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Abstract

Signal processing methods for audio classi�cation and music content
analysis are developed in this thesis. Audio classi�cation is here un-
derstood as the process of assigning a discrete category label to an un-
known recording. Two speci�c problems of audio classi�cation are con-
sidered: musical instrument recognition and context recognition. In the
former, the system classi�es an audio recording according to the instru-
ment, e.g. violin, �ute, piano, that produced the sound. The latter task
is about classifying an environment, such a car, restaurant, or library,
based on its ambient audio background.

In the �eld of music content analysis, methods are presented for mu-
sic meter analysis and chorus detection. Meter analysis methods con-
sider the estimation of the regular pattern of strong and weak beats in
a piece of music. The goal of chorus detection is to locate the chorus seg-
ment in music which is often the catchiest and most memorable part of
a song. These are among the most important and readily commercially
applicable content attributes that can be automatically analyzed from
music signals.

For audio classi�cation, several features and classi�cation methods
are proposed and evaluated. In musical instrument recognition, we con-
sider methods to improve the performance of a baseline audio classi�ca-
tion system that uses mel-frequency cepstral coef�cients and their �rst
derivatives as features, and continuous-density hidden Markov models
(HMMs) for modeling the feature distributions. Two improvements are
proposed to increase the performance of this baseline system. First,
transforming the features to a base with maximal statistical indepen-
dence using independent component analysis. Secondly, discriminative
training is shown to further improve the recognition accuracy of the
system.

For musical meter analysis, three methods are proposed. The �rst
performs meter analysis jointly at three different time scales: at the
temporally atomic tatum pulse level, at the tactus pulse level, which cor-
responds to the tempo of a piece, and at the musical measure level. The
features obtained from an accent feature analyzer and a bank of comb-
�lter resonators are processed by a novel probabilistic model which rep-
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resents primitive musical knowledge and performs joint estimation of
the tatum, tactus, and measure pulses.

The second method focuses on estimating the beat and the tatum.
The design goal was to keep the method computationally very ef�cient
while retaining suf�cient analysis accuracy. Simpli�ed probabilistic
modeling is proposed for beat and tatum period and phase estimation,
and ensuring the continuity of the estimates. A novel phase-estimator
based on adaptive comb �ltering is presented. The accuracy of the
method is close to the �rst method but with a fraction of the compu-
tational cost.

The third method for music rhythm analysis focuses on improving
the accuracy in music tempo estimation. The method is based on esti-
mating the tempo of periodicity vectors using locally weighted k-Nearest
Neighbors ( k-NN) regression. Regression closely relates to classi�ca-
tion, the difference being that the goal of regression is to estimate the
value of a continuous variable (the tempo), whereas in classi�cation the
value to be assigned is a discrete category label. We propose a resam-
pling step applied to an unknown periodicity vector before �nding the
nearest neighbors to increase the likelihood of �nding a good match
from the training set. This step improves the performance of the method
signi�cantly. The tempo estimate is computed as a distance-weighted
median of the nearest neighbor tempi. Experimental results show that
the proposed method provides signi�cantly better tempo estimation ac-
curacies than three reference methods.

Finally, we describe a computationally ef�cient method for detect-
ing a chorus section in popular and rock music. The method utilizes a
self-dissimilarity representation that is obtained by summing two sep-
arate distance matrices calculated using the mel-frequency cepstral co-
ef�cient and pitch chroma features. This is followed by the detection of
off-diagonal segments of small distance in the distance matrix. From
the detected segments, an initial chorus section is selected using a scor-
ing mechanism utilizing several heuristics, and subjected to further pro-
cessing.

Keywords Audio signal analysis, audio classi�cation, audio-based
context recognition, musical instrument recognition, music meter anal-
ysis, chorus detection.
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Chapter 1

Introduction

Imagine walking on a street and listening to your favorite string quartet
from the head phones of your portable music device. As you are walk-
ing towards the city center, the traf�c gets harder and the noise level in
the surrounding environment increases. At some point you may need to
switch from classical music to something 'louder' such as heavy metal
as the quiet nuances of the violin performance are barely audible any-
more.

We are starting to have more and more devices that automatically
adapt to the situation and adjust their behavior accordingly. In the
above case, for example, the device might use its microphone to sense
the increased noise level and make a decision to adjust the current
playlist to incorporate music that is better audible in the loud environ-
ment. Modern hearing aids already adapt their behavior according to
the environmental noise levels. As another example, consider a device
which would automatically detect that the user goes jogging and select
the playlist accordingly. The individual songs in the playlist could be se-
lected to provide suitable motivation for different parts of the exercise,
so that songs with slower tempo are played when the pace is slower and
songs with faster tempo when running faster.

To be able to make sophisticated decisions on what music to select
in each context, the system needs information on the user's context and
music content. Context information may include e.g. recognizing the
location, such as in a car or at home. Many sensors are available for
context sensing including acceleration, illumination, global positioning
system (GPS) location, temperature, camera, or microphone. Each sen-
sor type has its own bene�ts regarding power consumption, cost, and
type of information it provides. Context recognition using using audio is
attractive since microphones are already available in many portable de-
vices such as mobile phones, and audio provides a rich source of context
information. Automatic audio content analysis methods can be used
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to provide information on and categorize audio signals captured by the
built-in microphone.

