
Tampere University of Technology

Log analysis of 360-degree video users via MQTT

Citation
Luoto, A. (2019). Log analysis of 360-degree video users via MQTT. In ICGDA 2019: Proceedings of the 2019
2nd International Conference on Geoinformatics and Data Analysis (pp. 130-137). ACM.
https://doi.org/10.1145/3318236.3318248
Year
2019

Version
Peer reviewed version (post-print)

Link to publication
TUTCRIS Portal (http://www.tut.fi/tutcris)

Published in
ICGDA 2019

DOI
10.1145/3318236.3318248

Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial
use is prohibited.

Take down policy
If you believe that this document breaches copyright, please contact cris.tau@tuni.fi, and we will remove access
to the work immediately and investigate your claim.

Download date:24.10.2020

https://tutcris.tut.fi/portal/en/persons/antti-luoto(4dc95d60-d56b-4600-9091-4445d5a9bf45).html
https://tutcris.tut.fi/portal/en/publications/log-analysis-of-360degree-video-users-via-mqtt(05ff6e54-d683-4a97-9c3d-0fbc566aa3de).html
https://doi.org/10.1145/3318236.3318248
https://tutcris.tut.fi/portal/en/publications/log-analysis-of-360degree-video-users-via-mqtt(05ff6e54-d683-4a97-9c3d-0fbc566aa3de).html
https://doi.org/10.1145/3318236.3318248

Log Analysis of 360-degree Video Users via MQTT
Antti Luoto

Tampere University of Technology
Tampere, Finland
antti.l.luoto@tut.fi

ABSTRACT
Analysing 360-degree video users is beneficial for 360-degree video
application development. The analysis can be done with logged
user data. In this paper, we argue that MQTT is a conventional tech-
nology for distributed logging of mobile 360-degree video users.
MQTT not only saves resources but allows communication from
the logging server to mobile clients in various networking condi-
tions relatively easy. We constructed a proof of concept to show
the feasibility of the approach. As log analysis examples, the proof
of concept visualizes results of the most popular region of inter-
est analysis and k-means clustering. The used research method is
design science.

CCS CONCEPTS
• Information systems → Clustering; • Networks → Network
architectures; • Human-centered computing→User studies;

KEYWORDS
360-degree video, MQTT, Log Analysis

ACM Reference Format:
Antti Luoto. 2018. Log Analysis of 360-degree Video Users via MQTT. In
Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
360-degree videos are getting more and more popular. They can be
watched with head-mounted displays (HMD) but they appear in
other contexts, such as websites, nowadays. We primarily discuss
360-degree videos in hand-held mobile device applications though
the techniques are applicable in HMD or web usage as well.

In our earlier work, we made a user logging and visualization
framework for 360-degree videos [21]. The framework works on
Android and uses the video player offered by Google VR SDK.
We presented a technique to place simple graphics over the video
and discussed HTTP based user logging. We made the work with
lightweightness and resource usage in mind. In this paper we pro-
pose improvements to the framework.

Low resource usage can be seen as one of the essential aspects
of 360-degree video development [20], and HTTP is not an optimal

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Conference’17, July 2017, Washington, DC, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

solution for logging device orientation. 360-degree video user log-
ging applications need to send small log entries often, for example
23 times a second, which causes overhead with HTTP.

We believe that the resource usage of the framework could be im-
proved by using a lightweight communication protocol MQTT. Be-
sides being lightweight, publish-subscribe pattern of MQTT brings
network architectural benefits in multi-user environment and it
supports applications located in various networking conditions
suffering from bad connections or NATs.

One application for user log data is data analysis. In our earlier
work, we did not discuss data analysis of the logged data. Since that,
we have reported visual heat map analysis of the logged data in a
web user interface [10]. This time, we present data analysis for the
logged data that also benefits from MQTT. We implemented SQL-
based solutions for calculating the most popular region of interest in
the video and k-means clustering algorithm. MQTT helps sending
the results for visualization on the mobile devices without a need
for requesting them.

Thus, the challenges we aim to solve with MQTT are:
• Supporting near real-time log analysis.
• Saving resources on a battery powered mobile device.

The used research method is design science. It is a research
method used in software engineering [31] that includes six steps:
problem identification and motivation, definition of the objectives for
a solution, design and development, demonstration, evaluation and
communication [25]. We include all the steps in this paper.

2 BACKGROUND
This section covers the step problem identification and motivation
for design science method.

2.1 360-degree Videos and User Logging
360-degree videos are omnidirectional spherical videos where the
user can choose the direction of the view port. 360-degree videos
have applications in security, robotics, education etc.

