
Tampere University of Technology

Remote management of intelligent devices: Using TR-069 protocol in IoT

Citation
Stusek, M., Masek, P., Kovac, D., Ometov, A., Hosek, J., Kropfl, F., & Andreev, S. (2016). Remote management
of intelligent devices: Using TR-069 protocol in IoT. In 2016 39th International Conference on
Telecommunications and Signal Processing (TSP) (pp. 74-78). IEEE. https://doi.org/10.1109/TSP.2016.7760832
Year
2016

Version
Peer reviewed version (post-print)

Link to publication
TUTCRIS Portal (http://www.tut.fi/tutcris)

Published in
2016 39th International Conference on Telecommunications and Signal Processing (TSP)

DOI
10.1109/TSP.2016.7760832

Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial
use is prohibited.

Take down policy
If you believe that this document breaches copyright, please contact cris.tau@tuni.fi, and we will remove access
to the work immediately and investigate your claim.

Download date:03.12.2020

https://tutcris.tut.fi/portal/en/persons/sergey-andreev(673b9225-1306-46a5-b924-f62f751018a0).html
https://tutcris.tut.fi/portal/en/publications/remote-management-of-intelligent-devices-using-tr069-protocol-in-iot(8770fdc3-55d2-4a77-90c3-2b077161442d).html
https://tutcris.tut.fi/portal/en/publications/remote-management-of-intelligent-devices-using-tr069-protocol-in-iot(8770fdc3-55d2-4a77-90c3-2b077161442d).html
https://doi.org/10.1109/TSP.2016.7760832
https://tutcris.tut.fi/portal/en/publications/remote-management-of-intelligent-devices-using-tr069-protocol-in-iot(8770fdc3-55d2-4a77-90c3-2b077161442d).html
https://doi.org/10.1109/TSP.2016.7760832

Remote Management of Intelligent Devices:
Using TR-069 Protocol in IoT

Martin Stusek∗, Pavel Masek∗, Dominik Kovac∗, Aleksandr Ometov†, Jiri Hosek∗,
Franz Kröpfl‡, and Sergey Andreev†

∗ Department of Telecommunications, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic
† Department of Electronics and Communications Engineering, Tampere University of Technology,

Korkeakoulunkatu 10, FIN-33720, Tampere, Finland
‡ Telekom Austria Group, Lassallestraße 9, A-1020, Wien, Austria

Email: xstuse01@stud.feec.vutbr.cz

Abstract—The aggressive expansion of emerging smart devices
connected to the Internet infrastructure is nowadays considered
as one of the most challenging components of the Internet
of Things (IoT) vision. As a particular segment of IoT, the
smart home gateways, also named Machine-Type Communication
Gateway (MTCG), become an important direction for industry
including telecommunication operators. In most cases, the MTCG
acts as a bridge between connected smart objects and the
public network (Internet). As a consequence of the IoT domain
expansion, the separate configuration of each individual Machine-
to-Machine (M2M) device is not feasible anymore due to steadily
growing numbers of M2M nodes. To perform this task, several
novel technologies have recently been introduced. However, legacy
protocols and mechanisms for remote network management
still retain a certain application potential for IoT. Accordingly,
we have investigated the well-known protocol TR-069 with a
particular focus on its usability for MTCG. To this end, the
software module (bundle) based on the TR-069 for remote con-
figuration and management of MTCG, as well as for controlling
the end smart devices, has been developed. We believe that our
implementation (available as open source on GitHub) can serve
as an important building block for efficient management of future
IoT devices. Therefore, TR-069 protocol constitutes a proven and
standardized technology and could be easily deployed by most
of the network and service providers today.