Music content information includes for example genre, style, release
year, mood, harmony, melody, rhythm and timbre. Some of these at-
tributes such as the genre and release year are usually available as tex-
tual metadata. By employing a number of music experts it is possible to
categorize even large catalogues of music with regard to several musical
attributes and use this information in making music recommendations,
as is done e.g. by the personalized radio service Pandora.com. How-
ever, using human experts is costly and slow, making the development
of automatic music content analysis methods attractive. Compared to
human abilities, machine analysis of music content is only in its infancy.
In some applications, such as tempo estimation or chorus detection from
popular and rock music, machines obtain accuracies up to 90% which
makes building practical applications possible. In addition, music con-
tent information such as tempo and timbre can combined with textual
metadata such as genre and release year to improve the performance
e.g. in content-based retrieval.

The following lists some other applications of audio content analysis.

² Multimedia information retrieval and indexing is facilitated by au-
tomatic analysis of e.g. events in a video soundtrack or attributes
of a musical piece [32].

² Content modi�cation and active listening can be enabled with con-
tent data describing the beats and measures [83]. For example,
consecutive tracks can be mixed in a beat-synchronous fashion to
make a smooth transition. Music player interfaces may provide
novel functionality such as looping or skipping to musically mean-
ingful locations such as the beginning of the next chorus [66].

² Music transcription means transforming an acoustic music signal
into written music, a score [99]. Amateur musicians would ben-
e�t from applications which would reliably convert their favorite
music collections to notated form.

² Object-based audio coding aims at using high-level objects such as
musical notes as a basis for compression [174]. Being able to en-
code and represent sound producing objects separately would en-
able e.g. changing the lead instrument to something else or chang-
ing its playback style during resynthesis.

² Automatic accompaniment systems make it possible for soloists to
practice with a virtual accompaniment which follows the soloist [169,
151].
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1.1 Terminology

1.1.1 Musical terminology

A musical sound is often characterized with four main perceptual at-
tributes: pitch , loudness, duration and timbre . These four attributes
make it possible for a listener to distinguish musical sounds from each
other. Pitch, loudness and duration are better understood than tim-
bre and they have clear physical counterparts. For musical sounds,
pitch is usually well de�ned and is almost equal to inverse of the pe-
riod for sounds that are periodic or nearly periodic. Fundamental fre-
quency F0 is the corresponding physical term and is measured in Hertz
(Hz). Pitched musical sounds usually consist of several frequency com-
ponents. A perfectly harmonic sound with fundamental frequency F0

has harmonics at integer multiples of the fundamental frequency.
According to Shephard, the perception of musical pitch can be graph-

ically represented using a continually cyclic helix having two dimen-
sions: chroma and height [164]. Chroma refers to the position of a
musical pitch within an octave, i.e., a cycle of a helix, when seen from
above. Pitch height refers to the vertical position of the helix seen from
the side.

The physical counterpart of loudness is intensity , which is propor-
tional to the power of an acoustic waveform. The third dimension, per-
ceived duration, corresponds quite closely to the physical duration for
tones that are not very short.

Timbre is the least understood among the four attributes. It is some-
times referred as sound ”color” and is closely related to the recognition
of sound sources [71]. When two musical sounds have equal pitch, loud-
ness and duration, timbre is the property which makes it possible to
distinguish the sounds from each other. Timbre is a multidimensional
concept and depends mainly on the coarse spectral energy distribution
and its temporal evolution.

Musical meter relates to rhythmic aspects of music. Perceiving the
meter can be characterized as a process of detecting moments of mu-
sical stress from the signal and inferring the underlying periodicities.
Pulse sensations at different levels together constitute the meter [99].
The most distinct level is the one corresponding to individual beats, and
is called the beat or tactus. This is the rate at which most people tend
to tap their foot on the �oor while listening to music. The tempo of a
piece is de�ned as the rate of the tactus pulse. It is typically repre-
sented in units of beats per minute (BPM), with a typical tempo being
of the order of 100 BPM. The sequence of musical measures relates to
harmonic changes or the length of musical patterns. Bar lines separate
the measures in musical notation. Typically, every Nth beat coincides
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with the beginning of a measure. In a 4/4 time signature typical for
Western popular music, every 4th beat coincides with the beginning of
a measure, and is called a downbeat. The shortest meaningful dura-
tion encountered in music is called temporal atom or tatum and often
coincides with the duration of 8th or 16th note.

On a larger timescale than the measure, the form of Western popular
and rock music pieces often consists of distinguishable sections such as
intro, verse, bridge, chorus, and outro [121]. The different sections may
repeat and a typical structure of a musical work consists of one or more
repetitions of a verse and chorus. The chorus is often the ”catchiest” and
most memorable part of the song and is thus good to be used for music
previewing, as a so-called music thumbnail [16]. Another use for the
chorus section is as a mobile phone ring tone.

1.1.2 Context and metadata

Moran and Dourish de�ne context as the physical and social situation in
which computational devices are embedded [129]. In its general sense,
context can describe the state of the environment, the user, and the de-
vice. For the purposes of this study, context describes the situation or
physical location around an entity. The basic goal in context aware com-
puting is to acquire and utilize information on the context of a device to
provide better services for the user [129]. For example, a mobile phone
may automatically go into a silent mode when it detects that the user
sits in a meeting or in a concert.

Context information can also be used as an automatically created
metadata for media such as music: for example when the device detects
that the user is in a car and listens to music, it may automatically tag
the played songs as suitable for the car environment and provide simi-
lar songs to the car environment later on [80, 162]. On a general level,
metadata can be de�ned as data which describes data. Typical meta-
data for a music �le includes information on the artist, composer, track
and album title, genre, and beats-per-minute (BPM).