User logging in 360-degree video domain is an important feature
for multiple parties and applications [5, 18, 19, 33]. For example, logs
can be used to analyze not only the videos but also the video user
interface such as graphical elements or interaction points on top
of the video. While we are not, strictly speaking, in virtual reality
domain, the discussion of Ritchie et al. [28] about the benefits of
user logging in virtual reality applies to our work: it is an almost
non-intrusive method of capturing a rich data source for analysis, it
minimizes user interactions during the data capture, it has potential
to reduce time overhead of the capturing process, and the captured
data can also be reused.

Popular data for logging 360-degree video users includes the
direction of the view (for example, in Euler angles) and timestamp.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Luoto, A.

This is valuable information since many applications are immersive
and only show the chosen view port that adapts to the device
orientation. One challenge of 360-degree video user logging comes
from the frequently updating view. A video with 23 frames per
second requires a log packet to be sent every 43th millisecond if
every frame triggers a logging event.

2.2 Log Analysis
360-degree video user data can be analyzed visually, for example,
with heat maps. Applications for heat maps include analysis to
find the areas of interest in the video [5]. Heat map shows an
aggregation of users viewing a part of the video by coloring the
area. The brighter the color, the more often the part was included
in the users’ field of view. Continuously updating frame video adds
challenge to the heat map generation when compared to static
images. Heat map generation is also a resource consuming task [7].

Another visual analysis method is scanpath. Scanpath is a lin-
early connected dot sequence following the eye movement coordi-
nates in time but it is not good for aggregate data since markers
and labels are easily confusing when analyzing multiple users [7].
Löwe et al. [19], for example, generate heat maps and scanpaths.

Visual analysis, however, requires manual work. Data mining
algorithms could be an alternative. With data mining methods, we
can programmatically find the regions of interest from the video.
Visualizing such data mining results can be also less resource con-
suming than generating a heat map. Of course, producing a very
simplified heat map could be an option but we were interested to
explore other methods as well. K-means clustering, for example, is
a popular clustering algorithm used in data mining that is generally
easy to implement, simple, efficient and empirically successful [13].

2.3 Why MQTT
Capturing the device orientation for a single moment does not
require a lot of data but the difficulty comes from the frequently
updating video frame. Thus, we need to transfer a big number of
tiny packets. However, protocol overhead of HTTP causes serious
problems when transferring a big number of tiny packets [34].

MQTT is a lightweight messaging protocol that follows the
publish-subscribe paradigm, which makes it suitable for resource
constrained devices and non-ideal network connectivity conditions.
Because of its simplicity, and a very small message header com-
pared with other messaging protocols, it is often recommended for
IoT. [6]

MQTT is often proposed for communication from sensors to
(edge) gateways in IoT domain but we believe it has other uses
as well. We consider mobile phone sensors similar to IoT sensors.
In addition, MQTT allows the mobile phone to receive data by
subscribing to MQTT topics. Thus it is easy to send data to multiple
subscribers, for example, whenmultiple users watch the same video.
An example of a mobile use case of MQTT is Facebook chat [36] that
is often used with mobile devices in non-ideal network conditions.

IoT development survey 2016 [29] shows that MQTT and HTTP
are the most popular IoT protocols which supports choosing MQTT
as an implementation technique. Dizdarevic et al. [6] comment
on the survey that "The reason for this is that MQTT and HTTP

REST are currently comparably more mature and more stable IoT
standards than other protocols."

Still, there are other IoT protocols, such as CoAP, available. It
can be argued that MQTT is more suitable for IoT than CoAP be-
cause of the publish-subscribe architecture without responses [14].
Moreover, CoAP has more likely packet loss [14]. Furthermore, com-
munication with the users can be restricted by NATs. Several au-
thors mention the benefits of MQTT when communicating beyond
NAT [3, 8, 22, 30]. Other suggested techniques for NAT traversal
include Websockets, destination network translation (DNAT), vir-
tual private networks (VPN), Universal Plug and Play (UPnP), and
TCP hole punching. We consider them to be either more complex,
less reliable, difficult to configure or not ideal for saving resources.

3 RELATEDWORK
Related work shows that MQTT logging has been used in various
domains such as home and industrial automation. Those domains
are quite different from mobile 360-degree videos but they show
that MQTT has been used for logging in the scientific literature.

The presented logging research from the 360-video perspective
includes a few publications about publishing HMD tracking data
sets and analyzing them. In contrast to their work, we concentrate
more on hand-held usage with aim in lightweightness, supporting
multi-user logging and near real-time data analysis.

Resource consumption comparisons between MQTT and HTTP
are related work in a sense that we aim to save resources using
MQTT. We did not made a resource consumption comparison since
the existing studies support the assumption that MQTT saves re-
sources also in our case.

3.1 Logging with MQTT
Avizheh et al. [2] propose a secure event logging system for smart
homes using MQTT. They emphasize security by using Bitcoin
blockchain for ensuring the integrity of log files. While we did
not concentrate on security yet, authentication, authorization and
symmetric payload encryption could be the first steps [12, 22].