Keywords—IoT, M2M, MTCG, OSGi, Remote management,
TR-069

I. INTRODUCTION

Today, Internet of Things (IoT) offers efficient means for
interconnection of highly heterogeneous entities and networks,
thus bringing a variety of communication patterns, includ-
ing Human-to-Human (H2H), Human-to-Machine (H2M), and
Machine-to-Machine (M2M) communications. IoT in general
empowers the industry to develop new technology in un-
precedentedly large numbers. New findings from the leading
telecommunication players, such as Juniper [1] and Cisco [2],
reveal that global retail revenue from smart wearable devices
(as one of the IoT segments) will triple by 2016, therefore
reaching $53.2 billion by 2019, as compared to the $4.5 billion

The described research was supported by the National Sustainability
Program under grant LO1401. For the research, infrastructure of the SIX
Center was used. Authors would like to thank to Telekom Austria Group for
access to SIP infrastructure and insight into M2M and its real-life usage.

at the end of 2015. The market over the following five years
is expected to be substantially driven by the sales of smart de-
vices, named MTCD (Machine-type Communication Devices)
– an important component of this group is represented by
smart home gateways, also known as MTCG (Machine-type
Communication Gateway) [3], [4].

Presently, the MTCGs become more intelligent and provide
new functions for smart data collection and visualization on
end-user interfaces. In the light of the recent development in
the IoT domain, the MTCG is capable of offering much more
than conventional local networking features inside residential
buildings [5]. Many devices acting as MTCD, that is, based on
different communication technologies (IEEE 802.15.1, 6LoW-
PAN, ZigBee, Wireless M-BUS, etc.), are currently employing
MTCG as an aggregation node providing access to the public
network (Internet) [6], [7]. Inspired by these developments, we
have recently introduced the concept of multi-purpose Smart
Home Gateway (SH-GW) within our outgoing project under
the title SyMPHOnY [8].

In this work, we aim at enabling remote configuration for
devices in the role of SH-GWs by continuing our line of
research. Despite the fact that IoT is changing the conventional
communication paradigm in many ways [9], some principles
are remaining unchanged; therefore, many legacy technologies
can be applied to IoT as well. Following this thinking, we
have been investigating the protocol TR-069, well-known by
network operators to maintain the Customer Premises Equip-
ment (CPE), as a promising candidate for remote configuration
of the IoT nodes. To this end, we have developed a SH-GW
demonstrator, where the TR-069 is implemented as an exten-
sion of OSGi frameworks which are commonly used as the
primary middleware layer for smart home gateways shipped by
telecommunication operators. In other words, by using the TR-
069 on MTCGs, service providers and telecom operators are
able to manage and control not only the gateway but also the
devices behind (e.g., energy meters, motion sensors, etc.) [10].
This important use case raises many research questions related
to the configuration of various devices sets, the remote access
capabilities, as well as the choice of cryptographic mechanisms
used for data transmission. In this work, we have attempted

to address most of these issues.
The rest of this paper is organized as follows. Section II

is devoted to describing the operation principles of TR-069
protocol. Further, in Section III, a detailed description of
our developed software implementation for OSGi frameworks
together with a practical scenario accouting for all mentioned
issues are offered. Finally, the lessons learned during our
system development are summarized in the concluding Sec-
tion IV.

II. REMOTE NETWORK CONFIGURATION USING TR-069

As mentioned in the introduction, the need for remote
configuration and management of network nodes brings new
challenges to the IoT domain. Fueled by large numbers of
M2M devices, the service providers require to control all of
the devices in efficient and centralized way. For this purpose,
several application layer protocols for remote management of
end-user devices have already been introduced by different
working groups and standardization bodies [11]. As a well-
known and widely used representative, the TR-069 protocol
is often utilized by telecom operators [3]. In this section, the
functional architecture blocks of TR-069 are described with
the emphasis on future implementation as a bundle in OSGi
framework.

A. Protocol Architecture

TR-069 represents a protocol for encrypted self-
configuration of CPE from the side of ACS (Auto-
Configuration Server). The overall architecture of TR-069
ecosystem is depicted in Fig. 1.