1.2 Related research �elds

1.2.1 Computational auditory scene analysis, speech pro-
cessing, multimedia content description, and audio
�ngerprinting

This thesis falls within the broad �eld of audio content analysis. This
section brie�y introduces some related research �elds and provides ref-
erences to more detailed overviews.
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Audio content analysis is related to computational auditory scene
analysis (CASA) [48, 176]. In this �eld, the ultimate goal is to analyze
and interpret complex acoustic environments, including the recognition
of overlapping sound events, and thus their sources.

Some related �elds are more developed than e.g. those presented in
this thesis, and can be used a source of methods and techniques. The
speech and speaker recognition �eld is well developed although still un-
der extensive research efforts. Many feature extraction and statistical
modeling techniques used nowadays for environmental sound classi�-
cation or music content analysis were �rst developed for speech. For
overviews of speech and speaker recognition see [88, 61, 149, 148].

Query-by-example of audio is an important application for audio con-
tent analysis. Here, the goal is to �nd items with similar attributes from
audio catalogues [72]. A special requirement in this area is to be able to
ef�ciently compute distances between the audio samples in a database.

Audio �ngerprinting, music recognition, or content-based audio iden-
ti�cation is a well matured technology based on automatic analysis of
audio content. Here, the goal is to link an unlabeled audio �le to its
metadata (artist, album, title) for the purposes of broadcast station
monitoring, cleaning up metadata in music collections, or discovering
the identity of a song heard in a bar. For overviews on audio �nger-
printing see [30, 29, 175].

The multimedia description standard MPEG-7, developed by the
Moving Pictures Expert Group standardizes the representation of con-
tent descriptive metadata, such as musical instrument parameters [122,
95]. Reference content analysis methods are given, but new content
analysis methods can be developed to automatically produce this meta-
data. A more comprehensive review of audio content analysis is given
in Chapter 2.

1.2.2 Music information retrieval

The �eld of music information retrieval (MIR) considers technologies
to enable access to music collections [32]. MIR is a multidisciplinary
�eld drawing from music perception, cognition, musicology, engineering,
and computer science. The growth of research interest in the �eld is
evident e.g. from the number of papers published in the Proceedings of
the International Conference on Music Information Retrieval. The �rst
conference was held in 2000 and the proceedings included 35 papers,
whereas in 2008 the number of papers had grown to 111 [2].

Most commonly, digital music catalogues are accessed with the help
of textual metadata [32]. As the metadata may be rich and descriptive,
this provides ef�cient ways to access and �nd music. However, a prob-
lem is how to obtain high quality metadata for large music catalogues.
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Companies such as Pandora.com ([5]) and AllMusic ([1]) use human ex-
perts to annotate descriptive terms for large catalogues of songs and are
able to provide high quality search and music recommendation services.
However, annotating a song e.g. at Pandora.com takes an estimated 20
to 30 minutes ([3]), which leads to large costs. Moreover, concerns raise
of the consistency of metadata as large populations of people are needed
to annotate collections of several million sound tracks.

An alternative for expert annotated metadata is to collect tags from
users, as done by social music websites such as last.fm [4]. However,
this leads to problems on how to mine high quality information from
noisy tag clouds as typically users are allowed to assign whatever tags
they desire for the music. There are also approaches where analysis of
freeform text content on the Web is used to derive descriptions for music
content. Brian Whitman describes pioneering work on this area in his
thesis [179]. A more comprehensive review on music content analysis is
given in Chapter 3.

1.2.3 Context awareness

Context recognition is de�ned as the process of automatically deter-
mining the context around a device. In addition to being a promising
source of automatic metadata for music or other media types, informa-
tion about the context would enable wearable devices to provide better
service to users' needs, e.g., by adjusting the mode of operation accord-
ingly. Recent overviews on context awareness can be found in [77] and
[101].

Compared to image or video sensing, audio has certain distinctive
characteristics [50]. Audio captures information from all directions and
is more robust than video to sensor position and orientation. In addi-
tion, the nature of information is different from that provided by vi-
sual sensors. For example, what is said is better analyzed from audio
but the presence of nonspeaking individuals cannot be detected. Audio
can provide a rich set of information which can relate to location, ac-
tivity, people, or what is being spoken [50]. The acoustic ambiance and
background noise characterizes a physical location, such as inside a car,
restaurant, or church. Different activities such as typing a keyboard or
talking can be distinguished based on the sound they create.

1.2.4 Applications of audio-based context awareness and
automatic music content analysis

Applications based on audio-based context awareness are still very much
work in progress, and general environmental awareness based on au-
dio input remains a dif�cult research problem. However, in some very
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narrow �elds commercial applications are emerging. For example, the
smart alarm clock by Smart Valley Software detects the optimal mo-
ment to wake up by monitoring the quality of your sleep using the mi-
crophone of a mobile phone [6]. Modern hearing aids optimize their
performance according to the noise quality of the environment [19].

Context-aware music services are at research prototype stage. For
example, Lehtiniemi describes an user evaluation of a prototype context-
aware music recommendation service in [109]. A high-level architecture
of the service is described in [162].

Some �elds of automatic music content analysis have reached suf-
�cient maturity for practical applications. For example, the Nokia PC
Suite software contains functionality to calculate the tempo from user's
own music �les. In professional applications, tempo analysis has existed
for long. However, the analysis is not faultless and in (semi)professional
applications the user may be able to �x the analysis errors e.g. by tap-
ping the correct tempo, such as in the Music Maker music editing soft-
ware by MAGIX. In amateur applications we cannot expect the user to
be able to �x tempo estimation errors by tapping and work on robust
tempo analysis methods is thus needed. In addition, some aspects of
music meter are more dif�cult to analyze than others. For example,
analyzing the average tempo can be done robustly, but positioning the
beats or beat phase estimation is much more challenging. Estimating
the bar line positions is also challenging but important for many prac-
tical applications, such as seamless beatmixing of tracks.