In another home automation study, Agerwal et al. [1], use MQTT
to send home automation data from sensors to Raspberry pi 3 which
works as a central unit with data-logging. They use Node-RED and
Mosquitto MQTT broker to create a cost-effective open source
solution. We also use open source components such as Google VR
SDK and Mosquitto.

Wenger et al. [32] discuss lightweight logging in industrial au-
tomation environment. In their solution, control devices connect to
a cloud MQTT broker publishing logging data so that monitoring
service subscribes to logging topics. We are not explicitly discussing
cloud environment but, for example, a web based monitoring ser-
vice can be implemented with the database [10].

Zabasta et al. [35] have an MQTT enabled event handling and
historian systems (used for data logging) for utility networks. They
note that the responsibilities for those components should be in-
vestigated more carefully. Similarly to their work, we use relational
database to store the sensor data and use JSON when sending data
with MQTT.

Herle et al. [11] propose a REST bridge for using MQTT via
standard HTTP methods. They use the bridge as a message logger

Log Analysis of 360-degree Video Users via MQTT Conference’17, July 2017, Washington, DC, USA

which logs all the received messages to a MongoDB database. With
their solution users are able to get a whole history of events instead
of just the latest event. In contrast, our solution does not provide
a way get the whole history of events via MQTT. This is a clear
disadvantage when compared to our earlier REST solution.

Kodali and Gorantla [15] made a Python application to receive
weather tracking sensor data (JSON) via MQTT broker and store it
to SQLite database. The broker, the application and the database are
located on the same Raspberry Pi. Kodali and Sarjerao [16] also hint
about a similar system where air quality data is continuously stored
in a MQTT server. Likewise, we use JSON and relational database,
but we have the logger application and the database in one server
and MQTT broker on other. The broker is the only component
available in the open Internet in our solution.

Harris and Curry [9] note that MQTT does not provide inherent
logging capabilities. Therefore they made a tracker for logging
MQTT traffic by LoRaWAN devices. Because of the inherent logging
capabilities, we also had to implement a logging components.

3.2 Analysing 360-degree Video Users
Lo et al. [18] offer public HMD user logging data sets. Their archi-
tecture is primarily for only local logging and they create saliency
maps and motion maps with the logs. In contrast, our logging server
architecture enables a way to collect data sets simultaneously with
multiple users and analyze the logs in real-time.

Corbillon et al. [5] also released a public 360-degree video head
movement data set. They used the logs to create example statistics
for analyzing users’ navigation patterns.

Wu et al. [33] also published a data set for exploring user behavior
in spherical videos. They present preliminary analysis of their data
set by presenting visualizations and statistics. However, they do not
discuss producing statistics in real-time. Examples of their statistics
include head movement angular speeds, where as we calculate the
most popular region of interest and k-means clustering.

Qian et al. [27] computed weighted linear regression on head ori-
entation data with results that the head orientation can be predicted
with over 90% accuracy. They predict single user traces, where as
we concentrate on multi-user analysis. However, they propose (not
implemented) usingmulti-user statistics to help with the inaccuracy
of single user prediction.

3.3 Resource Consumption Between MQTT
and HTTP

Luoto and Systä [22] made a memory and CPU usage compari-
son between MQTT and HTTP. MQTT used less resources even
with the suggested request-response pattern and symmetrically en-
crypted message payload. Comparison with 1000 request-responses
is applicable to 360-degree video domain because 23 seconds of 23
FPS video produces about 1000 log entries.

Chen and Lin [4] compared MQTT and HTTP proxies with the
result that the MQTT proxy had a shorter latency and saved more
power than theHTTP proxy.While proxy comparison is not directly
related to our work, their results suggests that MQTT could use
less power in our solution as well.

A comparison of power consumption between MQTT and HTTP
[23] on Android shows that MQTT has lower power consumption

for example on maintaining open connection and sending and
receiving messages (when compared to HTTPS long polling). We
also use Android and aim to reduce power consumption by choosing
MQTT.

Yokotani et al. [34] made comparisons in different scenarios with
10, 100 and 1000 devices with MQTT and HTTP. They concluded
their study so that MQTT performs better than HTTP. While we
could not evaluate our work even with ten devices, such results
encouraged us even more to choose MQTT, and evaluation with
more devices could be future work.

4 SOLUTION
To define the objectives for the solution step of design sciencemethod,
our objectives are: saving resources by choosing other network
protocol than HTTP, and supporting near real-time data analysis
by enabling an easy access to analysis results in a realistic Internet
architecture with NATs. The section also covers the steps design
and development, and demonstration (as far as it is possible in with
text and images).