ACS LAN

BRAS

Configuration
management

Controlled
CPE

Controlled
CPE (LAN)

DSLAM

Network

ACS -> CPE interfaceACS
interface

Fig. 1. Architecture of TR-069 ecosystem

The protocol allows the ACS server to provide information
on one or more CPEs according to a number of criteria. This
mechanism allows for offering a default set of parameters and,
furthermore, introduces a possibility of adding new features
according to the manufacturer’s requirements. Parameters of
the connected CPEs are available during the initial connection
setup as well as the regular transmission as requests (e.g.,
providing information about CPE from ACS based on asyn-
chronous, server-initialized1 connection).

1In TR-069 terminology, the connection is called server-initialized, even
though the communication is started at the CPE side. This is due to the fact
that there is a need for appropriate connection setup of the CPE devices
residing in local network where Network Address Translation (NAT) is used.

TABLE I. PROTOCOL LAYER SUMMARY [11]

Protocol Description
CPE/ACS Application The application uses the CPE WAN man-

agement protocol for the CPE and ACS,
respectively. It is defined locally but is not
a part of the CPE WAN.

RPC Methods The specific RPC methods are defined by
the CPE WAN Management Protocol. This
includes the definition of the CPE pa-
rameters accessible by the ACS using the
parameter-related RPC methods.

SSL/TLS Standard Internet transport layer security
protocols – SSL 3.0 or TLS 1.0 are used.

SOAP A standard XML-based syntax is used to en-
code remote procedure calls via the SOAP
1.1 protocol.

HTTP Standard HTTP 1.1.
TCP/IP Standard TCP/IP.

One of the most important tasks for remote configuration
is to allow secure communication for sensitive data like e.g.
encryption keys. TR-069 provides tools to download new soft-
ware / firmware from the ACS server using digital signatures
– to verify the integrity of downloaded files at the side of
CPE [12]. Further, TR-069 defines a set of parameters that
can be used for connection / service diagnostics [11].

1) Protocol Components: The TR-069 protocol architec-
ture includes several unique components comparing to other
dedicated IoT management protocols (e.g., the RPC (Remote
Procedures Calling), see Section II-A3). In addition, TR-
069 uses standard protocols, such as SOAP (Simple Ob-
ject Access Protocol), HTTP (Hypertext Transfer Protocol),
SSL / TLS (Secure Sockets Layer / Transport Layer Security),
and TCP / IP (Transmission Control Protocol / Internet Proto-
col) [11]. The overview of complementary protocols acting on
different layers is given in Table I.

On top of the supported protocols, TR-069 defines several
types of devices, where each device may be described by a
data model containing information about the parameters and
provided functions for a selected device. Supported TR-069
data models are shown in Table II (highlighted rows stand for
the data models implemented in this work).

2) Security Mechanisms: The TR-069 protocol is designed
to ensure the adequate level of security. Therefore, it in-
cludes methods for protection against manipulation during
the transactions between the ACS server and the end-device
(CPE). Further, the security algorithms using multiple levels
of authentication are implemented by means of SSL / TLS for
communication between the ACS and the CPE [11].

3) Architectural Components: The RPC defines a list of
parameters and methods that have to be included at the
end-device (CPE) in order to construct and send the TR-
069 requests. In the following text, a summary of the most
important components is given [11]:

• Parameters – RPC method specification defines a
generic mechanism allowing the ACS server to read
or write parameters for the CPE configuration, and to

TABLE II. DATA MODELS [13]

Data model Compliant device
TR-064 and TR-133 LAN CPE devices
TR-068 and TR-124 Gateway modems
TR-098 Internet gateway device data model for TR-

069
TR-104 Provisioning parameters for VoIP CPE
TR-106 Data model template for TR-069-enabled

devices
TR-110 Reference model for VoIP configuration
TR-111 Applying TR-069 to remote management of

home networking
TR-122 ATA devices
TR-126 Triple-Play QoE (Quality of Experience)

requirements
TR-128 and WT-123 TR-069 testing support
TR-131 ACS Northbound interface requirements
TR-135 Data model for a TR-069 enabled STB
TR 140 TR-069 data model for storage service-

enabled devices
TR-142 Framework for TR-069-enabled Passive Op-

tical Network (PON) devices
TR-143 Enabling network throughput performance

tests and statistical monitoring
TR-157 Component objects for CWMP

(UPnP/DLNA device support)
TR-181 Device data model for TR-069
TR-196 Femto access point service data model

monitor CPE status and statistics. Each parameter has
a name-value structure. The name identifies a particular
parameter and has a hierarchical structure similar to the
conventional directory listing ones (each level is separated
by ”.” (dot)). The value of a parameter may be one of
several defined data types.