1.3 Scope and purpose of the thesis

This thesis considers methods for automatic content analysis of music
and audio. Common to the selected methods is that they can be used
for automatic metadata generation for music . The metadata can relate
to the content, i.e. which instruments are used, what is the tempo of
the piece, or where is the chorus section. Automatic music content de-
scriptors provide an ef�cient means for automatically deriving content
descriptive metadata from multimillion music track collections. Besides
the actual music content, the metadata can relate to the usage or con-
text, i.e. in which situation has the music been listened to. Examples
include in a car, bus, outdoors jogging, or at home with friends. In
the latter scenario, a mobile music player collects context information
and automatically associates information describing the situation to the
played music.

More speci�cally, methods are proposed to address different sub-
problems in music and audio content analysis. Publications [P1], [P2],
[P3], and [P4] consider audio classi�cation. In the �rst three publi-
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cations the task is the classi�cation of musical instruments, and [P4]
considers the classi�cation of the environment or device context based
on the background sound ambiance.

Methods for musical instrument recognition have been originally
proposed in [P1], [P2], and [P3]. The methods focus on classifying the
instrument based on monophonic, single note recordings. The method
proposed in [P1] suggests several frequency and time domain features
that are useful for musical instrument recognition, and presents exper-
iments using a hierarchical classi�cation scheme utilizing the natural
taxonomy of musical instrument families. In [P2] a very pragmatic ap-
proach is taken and an analysis is made of the ef�ciency of different
features in the musical instrument classi�cation task, and the problem
of generalizing across different environments. Publication [P3] proposes
the use of hidden Markov models with a left-right topology for instru-
ment recognition and studies the use of linear feature transforms to
transform concatenated MFCC and delta MFCC features.

Publication [P4] presents a method for recognizing the context based
on audio. Similar techniques are applied as in [P3]. The paper focuses
on techniques that could be used to improve the system's performance
with negligible increase in the computational load at the on-line classi-
�cation stage.

In music content description, the focus is on music meter analysis
and chorus detection. Music meter analysis is considered in publica-
tions [P5], [P6], and [P7]. The method presented in [P5] is a complete
meter analysis system capable of jointly estimating the tatum, beat (tac-
tus), and bar level pulses in musical signals. However, when large music
catalogues are processed or an algorithm should be run on an embed-
ded device such as mobile phone, computational complexity becomes an
issue. In publication [P6] a computationally very ef�cient method is
proposed for beat tracking. The method runs faster than real-time on
a mobile phone. The method presented in publication [P7] focuses on
the most important subtask, tempo estimation, and signi�cantly out-
performs the previous methods in accuracy.

Finally, publication [P8] describes a method for chorus detection
from music �les. The method is computationally ef�cient while main-
tains suf�cient accuracy for practical applications.

This research originated from the need to build a functional block
into an automatic transcription system being constructed at the De-
partment of Signal Processing at Tampere University of Technology.
This work was originated by Anssi Klapuri who describes the work in
more details in his Ph.D. thesis [99]. The latter part of the research
has been done with Nokia Research Center, where the research is cur-
rently related to the development of a context aware mobile music ser-
vice, which requires technologies for context sensing and music content
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analysis [162].

1.4 Main results of the thesis

This section describes the main novel results and contributions of this
thesis.

1.4.1 Publication 1

Publications [P1] to [P3] consider the problem of musical instrument
recognition. In publication [P1], several features are proposed to de-
scribe each musical instrument note. A hierarchical classi�cation scheme
was implemented which utilizes the natural taxonomy of instrument
families. The main results were:

² Novel features were proposed for musical instrument classi�ca-
tion.

² Combining cepstral coef�cients with other spectral and temporal
features was proposed to effectively take into account both spec-
tral and temporal information found important in human timbre
perception experiments.

² Segmenting the note to attack and steady state segments and sep-
arately extracting features from both were proposed.

² The use of a manually-designed hierarchical classi�cation taxon-
omy was evaluated and found not to improve the performance
which contradicts with the earlier results of Martin [124].

1.4.2 Publication 2

Publication [P2] presents a detailed evaluation of several features for
musical instrument recognition, and studies the problem of generaliz-
ing across different instances of the same instrument, e.g. different
violin pieces played by different performers at different locations. The
simulations were performed on a database larger than any study had
used by that time. The main results were:

² When more than one example of an instrument is included in
the evaluation, the performance of the system signi�cantly drops.
Generalizing across instruments and recording locations is identi-
�ed as the key problem in instrument classi�cation.

² The effectiveness of different features in instrument classi�cation
was analyzed.

9



² Different cepstral features were evaluated, and cepstral coef�cients
based on warped linear prediction were proposed. Mel-frequency
cepstral coef�cients were found to be the best choice considering
classi�cation accuracy and computational complexity.

² The effect of using one or several notes for instrument classi�ca-
tion was tested.

1.4.3 Publication 3

In publication [P3], the use of hidden Markov models with a left-right
topology for instrument note modeling is proposed. The motivation for
using hidden Markov models for instrument notes is that the model
may be able to learn the different spectral characteristics during the
onset and steady states, removing the need for manual segmentation
as was done in [P2]. In addition, the use of discriminative training and
linear feature transforms to transform the catenated static and dynamic
cepstral coef�cients is proposed. The main results were:

² The use of left-right hidden Markov models for instrument note
modeling was proposed.