4.1 Original HTTP Logging
The original logging and visualization framework runs on Android
mobile phone [21]. It uses the class VrVideoView of Google VR
SDK to create a video player in Android application. OnNewFrame
function of the class is executed when the video frame updates. This
also triggers our logging events. So, we get log only from drawn
frames and sometimes the player skips frames. The most important
logged information contains yaw, pitch, accelerometer values (x,
y, z), and video time. Yaw and pitch present rotation in a spherical
space. Yaw is the vertical angle between -180 and 180 degrees, and
pitch is the horizontal angle between -90 and 90 degrees.

The log entry was sent to RESTful logging server which used
PostgreSQL as database. The used data formatwas JSON. The logged
data was used, for example, to create heat maps in a web applica-
tion [10]. In addition, we could visualize traces of the previous view
sessions in the Android application. Creating a HTTP request for
every frame in 23 FPS video already makes a lot of traffic, and the
FPS can be even higher. The log entries could be sent as batches
but it does not support the near real-time aim of the study.

4.2 MQTT Logging
To test the feasibility of MQTT on our objectives, we implemented
a proof of concept. The architecture of the proof of concept can
be divided to three main components: mobile phones with video
players, MQTT broker delivering messages, and back end with
Logger and database. The used MQTT broker is Mosquitto. Figure 1
shows the components on a high abstraction level.

4.2.1 Logger. We implemented the logger application with Node.js
and MQTT.js library. The logger subscribes to topics for registering
a viewing session and sending logging data. After receiving the
data it stores the data to the database. It also publishes data analysis
results.

4.2.2 Mobile Client. We used the class MqttAndroidClient of the
Eclipse Paho project to implement MQTT on Android. The mobile
application presented in our earlier work was not changed other

Conference’17, July 2017, Washington, DC, USA Luoto, A.

Figure 1: Components of the proof of concept. Bidirectional
arrows illustrate that both the logger and the phones pub-
lish and subscribe.

Figure 2: MQTT communication. The dashed box illustrates
an operation that happens themost often. Subscriptions and
video registration happen once in a view session. Frequency
of analysis can be adjusted. Plus character isMQTTwildcard
that matches a single topic level. vID refers to video URL
hash and sID to view session hash.

than by refactoring the HTTP related code to use MQTT, adding
subscribing to the data analysis topic, and drawing the analysis

Figure 3: HTTP communication for comparison withMQTT
version. The same steps can be found from both the se-
quences (except that registering a view session is included
in ’log’ step in MQTT version). The last request is hypothet-
ical since it was not implemented with HTTP.

results on video (using the visualization technique presented in our
earlier work). Log message payloads are still in JSON format.

4.2.3 MQTT Topic Design. MQTT topics are strings that the bro-
ker uses for delivering messages for interested clients. Clients can
subscribe to a topic to receive messages published to that topic.
MQTT topics have levels that are separated by slash characters.

The topics needed to be designed with one-way communication
in mind. For example, in request-response pattern, it is possible to
ask for a unique client id from the back end, and then use that for
identifying view sessions. Since we can not do request-response
with a publish-subscribe protocol, we had to generate the needed
ids in the video player client. For example, when a user starts to
watch a video, the video application generates an id for the view
session using a hash function. Then, when the application sends
the first log entry, it also registers a view session using an MQTT
topic which contains the generated hash. For example, publishing
for the first time to topic video/(video URL hash)/viewsession/(view
session hash) registers a new view session and adds the log data
(from payload) for the video identified by view session hash. Later
publishing to the same topic, only adds the log data to database
since the view session is already generated.

Log Analysis of 360-degree Video Users via MQTT Conference’17, July 2017, Washington, DC, USA

Figure 2 presents a how the MQTT communication works be-
tween the mobile clients and the logger. For comparison, Figure 3
shows an original HTTP version of the same sequence.

The MQTT topic structure is based on three base topics:
• video/(video URL hash) – For registering a new video to the
system. The recipient can parse the hash from the topic
string of the incoming message while the message payload
contains only the original URL.

• video/(video URL hash)/viewsession/(view session hash) – For
registering a new view session, and publishing log entries
related to certain video. Again, the hashes can be parsed
from the incoming topic string. The payload contains the
logged data (orientation, video time etc.).

• video/(video URL hash)/viewsession/(view session hash)/
analysis – For the back end to send analysis results about a
certain view session to a device. Analysis could be replaced
with a descriptive name of the analysis such as popularRe-
gionOfInterest.

4.2.4 Database. The log database consists of three tables. Table
Video contains URL of the video and a shortened hash of the URL
used to form MQTT topics. We used shortened hashes (10 charac-
ters) because long topic names cause overhead in MQTT [34]. Table
Viewsession contains an id for the current view session. These ids
are used to identify certain view sessions in MQTT topics and to
send back analysis information to devices. The last table is for the
actual log entries. The database is implemented with PostgreSQL.

4.3 Log Analysis
4.3.1 Algorithms. We believe that the most convenient place to
perform data mining would be the database in our architecture.
Thus, we would not need to first retrieve the data, and then calculate
it with the Logger or even with mobile phone. Retrieving lots of
data could be heavy especially with multiple simultaneous users.