• File Transfers – In TR-069, the mechanism enabling
file download or (optionally) upload is implemented in
order to perform tasks, e.g. CPE firmware upgrade or
download of vendor-specific configuration files. When
the session between ACS and CPE is initiated, the data
transmission is performed utilizing HTTP or (preferably)
HTTPS. Other protocols, including FTP and TFTP, are
supported as well, but used less frequently.

• CPE Connection Notifications – TR-069 defines a
mechanism allowing CPE to notify the corresponding
ACS about various conditions – to ensure that the fre-
quency of CPE-ACS communication remains optimal.

• Asynchronous ACS-Initiated Notifications – An impor-
tant aspect of auto-configuration service is the ability
of the ACS server to notify the remote CPE about
configuration changes asynchronously. It allows the auto-
configuration mechanism to be utilized for services re-
quiring real-time management of the CPE.

III. OUR IMPLEMENTED SOLUTION

To increase the impact of our recent research [8], [14] and as
well as to extend it, we have developed the TR-069 bundle as

a universal software package for any OSGi framework [14].
In case of this particular work, we have tested this bundle
together with the OSGi Knopflerfish framework [15]. The
motivation to focus on the OSGi platforms follows from the
fact that today’s MTCGs are mostly built with pre-configured
operating systems, wherever OSGi framework is used [8].
Further in this section, the key parts of the created TR-069
bundle are described.

A. Application Logic

Remote configuration of the network node consists of two
building blocks: (i) ACS server and (ii) TR-069 client; the
application logic is depicted in Fig. 2. Our solution is based on
an open source implementation of ACS called GenieACS [16],
which combines modern technologies including Mongo DB,
Node.js, and Redis server. Client side follows the OSGi
standards [17], [18] and uses the Knopflerfish framework as a
runtime environment. Set of rules for TR-069 client is taken
from modus TR-069, developed in Orange Labs [19]. Obtained
data is processed and visualized by the following packages:
(i) Item, (ii) Core, (iii) TR069 Parser, and (iv) WebConsole.

Modus
TR-069

ACS
File

Server

Core
Bundle

Downloaded
file

File
Process.

TR069
Parser

Event

property:
File Path

Items
Register

Store to
Register

File
loading

Events

Item
Bundle

Web
App.

Web
Console

genieacs

Fig. 2. Location of entities in case of using TR-069 protocol.

B. Communication Logic

The application data structure is defined in Item bundle, see
Fig. 2. This package is utilized only as a library without its
own activator defining standard format of messages exchanged
between the bundles. For this reason, it is necessary to import
this package in each bundle communicating with Core one. As
a provider of Items service (register all available items, e.g.,
smart meters), Core bundle is used. Each item is addressed by
the serial number as the unique device identifier. The selected
data structure, the ConurrentHashMap, guarantees thread-save
access. On the top of it, Core bundle must be started as first
since it acts as an activator and control process for all others.

The main advantage of using the described model is the
possibility to add new bundles (packages) to OSGi framework
without the need to modify the source code in Core bundle.
The only condition to be fulfilled for a new bundle is an import
of Items service. This logic provides a possibility for the one
way communication between all bundles and Core bundle. To
resolve this issue, we have used OSGi Event Admin service
allowing the backward communication between Core bundle
and other packages. In this case, Core bundle is used as a

source of OSGi events that other packages are listening to,
see Fig. 3. Individual events are distinguished with a dedicated
array called event topic. Payload of a event is prepanded by
word property which contains one or more Item objects.