² Transforming the features to a base with maximal statistical inde-
pendence using independent component analysis can give an im-
provement of 9 percentage points in recognition accuracy in musi-
cal instrument classi�cation.

² Discriminative training is shown to improve the performance when
using models with a small number of states and component densi-
ties.

² The effect of varying the number of states and component densities
in the HMMs is studied.

1.4.4 Publication 4

Publication [P4] presents a method for recognizing the context based on
audio. Similar techniques are applied as in [P3]. The paper focuses on
techniques that could be used to improve the system's performance with
negligible increase in the computational load in the on-line classi�cation
stage. The main results were:

² Building context aware applications using audio is feasible, espe-
cially when high-level contexts are concerned.

² Discriminative training can be used to improve the accuracy when
using very low-order HMMs as context models.
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² Using PCA or ICA transformation of the mel-cepstral features does
not signi�cantly improve the accuracy, contrary to the case of mu-
sical instruments.

² In comparison with the human ability, the proposed system per-
forms rather well (58% versus 69% for contexts and 82% versus
88% for high-level classes for the system and humans, respec-
tively). Both the system and humans tend to make similar con-
fusions mainly within the high-level categories.

² The recognition rate as a function of the test sequence length ap-
pears to converge only after about 30 to 60 s. Considering practical
applications on mobile devices this poses challenges as we would
like to use much less audio for performing the recognition to save
energy.

1.4.5 Publication 5

Publications [P5], [P6], and [P7] present several methods for music me-
ter analysis. Publication [P5] presents a complete meter analysis sys-
tem which performs the analysis jointly at three different time scales:
at the temporally atomic tatum pulse level, at the tactus pulse level,
which corresponds to the tempo of a piece, and at the musical measure
level. Acoustic signals from arbitrary musical genres are considered.
The main results were:

² A probabilistic model representing primitive musical knowledge
and capable of performing joint estimation of the tatum, tactus,
and measure pulses was presented.

² The model takes into account the temporal dependencies between
successive estimates and enables both causal and noncausal esti-
mation.

² To overcome the problems of having very limited amount of train-
ing data, an approximation for the state-conditional observation
likelihoods was presented.

² The transition probabilities were proposed to be modeled as a prod-
uct of the prior probability of the period and a term describing the
tendency of the periods to be slowly varying.

² In simulations, the method worked robustly for different types of
music and improved over two state-of-the-art reference methods.
The method ranked �rst in the ISMIR 2004 beat induction contest.
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1.4.6 Publication 6

Publication [P6] presents the second method for music meter analysis,
and focuses on estimating the beat and the tatum. The design goal was
to keep the method computationally very ef�cient while retaining suf-
�cient analysis accuracy. The paper presents a simpli�ed back-end for
beat and tatum tracking and describes its implementation on a mobile
device. The main results were:

² The computationally intensive bank of comb-�lter resonators was
substituted with a discrete cosine transform periodicity analysis
and adaptive comb �ltering.

² The back-end incorporates similar primitive musicological knowl-
edge as the method presented in [P5], but with signi�cantly smaller
computational load.

² A method based on adaptive comb �ltering was proposed for beat
phase estimation.

² Complexity evaluation showed that the computational cost of the
method was less than 1% of the method presented in [P5] and
the one by Scheirer [158]. However, it should be noted that the
method [P5] was implemented as a combination of Matlab/C++,
whereas the proposed method and Scheirer's method were imple-
mented fully in C++. A real-time implementation of the method
for the S60 smartphone platform was written.

1.4.7 Publication 7

The last publication ([P7]) in music meter analysis focuses on improving
the performance in tempo estimation. The tempo is the most important
metrical attribute in practical applications. The main results were:

² A method for measuring musical accentuation based on the chroma
features was presented.

² A method for tempo estimation using locally weighted k-NN re-
gression was presented. The method involves a resampling step
which gives a signi�cant improvement in performance.

² A method to compute the tempo estimate as a weighted median of
nearest neighbor tempi was proposed.

² Experimental results show that the proposed method provides sig-
ni�cantly better tempo estimation accuracies than three reference
methods.
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² The method is straightforward to implement and requires no ex-
plicit prior distribution for the tempo as the prior is implicitly in-
cluded in the distribution of the k-NN training data vectors. The
accuracy degrades gracefully when the size of the training data is
reduced.

1.4.8 Publication 8

Publication [P8] presents a computationally ef�cient chorus detection
method. This subproblem in music structure analysis was chosen as it
seemed possible to obtain good accuracies and many potential applica-
tions exist. The main results were:

² A method for analyzing song self distance by summing the self-
distance matrices based on the MFCC and chroma features was
proposed.

² A scoring method for selecting the chorus section from several can-
didates was proposed.

² A method utilizing matched �lter for re�ning the location of the
�nal chorus section was proposed.

² The method provides a good chorus detection accuracy while being
fast to compute.

1.5 Outline of the thesis

This thesis is organized as follows. Chapter 2 presents the relevant
background information on feature extraction, classi�cation, regression,
and statistical modeling needed to understand the contents of the the-
sis. In addition, we discuss relevant research on musical instrument
recognition, environmental audio classi�cation, and relevant �elds. Chap-
ter 3 discusses relevant research on automatic music content analysis,
focusing on music meter and music structure analysis. Chapter 4 dis-
cusses some new applications made possible by automatic audio content
analysis techniques. Finally, Chapter 5 summarizes the observations
made in this study and suggests some directions for future work.
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Chapter 2

Audio classi�cation

This Chapter provides the necessary background for audio classi�cation
and serves as an overview for publications [P1], [P2], [P3], and [P4].
We �rst discuss methods for feature extraction and classi�cation, and
conclude with a sections summarizing relevant research on these �elds.