Our first algorithm calculated the most popular region of interest.
The algorithm divides the 360-degree sphere to a graticule of 30
times 30 degree spherical rectangles. This results in 72 spherical
rectangles if we count the topmost and bottommost spherical tri-
angles as rectangles for the sake of simplicity. From now on, we
call these rectangles as tiles. A sphere can be tiled in different 30
degrees was chosen because the minimum and maximum for both
the yaw (from -180 to 180 degrees) and pitch (from -90 to 90 de-
grees) are divisible by 30 and it felt conventional enough, but it
could be any other value as well. Figure 4 visualizes the division.
After that, every coordinate within a second is positioned in one of
the tiles. For example, a coordinate in 10 degrees of yaw 10 degrees
of pitch is positioned in a tile defined by area of 0–30 degrees of
yaw and 0–30 degrees of pitch. Then the algorithm counts the tiles
with most positioned coordinates and returns an ordered list. With
an ordered list it is easy to get, for example, the three most popular
tiles and visualize them in the application.

PostgreSQL evaluates comparisons in SELECT statement as true
or false and returns accordingly either ’t’ or ’f’ character. We use
a combination of those characters to identify a certain tile on the
sphere surface. Each tile is identified by a combination of 16 ’t’
and ’f’ characters. The first 11 characters identify the yaw position
and five latter characters identify the pitch position of the tile. The

Figure 4: A sphere divided to graticule of 72 tiles each with
30 times 30 degrees area.

string has from zero to two ’t’ characters and the rest are ’f’. So, for
example, ’fftfffffffffftff’ refers to a tile with left bottom corner located
in -120 degrees in yaw and -30 degrees in pitch and tile identified
by 16 ’f’ characters has left bottom corner located in 150 degrees in
yaw and 60 degrees in pitch. The combination resembles a binary
number and could be converted to an integer easily. However, on
the application side it is straightforward to iterate through the result
table and multiply 30 degrees with index of ’t’ to find the correct
position in degrees. Figure 6 shows measured execution times on
a modern laptop (Thinkpad W541, Windows 10, PostgreSQL 10.5)
where execution times seem to be near linear in relation to amount
of rows with our logged data. The following listing shows the SQL
source code of the algorithm:

SELECT ∗ , COUNT(t i l e) FROM
(SELECT yaw < −150 ,

yaw BETWEEN −150 AND −120 ,
yaw BETWEEN −120 AND −90 ,
−− . . . (go ing through a l l the

30− degree yaw s e c t i o n s)
yaw BETWEEN 120 AND 150 ,
p i t c h < −60 ,
p i t c h BETWEEN −60 AND −30 ,
−− . . . (go ing through a l l the

30− degree p i t c h s e c t i o n s)
p i t c h BETWEEN 30 AND 60
FROM reco rd
WHERE t ime BETWEEN 0 AND 1000) AS t i l e

GROUP BY 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 ,
1 2 , 1 3 , 1 4 , 1 5 , 16

ORDER BY count DESC

To elaborate the query, the derived table named ’tile’ contains
truth values. The query that produces that derived table uses table
’record’ that contains rows with yaw, pitch and time. In the example,

Conference’17, July 2017, Washington, DC, USA Luoto, A.

Figure 5: Execution times of the SQL query calculating the
most popular tile.

Figure 6: Example of most popular tile visualization. -60.0
tells the yaw angle and 0.0 pitch angle of the tile. Label ’car’
comes from themetadata visualization presented in our ear-
lier work. Red ’X’ marks the center of the view port.

we choose time between 0 and 1000 ms but it could other timeframe
as well. BETWEEN operator is inclusive meaning that begin and
end values are included but we do not consider that a disruptive
problem with the proof of concept. The main query counts the
amount of different rows in the derived table ’tile’. The numbers
(1–16) in GROUP BY refer to the unnamed columns of the derived
table. Then the final result is ordered in descending order according
to the amount of different truth value combinations. One row of
the main query result contains 16 truth values and how many times
such combination was included in the derived table ’tile’.

The second algorithm we implemented was k-means clustering
algorithm. With the algorithm, we strive to find clusters from the
orientation data inside the timeframe of one second. While imple-
menting data mining algorithms with SQL is not always considered
efficient or feasible, k-means clustering can be implemented in SQL
efficiently and flexibly [24]. We used a recursive PostgreSQL solu-
tion presented in Periscope Data blog [26] with minor modifications
(which is not standard SQL). An example of the flexibility of the
SQL implementation was that limiting the chosen timeframe (one
second) is easy using SQL BETWEEN operator. Experimenting the
query with our test data, using two clusters and ten iterations, takes
850 ms with 10000 log records, 2200 ms with 30000 log records and
3700 ms with 50000 log records. By halving the iterations to five,
the query execution times halve but the accuracy declines. Finally,
we send the cluster information to the devices for visualization.