OSGi service register

OSGi Event Admin

Item
Import
Item

Import
Item

Import
Item

TR069
Parser

Web
Console

Core

Export
Items

Import
Items

Import
Items

itemUpdated
itemAdded
itemRemoved
newConfig

Modus TR-069:
autoConfig

itemUpdated
itemAdded
itemRemoved
newConfig

Fig. 3. Communication between Core bundle and other bundles within the
OSGi Knopflerfish framework.

C. TR-069 Parser
Device configuration is carried out by the received config-

uration file processing – file structures may differ based on
the agreed terms between ACS and CPE(s). Therefore, it is
not necessary to know the file structure during its download
phase, but on the other hand, it is crucial to be aware of such
structure when processing on MTCG. This method is a default
option for remote configuration of the network devices for
telecommunication operators – we have performed the test
of our solution in cooperation with Telekom Austria Group
(TAG) company.

The implemented TR-069 communication procedure is
shown in Fig. 4. TR-069 protocol is used for the new configu-
ration file notification – represented in TR-069 terminology
by TR-069 Configuration files and defined by number ’3’
at FileType array. Developed TR-069 client allows to use
HTTP or FTP as transport protocol. Further, downloaded file
is processed by TR-069 Parser bundle. Note that in this phase
of the development, it supports neither secure connection nor
authentication to the ACS required by some telecom providers.

D. Console Output
In some cases, it is not possible to display the list of running

events in the system console (e.g., when OSGi framework runs
as a daemon in the background). Therefore, we have created
a specialized WebConsole bundle working as a web service
and displaying system events in a web console. Communica-
tion between the bundle and the web service is realized by
WebSocket protocol which is an elementary part of HTML 5.
WebConsole bundle operates as OSGi EventHandler listening
to all OSGi events utilized within the SyMPHOnY project, see
Fig. 2. Each event is processed and the payload part is sent to
the web services, and, finally, displayed, see Fig. 5.

IV. CONCLUDING THOUGHTS

Within the proposed logic for the remote configuration
of IoT devices acting as MTCG (and MTCD devices con-
nected to MTCG), our implementation of TR-069 protocol has

TCP Connection Termination

TCP Connection Establishment

TCP Connection Establishment

genieacs modus TR-069

File server
(FTP, HTTP)

Inform

InformResponse

Download

File type: 3, URL

HTTP Get, File URL

HTTP response: 200 OK

DownloadResponse

Status: 0 (succes)

TR069
Parser

Event

property: file path

Fig. 4. Obtaining configuration file using implemented TR-069 protocol.

Fig. 5. Console output of captured communication between ACS and CPE.

demonstrated the functionality of communication between the
ACS server and the end-device (CPE) in a real network. We
have successfully tested the developed solution in cooperation
with Telekom Austria Group. As we aimed our solution to
be universal for various types of MTCG devices, we have
constructed TR-069 bundle to be compliant with the well-
known OSGi frameworks.

As mentioned in Section III-C, the developed TR-069
implementation in its current version does not support secure
connection and authentication to the ACS. Therefore, as a next
step, we are planning to implement this functionality in our

TR-069 bundle.
Our main and most essential learning while working with

the TR-069 protocol is such that the structure of the configu-
ration file is not static. Following the specifics of the concrete
mobile network (ACS server configuration), the configuration
files may differ. In our trial, we have utilized the JSON
(JavaScript Object Notation) structure [20] implemented in live
A1 cellular network.

REFERENCES

[1] M. S. Whitcup and K. LaMattina, Juniper What is Inhibiting Growth
in the Medical Device Wearable Market? Available from: http://bit.ly/
1Dfffbf, September 2014.

[2] Cisco, Cisco Visual Networking Index: Global Mobile Data Traffic
Forecast Update, 2014-2019, February 2015.

[3] P. Masek, J. Hosek, D. Kovac, F. Kropfl, M2M Gateway: The Cen-
trepiece of Future Home. in Proc. of 6th International Congress on
Ultra Modern Telecommunications and Control Systems and Workshops
(ICUMT). St. Petersburg, Russia. pp. 286–293. 2014.