2.1 Overview

Figure 2.1 presents a block diagram of the main components of a generic
audio classi�cation system. The preprocessing stage consists of opera-
tions such as mean removal and scaling the amplitude to a �xed range,
such as between -1 and 1. The feature extraction stage transforms the
input signal into a low-dimensional representation which contains the
information necessary for the classi�cation or content analysis task. In
practise, however, they also contain extra information since it is dif�-
cult to focus only on a single aspect of audio [32]. Model training either
stores the feature vectors corresponding to the class of the labeled input
signal as a �nite number of templates, or trains a probabilistic model
based on the observations of the class. In the classi�cation step, the
feature stream of the input signal is compared to the stored templates,
or a likelihood value is calculated based on the probabilistic models of
the trained classes. The recognition result is given as the class giving
the best match. The following sections examine the techniques needed
in different parts of this general system in more detail.

2.2 Feature extraction and transformation

2.2.1 Features

In this part, a selection of acoustic features for audio classi�cation and
music content analysis are presented.
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Figure 2.1: A block diagram of a generic audio classi�cation system.

Mel-frequency cepstral coef�cients

Mel-frequency cepstral coef�cients ([40, 148]) and their time deriva-
tives are the de-facto front-end feature-extraction method in automatic
speech recognition systems. They have also become the �rst choice
when building music or general audio content analysis systems. We
will use here the conventional Discrete Fourier Transform (DFT)-based
method utilizing a mel-scaling �lterbank. Figure 2.2 shows a block dia-
gram of the MFCC feature extractor. The input signal may be �rst pre-
emphasized to �atten the spectrum. Pre-emphasis is typically used in
speech and speaker recognition systems; for other types of signals such
as environmental sounds or music it may not always be helpful. Next,
a �lterbank consisting of triangular �lters spaced uniformly across the
mel-frequency scale and their heights scaled to unity, is simulated. The
mel-scale is given by

Mel (f ) = 2595 log10(1 +
f

700
); (2.1)

where f is the linear frequency value in Hz [148]. The mel-scale is a
perceptually motivated frequency scale. It is approximately linear up
to 1000 Hz and logarithmic thereafter. To implement this �lterbank, a
window of audio data is transformed using the DFT, and its power spec-
trum is calculated by squaring the absolute values of DFT output. By
multiplying the power spectrum with each triangular �lter and sum-
ming the values at each channel, a spectral energy value for each chan-
nel is obtained. The dynamic range of the spectrum is compressed by
taking a logarithm of the energy at each �lterbank channel. Finally,
cepstral coef�cients are computed by applying a discrete cosine trans-
form (DCT) to the log �lterbank energies. DCT decorrelates the cepstral
coef�cients, thereby making it possible to use diagonal covariance ma-
trices in the statistical modeling of the feature observations.
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Figure 2.2: Block diagram of the MFCC analysis. Optional or new
blocks are denoted with dashed lines.

In most cases, it is possible to retain only the lower order cepstral
coef�cients to obtain a more compact representation. The lower coef�-
cients describe the overall spectral shape, whereas pitch and spectral
�ne structure information is included in higher coef�cients. The zeroth
cepstral coef�cient is normally discarded, as it depends on the signal
gain, and often we wish to ignore gain differences. The dynamic, or tran-
sitional properties of the overall spectral envelope can be characterized
with delta cepstral coef�cients [167, 149]. Usually the time derivative
is obtained by polynomial approximation over a �nite segment of the
coef�cient trajectory.

Linear prediction

Linear prediction (LP) analysis is another way to obtain a smooth ap-
proximation of the sound spectrum. Here, the spectrum is modeled with
an all-pole function, which concentrates on spectral peaks. Linear pre-
diction is particularly suitable for speech signals, but can be applied also
to other sound source recognition tasks. Schmid applied LP analysis to
musical instrument recognition already in 1977 [159].

In classical forward linear prediction, an estimate for the next sam-
ple of a linear, discrete-time system, is obtained as a linear combination
of p previous output samples:

by(n) =
pX

i =1

ai y(n ¡ i ); (2.2)
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where ai are the predictor coef�cients, or linear prediction coef�cients.
They are �xed coef�cients of a predictor all-pole �lter, whose transfer
function is

H (z) =
1

A(z)
=

1
1 ¡

P p
i =1 ai z¡ i : (2.3)

The set of predictor coef�cients f a1; a2; :::; apg can be solved using the
autocorrelation method [149]. The linear prediction cepstral coef�cients
can be ef�ciently calculated from the linear prediction coef�cients using
the recursion

cn = ¡ an ¡
1
n

n¡ 1X

k=1

kckan¡ k (2.4)

for n > 0, where a0 = 1 and ak = 0 for k > p .
The conventional LP-analysis suffers from a uniform frequency res-

olution. Especially in wideband audio applications, poles are wasted
to the higher frequencies [79]. The technique of warped linear pre-
diction was �rst proposed by Strube in 1980 [168]. In wideband au-
dio coding, WLP has proved out to outperform conventional LP based
codecs especially with low analysis orders [79]. Motivated by this, in
[P2] we proposed to use cepstral coef�cients based on linear prediction
on a warped frequency scale. The frequency warping transform was
obtained by replacing the unit delays of a discrete, linear system with
�rst-order all-pass elements. In practice, we used the WarpTB toolbox
by H ärm ä and Karjalainen for implementing the warped linear predic-
tion calculation [78]. It consists of Matlab and C implementations of
the basic functions, such as the warped autocorrelation calculation. The
cepstral coef�cients were calculated from the warped linear prediction
coef�cients using the recursion 2.4.