4.3.2 Receiving Analysis Results. With HTTP the common way to
get the analysis results would be to request them from the back
end. However, the back end can be protected by NAT not allowing
incoming requests. MQTT can be used for NAT traversal which
does not require special work other than setting up the MQTT
broker and making it accessible by the parties involved in MQTT
messaging. This works also the other way around if a mobile client
is behind NAT and the back end needs to push data to it. Such
functionality makes the architecture flexible.

5 EVALUATION
In this section we evaluate the solution and the design decisions as
required by the step evaluation and communication of design science.
The criticism is directed at significance of the resource savings,
claimed real-time functionality, heaviness of k-means clustering in
SQL, id clashing, what we lost with HTTP, our MQTT topic design,
and generally the usefulness of k-means clustering in our use case.

Is it significant to save resources by optimizing logging if a 360-
degree video application already consumes much computational
resources? If the logging is frequent (for example, multiple times a
second) then logging users in long videos can take a considerable
amount of resources. Let us assume a scenario where application
makes a log entry ten times a second. In two minutes we will end up
with 1200 log entries. 1000 messages with either HTTP or MQTT
already makes a clear difference in resource usage [22]. In addition,
the presented ideas are applicable to software without 360-degree
video players as well, such as, mobile applications logging device
orientation or other often updating sensors. Resource savings with
other applications could be evenmore clear if the basic functionality
is not as heavy as, for example, playing 360-degree video.

We aim to support near real-time analysis. In our case real-time
means that user gets the analysis results visualized on the video so
that the lag is not distracting. Measuring a tolerable lag is out of the
scope of this paper. However, in our database the maximum time
used for the most popular region of interest analysis was about 70
ms with 50000 log records added to the time of transferring the
data. We did not consider this lag distracting. One reason is also
that the most popular location changes so slowly that updating it
around once a second provided good enough user experience. Even
less sparse updating pace could be enough which would reduce
the workload of the back end. Bigger tiles also shorten SQL query

Log Analysis of 360-degree Video Users via MQTT Conference’17, July 2017, Washington, DC, USA

time, for example diving the sphere to 60 times 30 degrees tiles
reduces the query time around 15 ms with 50000 log records. K-
means clustering starts to be too slow with our test data but it could
be optimized further.

While MQTT is considered relatively mature technology [6],
combining Android (Java) and MQTT was not especially straight-
forward and could be a dead-end for an inexpericed developer. In
contrast, our experience suggests that starting MQTT development
with Node.js and MQTT.js is easier.

Since we generate ids used for logging on Android devices, and
try to keep them short to prevent MQTT topic over head, id clashing
is possible. The possibility increases when the amount of users
grows. We did not consider this an important issue with the proof
of concept but it needs to be solved for real usage scenarios. One
solution could be to use centralized id generation technique and
use MQTT request-response to receive unique ids for clients [22].

Long topic names cause overhead with MQTT [34]. Our topics
could be shorter but we wanted to keep the structure readable and
hierarchical. It also allows the flexible usage of MQTT wildcards,
for example, if a party is interested in all the messages related to a
certain video. The topic for analysis results is less frequently used
than the others, so lengthy topic overhead is not as harmful with
that particular topic.

With the original HTTP solution, it was easy to create a Node.js
server for browsing the logging results via WWW and REST. Web
browsers do not directly support MQTT so requesting and browsing
the logging history for a certain view session is not as straightfor-
ward. Generally using MQTT makes it more difficult to implement
a browser based user interface.

Our division of spherical space in spherical rectangles results so
that the topmost and bottommost rectangles are actually spherical
triangles. This can add a bit of complexity for visualizing the tiles.
On the other hand, we assume that most of the videos have most
of the interesting content relatively near the equator of the sphere
and thus concentrating on those areas has higher priority.

Using PostgreSQL for k-means clustering was relatively simple.
However, if k-means clustering is too heavy it can be lightened,
for example, by reducing the amount of iterations, shortening the
timeframe, or limiting the amount of data (SQL LIMIT operator).
Ordonez [24] discusses multiple optimization ideas. It is also good
to note that PostgreSQL allows running Python (PL/Python) and R
(PL/R) for more advanced data mining but using those might bring
overhead when compared to raw SQL.

One challenge of k-means clustering is that the correct amount
of clusters is not always clear beforehand. For experimentation,
we used two clusters with the proof of concept but one way to
determine a proper suggestion for a good amount of clusters could
be elbow method [17].

It is good to note that our analysis does not tell the actual gaze
point because our devices can not track users’ gaze. But it is a
problem with all the techniques and devices that do not track the
gaze. However, the ideas presented in this paper could be applicable
for gaze tracking as well.

