform convergence of filter approximations. The ap-

proach was very similar to the one in [56] but the analysis was extended to provide general

sufficient conditions for the uniform convergence of filter approximations. These conditions

were given by (A5) and (A6). Roughly speaking, (A5) implies that the approximating algo-

rithm has a certain structure and (A6) implies that the approximation has some convergence

properties. To be more specific, it follows from (A6) that for each time step the prediction

distribution of the approximate filter, i.e. π̃∆
i−1

K∆
i

is approximated well enough. To some

extent, (A6) is similar to the conditions given in [15].

Moreover, it was shown that the conventional SIR filter or the APF with some simple

modifications satisfy (A5) and (A6) if the sample size N is defined as a sufficiently fast

increasing function of the truncation radius ∆. More explicitly, it was shown that there exist

c, c′ > 0 such that if

N(∆) ≥ cexp
�

c′∆b2

�

,

then π̃∆ is uniformly convergent. Because the computational cost of the SIR filter is de-

termined by the sample size, this lower bound for the sample size can be substituted into

the convergence rate provided by Theorem 3.6 yielding a convergence rate of the form

cexp
�

−c′(ln N/c′′)B1/b2

�

for some c, c′, c′′ > 0. This rate is the effective rate of convergence

in the sense that it represents the error as a function of N which in turn represents the

computational cost of evaluating the approximation. In particular, it is observed that in the

case B1 = b2 the convergence rate is of the form cN−c′ for some c, c′ > 0. It is natural to

ask for a faster rate of convergence but it should also be kept in mind that this convergence

rate is derived for an algorithm based on the Monte Carlo method and therefore it is not

expected to outperform the convergence rate of the classical Monte Carlo integral.

All the constants required for computing numerical bounds for the approximation error

of the uniformly convergent particle filter can be evaluated or at least approximated. How-

ever, the resulting bound for the error is expected to be unnecessarily loose and therefore

Theorem 3.6 and Corollary 3.7 cannot be used for obtaining reasonable bounds for the

errors in practice.

In order to implement the uniformly convergent particle filter described in Section 3.3

the importance distributions need to be defined in such a manner that the conditions of

Definition 3.8 are satisfied. An example of such a choice of importance distributions was

given in Section 3.3.2 but also the rejection method can be used for drawing samples from

the set Ci(∆). In this case, the computational cost of the algorithm becomes random and

therefore the uniform convergence can be obtained only with respect to the expected com-

putational cost, provided that the rejection rate is uniformly bounded with respect to time.
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A uniform bound for the rejection rate can be ensured e.g. if the rejection method is used for

drawing samples from the Yi centered ball with radius ∆ instead of Ci(∆) directly. This is

because the randomness of the algorithm in this case is entirely due to the rejection method

and independent of the observations. If the samples are generated according to the signal

transition probabilities and the rejection method is used for obtaining a sample from Ci(∆),

then the rejection rate and thus the expected computational cost also depend on the obser-

vations. In this case, the uniform bound for the rejection rate has to be proved separately.

This proof has not been given in this work or in [56].

4.3 Research directions

So far the stability of the filter has been established in the literature under three different

types of conditions: sufficiently well behaved signal, sufficiently accurate observations, or

sufficiently light tailed observation noise. None of these conditions are necessary. It is a chal-

lenging problem of great interest to obtain a general result stating what sort of conditions

are necessary for the stability of the filter.

The uniform convergence was considered in this work in the mean sense. From the

practical point of view it would be of greater interest to establish the convergence in the

almost sure sense. Although the problem has not been addressed in this work, it seems

reasonable to believe that uniform convergence in the almost sure sense cannot be obtained

for SIR filters. However, it also seems plausible that uniform convergence can be obtained

for a sample size with a modest growth. Modest in this case means for example logarithmic.

This statement is of course speculation and its verification, if possible, is left for future

research.
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