[4] M. Gerasimenko, V. Petrov, O. Galinina, S. Andreev, Y. Koucheryavy,
Energy and delay analysis of LTE-advanced RACH performance under
MTC overload. Globecom Workshops (GC Wkshps), IEEE. pp. 1632–
1637. 2012.

[5] P. Masek, K. Zeman, Z. Kuder, J. Hosek, S. Andreev, R. Fujdiak, F.
Kropfl, Wireless M-BUS: An Attractive M2M Technology for 5G-Grade
Home Automation. in Proc. of EAI International Conference on CYber
physiCaL systems, iOt and sensors Networks (CYCLONE). pp. 1–12.
ISBN: 978-1-4673-9282-2. 2015.

[6] N. Himayat, S.-P. Yeh, A. Y Panah, S. Talwar, M. Gerasimenko,
S. Andreev, Y. Koucheryavy, Multi-radio heterogeneous networks: Ar-
chitectures and performance. in Proc. of International Conference on
Computing, Networking and Communications (ICNC). pp. 252–258.
2014.

[7] O. Galinina, S. Andreev, M. Gerasimenko, Y. Koucheryavy, N. Himayat,
S.-P. Yeh, S. Talwar, Capturing spatial randomness of heterogeneous
cellular/WLAN deployments with dynamic traffic. Journal on Selected
Areas in Communications. vol. 32. issue 6. pp. 1083–1099. 2014.

[8] GitHub: SyMPHOnY (Smart Multi-Purpose Home Gateway). Available
from: https://github.com/SyMPHOnY-/Smart-Home-Gateway/wiki/

[9] A. Ometov, S. Andreev, A. Turlikov, Y. Koucheryavy, Characterizing
the effect of packet losses in current WLAN Deployments. in Proc. of
13th International Conference on ITS Telecommunications (ITST). pp.
331–336. IEEE. 2013.

[10] S. Andreev, P. Gonchukov, N. Himayat, Y. Koucheryavy, A. Turlikov,
Energy efficient communications for future broadband cellular networks.
Computer Communications, Volume 35, Issue 14, pp. 1662–1671. 2012.

[11] J. Bernstein, T. Spets, CPE WAN Management Protocol. DSL Forum,
Tech. Rep. TR-069. 2004.

[12] D. Dasgupta, S. Saha, A. Negatu, Techniques for validation and con-
trolled execution of processes, codes and data: A survey, in Proc. of
International Conference on Security and Cryptography (SECRYPT).
pp. 1–9. 2010.

[13] Incognito, Broadband Forum TR-069 standards support. [online]. Avail-
able from: http://bit.ly/1OdCsjM/

[14] M. Stusek, J. Hosek, D. Kovac, P. Masek, P. Cika, J. Masek, F.
Kropfl, Performance Analysis of the OSGi-based IoT Frameworks on
Restricted Devices as Enablers for Connected-Home. in Proc. of 7th In-
ternational Congress on Ultra Modern Telecommunications and Control
Systems and Workshops (ICUMT). Brno, Czech Republic. pp. 211–216.
ISBN: 978-1-4673-9282-2. 2015.

[15] Knopflerfish, Open Source OSGi SDK. [Online]. Available from: http:
//www.knopflerfish.org/

[16] GenieACS, Smart, fast TR-069 ACS. [online]. Available from: https:
//genieacs.com/

[17] OSGi, OSGi Alliance. [Online]. Available from: http://www.osgi.org/
[18] R. Hall, K. Pauls, S. McCulloch, D. Savage, OSGi in action: creating

modular applications in Java. Greenwich [Conn.]: Manning. 548 p.
ISBN: 19-339-8891-6. 2012.

[19] France Telecom, Modus TR069. [online]. Available from: http://
modus-tr-069.sourceforge.net/

[20] A. Greenspan, L. Cameron, Monetize the Internet of Things: JSON turns
a flood of data into business actions and results. 2015 [online]. Available
from: http://bit.ly/1He09Vu/