6 CONCLUSIONS
In this paper, we showed how MQTT can be used for logging
360-degree video users’ device orientation. The work is based on
earlier work about logging users with HTTP. By choosing MQTT
we aim to save computational resources, and furthermore battery
usage of mobile devices. Using MQTT also enables relatively easy
NAT traversal which makes publishing data in realistic network
environment easier. This way we can send log analysis results to the
clients without a need for specific request-response for continuous
updating. As a log analysis example, we discuss an SQL algorithms
for calculating the most popular region of interest and k-means
clustering. Such data analysis could be used, for example, to show
announcements or advertisements on popular regions of interest
on the video.

ACKNOWLEDGMENTS
The authors would like to thank Business Finland for funding the
project 360 Video Intelligence.

REFERENCES
[1] Archit Agarwal, Rajesh Singh, Anita Gehlot, Gautam Gupta, and Mohit Choud-

hary. 2017. IOT Enabled Home Automation through Nodered and MQTT. Inter-
national Journal of Control Theory and Applications 10, 18 (2017), 255–260.

[2] Sepideh Avizheh, Tam Thanh Doan, Xi Liu, and Reihaneh Safavi-Naini. 2017.
A Secure Event Logging System for Smart Homes. In Proceedings of the 2017
Workshop on Internet of Things Security and Privacy. ACM, 37–42.

[3] Paolo Bellavista and Alessandro Zanni. 2016. Towards better scalability for IoT-
cloud interactions via combined exploitation of MQTT and CoAP. In Research
and Technologies for Society and Industry Leveraging a better tomorrow (RTSI),
2016 IEEE 2nd International Forum on. IEEE, 1–6.

[4] Hsiang Wen Chen and Fuchun Joseph Lin. 2014. Converging MQTT resources
in ETSI standards based M2M platform. In Internet of Things (iThings), 2014
IEEE International Conference on, and Green Computing and Communications
(GreenCom), IEEE and Cyber, Physical and Social Computing (CPSCom), IEEE.
IEEE, 292–295.

[5] Xavier Corbillon, Francesca De Simone, and Gwendal Simon. 2017. 360-Degree
Video Head Movement Dataset. In Proceedings of the 8th ACM on Multimedia
Systems Conference. ACM, 199–204.

[6] Jasenka Dizdarevic, Francisco Carpio, Admela Jukan, and Xavi Masip-Bruin. 2018.
Survey of Communication Protocols for Internet-of-Things and Related Chal-
lenges of Fog and Cloud Computing Integration. arXiv preprint arXiv:1804.01747
(2018).

[7] Andrew T Duchowski, Margaux M Price, Miriah Meyer, and Pilar Orero. 2012.
Aggregate gaze visualization with real-time heatmaps. In Proceedings of the
Symposium on Eye Tracking Research and Applications. ACM, 13–20.

[8] Paul Fremantle. 2014. A reference architecture for the internet of things. WSO2
White paper (2014).

[9] Nicholas Harris and Josh Curry. 2018. Development and range testing of a Lo-
RaWAN system in an urban environment. World Academy of Science, Engineering
and Technology, International Journal of Electrical, Computer, Energetic, Electronic
and Communication Engineering 12, 1 (2018), 43–51.

[10] Pietari Heino. 2018. 360-videoiden katselustatistiikan visualisointi. Master’s thesis.
Tampere University of Technology (TUT), Tampere, Finland.

[11] Stefan Herle, Ralf Becker, and Jörg Blankenbach. 2016. Bridging GeoMQTT and
REST. In Geospatial Sensor Webs Conference.

[12] HiveMQ. [n. d.]. MQTT Security Fundamentals: MQTT Payload Encryption. ([n.
d.]).

[13] Anil K Jain. 2010. Data clustering: 50 years beyond K-means. Pattern recognition
letters 31, 8 (2010), 651–666.

[14] Vasileios Karagiannis, Periklis Chatzimisios, Francisco Vazquez-Gallego, and
Jesus Alonso-Zarate. 2015. A survey on application layer protocols for the
internet of things. Transaction on IoT and Cloud Computing 3, 1 (2015), 11–17.

[15] Ravi Kishore Kodali and Venkata Sundeep Kumar Gorantla. 2017. Weather
tracking system using MQTT and SQLite. In 2017 3rd International Conference
on Applied and Theoretical Computing and Communication Technology (iCATccT).
IEEE, 205–208.

[16] Ravi Kishore Kodali and Borade Samar Sarjerao. 2017. MQTT based air quality
monitoring. In Humanitarian Technology Conference (R10-HTC), 2017 IEEE Region
10. IEEE, 742–745.

Conference’17, July 2017, Washington, DC, USA Luoto, A.

[17] Trupti M Kodinariya and Prashant R Makwana. 2013. Review on determining
number of Cluster in K-Means Clustering. International Journal 1, 6 (2013),
90–95.