Other instantaneous features

Spectral centroid (SC) is a simple but useful feature. The spectral cen-
troid correlates with the subjective qualities of ”brightness” or ”sharp-
ness”. It can be calculated from different mid-level representations,
commonly it is de�ned as the �rst moment with respect to frequency
in a magnitude spectrum. Let X t (k) be the be the kth frequency sample
of the discrete Fourier transform of the tth frame. The spectral centroid
at frame t is computed as

SCt =
P K

k=0 kjX t (k)j
P K

k=0 jX t (k)j
; (2.5)

where K is the index of the highest frequency sample.
Zero crossing rate (ZCR) is de�ned as the number of zero-voltage

crossings within a frame.
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Short-time average energy is the energy of a frame, and is computed
as the sum of squared amplitudes within a frame.

Band-energy. The band-energy at the i th band at frame t is com-
puted as

BE t (i ) =

P
l2 Si

jX t (l )j2
P K

k=0 jX t (k)j2
(2.6)

where Si denotes the set of power spectrum samples belonging to the i th
frequency band. The number of subbands can be de�ned according to
the application. In [P4] we experimented with 4 and 10 logarithmically-
distributed subbands.

Bandwidth measures the width of the range of frequencies the input
signal occupies. In publication [P4], bandwidth is calculated as

BW t =

vu
u
t

P K
k=0 (k ¡ SCt )2 ¢ jX t (k)j2

P K
k=0 jX t (k)j2

(2.7)

where SCt is the spectral centroid measured at the frame t.
Spectral roll-off measures the frequency below which a certain amount

of spectral energy resides. It measures the ”skewness” of the spectral
shape. It is calculated as

SRt = arg max
p

[
pX

m=0

jX t (m)j2 · TH ¢
KX

k=0

jX t (k)2j] (2.8)

where TH is a threshold between 0 and 1. In our experiments, the value
used was 0.93.

Spectral �ux (SF) measures the change in the shape of the magni-
tude spectrum by calculating the difference between magnitude spectra
of successive frames. The spectral �ux is calculated as

SFt =
KX

k=0

jjX t (k)j ¡ j X t ¡ 1(k)jj : (2.9)

Before the low level features are fed to a classi�er, certain normaliza-
tions may be applied. Especially when several different features are
concatenated to a single vector, it is necessary to normalize the mean
and variance using global estimates measured over the training data.
This makes the contribution of different features equal. The input to the
classi�er is a sequence of feature vectors x t , where t is the frame index,
and where the components of x t are the values of different features.

Features for describing musical instrument notes

The previous features are instantaneous, meaning that they can be ex-
tracted from short frames of the input signal. When isolated notes
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are considered, there are features that can characterize the note as a
whole. The amplitude envelope of a note contains information for in-
stance about the type of excitation; e.g. whether a violin has been bowed
or plucked. Tight coupling between the instrument excitation and res-
onance structure is indicated by short onset durations. The amplitude
envelope of a sound can be calculated by half-wave recti�cation and low-
pass �ltering of the signal. Another means is the calculation of the short
time root-mean-square (RMS) energy of the signal, which we found to
be a more straightforward way of obtaining a smooth estimate of the
amplitude envelope of a signal. Features such as onset duration, decay-
time, strength and frequency of amplitude modulation, crest factor, and
detection of exponential decay can be analyzed from an RMS-energy
curve. We calculated the RMS energy curve in 50% overlapping 10 ms
long hanning-windowed frames.

Onset duration is traditionally de�ned as the time interval between
the onset and the instant of maximal amplitude of a sound. Decay
time is correspondingly the time it takes the sound to decay a certain
amount, e.g. -10dB from a level corresponding to -3dB of the maximum.
To measure the slope of amplitude decay after the onset, in publica-
tions [P1] and [P2] we proposed a method where a line is �tted into the
amplitude envelope on a logarithmic scale. The �tting was done for the
segment of the energy envelope that was between the maximum and the
-10 dB point after that. Also, the mean square error of that �t is used
as a feature describing exponential decay. Crest factor, i.e. the maxi-
mum of amplitude envelope divided by the RMS level of the amplitude
envelope is also used to characterize the shape of the amplitude enve-
lope. These three features aim at discriminating between the pizzicato
and sustained tones: the former ones decay exponentially, and have a
higher crest factor than sustained tones. Figure 2.3 depicts two example
amplitude envelopes and the line �t used for feature extraction.

The RMS-energy envelope, now on a linear scale, can also be used
to extract features measuring amplitude modulation (AM) properties.
Strength, frequency, and heuristic strength (term used by Martin [124])
of amplitude modulation is measured at two frequency ranges. Rates
from 4 to 8 Hz measure tremolo, i.e. AM in conjunction with vibrato,
and rates between 10-40 Hz correspond to ”graininess” or ”roughness”
of the tone. The RMS-energy envelope is �rst windowed with a hanning
window. Then, FFT analysis is performed on the windowed envelope,
and maxima are searched from the two frequency ranges. The frequency
of AM is the frequency of the maximum peak. The amplitude features
are calculated as the difference of the peak amplitude and the average
amplitude, and the heuristic amplitude is calculated as the difference of
the peak amplitude and the average amplitude of the frequency range
under consideration.
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Figure 2.3: Short-time RMS-energy envelopes for guitar (left) and violin
tones (right). Post-onset decay is measured by �tting a line on dB-scale.
The different onset durations, slight beating in the guitar tone, and am-
plitude modulation in the violin tone are clearly visible.