[18] Wen-Chih Lo, Ching-Ling Fan, Jean Lee, Chun-Ying Huang, Kuan-Ta Chen, and
Cheng-Hsin Hsu. 2017. 360Âř Video Viewing Dataset in Head-Mounted Virtual
Reality. In Proceedings of the 8th ACM on Multimedia Systems Conference. ACM,
211–216.

[19] Thomas Löwe, Michael Stengel, Emmy-Charlotte Förster, Steve Grogorick, and
MarcusMagnor. 2015. Visualization and analysis of headmovement and gaze data
for immersive video in head-mounted displays. In Proceedings of the Workshop
on Eye Tracking and Visualization (ETVIS), Vol. 1.

[20] Antti Luoto. 2017. Towards Framework for Choosing 360-degree Video SDK. In
SIGMAP. 81–86.

[21] Antti Luoto. 2018. Lightweight Visualization and User Logging for Mobile 360-
degree Videos. In 11th Workshop on Software Engineering and Architectures for
Realtime Interactive Systems (SEARIS) (to be published). IEEE.

[22] Antti Luoto and Kari Systä. 2018. Fighting network restrictions of request-
response pattern with MQTT. IET Software (2018).

[23] Stephen Nicholas. 2013. Power Profiling: HTTPS Long Polling vs. MQTT with
SSL, on Android. (2013).

[24] Carlos Ordonez. 2006. Integrating K-means clustering with a relational DBMS
using SQL. IEEE transactions on Knowledge and Data engineering 18, 2 (2006),
188–201.

[25] Ken Peffers, Tuure Tuunanen, Marcus A Rothenberger, and Samir Chatterjee.
2007. A design science research methodology for information systems research.
Journal of management information systems 24, 3 (2007), 45–77.

[26] Periscopedata. 2015. Multi-dimensional Clustering Using K-Means in Postgres
SQL. (2015).

[27] Feng Qian, Lusheng Ji, Bo Han, and Vijay Gopalakrishnan. 2016. Optimizing 360
video delivery over cellular networks. In Proceedings of the 5th Workshop on All
Things Cellular: Operations, Applications and Challenges. ACM, 1–6.

[28] James M Ritchie, Raymond CW Sung, Heather Rea, Theodore Lim, Jonathan R
Corney, and Iris Howley. 2008. The use of non-intrusive user logging to capture
engineering rationale, knowledge and intent during the product life cycle. InMan-
agement of Engineering & Technology, 2008. PICMET 2008. Portland International
Conference on. IEEE, 981–989.

[29] I Skerrett. 2016. IoT Developer Survey 2016. Eclipse IoT Working Group, IEEE IoT
and Agile IoT (2016), 1–39.

[30] Minoru Uehara. 2015. A case study on developing cloud of things devices. In Com-
plex, Intelligent, and Software Intensive Systems (CISIS), 2015 Ninth International
Conference on. IEEE, 44–49.

[31] Vijay Vaishnavi and William Kuechler. 2004. Design research in information
systems. (2004).

[32] Monika Wenger, Alois Zoitl, Jan Olaf Blech, Ian Peake, and Lasith Fernando. 2015.
Cloud based monitoring of timed events for industrial automation. In Parallel and
Distributed Systems (ICPADS), 2015 IEEE 21st International Conference on. IEEE,
827–830.

[33] Chenglei Wu, Zhihao Tan, Zhi Wang, and Shiqiang Yang. 2017. A Dataset for
Exploring User Behaviors in VR Spherical Video Streaming. In Proceedings of the
8th ACM on Multimedia Systems Conference. ACM, 193–198.

[34] Tetsuya Yokotani and Yuya Sasaki. 2016. Comparison with HTTP and MQTT on
required network resources for IoT. In Control, Electronics, Renewable Energy and
Communications (ICCEREC), 2016 International Conference on. IEEE, 1–6.

[35] Anatolijs Zabasta, Kaspars Kondratjevs, Janis Peksa, and Nadezda Kunicina. 2017.
MQTT enabled service broker for implementation arrowhead core systems for
automation of control of utility’systems. In Advances in Information, Electronic
and Electrical Engineering (AIEEE), 2017 5th IEEE Workshop on. IEEE, 1–6.

[36] Lucy Zhang. 2011. Building Facebook Messenger. (2011).

	Abstract
	1 Introduction
	2 Background
	2.1 360-degree Videos and User Logging
	2.2 Log Analysis
	2.3 Why MQTT

	3 Related Work
	3.1 Logging with MQTT
	3.2 Analysing 360-degree Video Users
	3.3 Resource Consumption Between MQTT and HTTP

	4 Solution
	4.1 Original HTTP Logging
	4.2 MQTT Logging
	4.3 Log Analysis

	5 Evaluation
	6 Conclusions
	Acknowledgments
	References