Onset asynchrony refers to the differences in the rate of energy de-
velopment of different frequency components. In [P1] and [P2] we used
a ”sinusoid envelope” representation (see details in [51]) to calculate the
intensity envelopes for different harmonics, and the standard deviation
of onset durations for different harmonics is used as one feature. See
Figure 2.4 for a depiction of sinusoid envelope representations calcu-
lated for a �ute and clarinet sounds. For the other feature measuring
this property, the intensity envelopes of individual harmonics were �t-
ted into the overall intensity envelope during the onset period, and the
average mean square error of those �ts was used as feature. A similar
measure was calculated for the rest of the waveform. The last feature
calculated is the overall variation of intensities at each band. These
features suffer from the dif�culty of obtaining a robust representation
for the development of individual partials of a tone. The sinusoidal en-
velope depends on obtaining an accurate estimate of the fundamental
frequency and the sounds to be perfectly harmonic which is not the case
for real musical instruments. A better approach would be e.g. to use a
�lterbank to decompose the signal into individual partials.

2.2.2 Feature transformations

The main idea of linear data-driven feature-transformations is to project
the original feature space into a space with lower dimensionality and
more feasible statistical properties, such as uncorrelatedness. We tested
the effectiveness of some feature transformations in publications [P3]
and [P4]. In order to obtain the transform matrix W , the features
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Figure 2.4: Sinusoid envelope representations for �ute (left) and clar-
inet (right), playing the note C4, 261 Hz. Reprinted from [P1]. c° 2000
IEEE.

extracted from the training data samples of all classes were gathered
into a matrix X = [ x1; x2; :::; xT ] where each column represents the n-
dimensional feature vector measured in an analysis frame. The scalar
T denotes the total amount of feature vectors from all recordings of all
the classes in the training set. The transform matrix W of size m £ n is
applied on X producing the transformed m £ T dimensional observation
space O = WX . In this work, three different techniques were used.
The principal component analysis (PCA) �nds a decorrelating trans-
form ([44, p. 115]), independent component analysis (ICA) results in
a base with statistical independence ([82][44, p. 570]), which is a much
stronger condition than uncorrelatedness, and the linear discriminant
analysis (LDA) tries to maximize class separability ([44, p. 120]).

Principal component analysis

Principal component analysis projects the original data into a lower-
dimensional space such that the reconstruction error is as small as pos-
sible, measured as the mean-square error between the data vectors in
the original space and in the projection space. The rows of the trans-
form matrix consist of the m eigenvectors corresponding to the m largest
eigenvalues of the covariance matrix of the training data. Projection
onto a lower-dimensional space reduces the amount of parameters to be
estimated in the classi�er training stage, and uncorrelated features are
ef�ciently modeled with diagonal-covariance Gaussians.
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Independent component analysis

The goal of independent component analysis is to �nd directions of min-
imum mutual information 1, i.e., to extract a set of statistically inde-
pendent vectors from the training data X . Statistical independence is
a stronger condition than uncorrelatedness. Whereas PCA results in
uncorrelated variables whose covariance is zero, ICA methods consider
also higher-order statistics, i.e., information not contained in the covari-
ance matrix [82, p. 10]. The linear ICA assumes that linear mixing of a
set of independent sources generates the data. More precisely, the data
model is x = As , where x is the original feature vector, A is a mixing
matrix, and s are the underlying independent sources. The goal of ICA
is to estimate both A and s using the observed x. After estimating A ,
the transformation matrix is obtained as W = A ¡ 1. Here, the ef�cient
iterative FastICA algorithm was used for �nding the ICA basis trans-
formation [81].

Salam and Erten have suggested the use of ICA in context recogni-
tion by motivating that information on the movements of the user and
the state of the environment is mixed in the measured signals [154].
Himberg et al. have used PCA and ICA to project multidimensional
sensor data from different contexts into a lower dimensional represen-
tation, but reported only qualitative results [76].

In speech recognition, the use of an ICA transformation has been re-
ported to improve the recognition accuracy [146]. In the MPEG-7 gen-
eralized audio descriptors, ICA is proposed as an optional transforma-
tion for the spectrum basis obtained with singular value decomposition
to ensure maximum separability of features, and Casey's results have
shown the success of this method on a wide variety of sounds [31].

There are various alternatives on how the features are input to the
feature transform. In this thesis, we perform ICA on concatenated
MFCC and ¢ MFCC features, see Figure 2.2. Including the delta coef�-
cients is a way to include information on temporal-dependencies of fea-
tures, which is ignored if the transform is applied on static coef�cients
only. The results are reported in publications [P3] and [P4]. In [31]
and [146] delta coef�cients were not considered, and in [100] logarith-
mic energies and their derivatives were used. Somervuo has applied
ICA on �ve-frame ”context windows” in phoneme recognition [166].

Linear discriminant analysis

Linear discriminant analysis differs from PCA and ICA by utilizing the
class labels. In this thesis, class is synonymous to an audio context or a

1The mutual information between two independent random variables is zero [20, p.
57]
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musical instrument category. Thus, whereas PCA and ICA do not make
distinction between feature vectors belonging to different classes, LDA
tries to maximize the separability of data from different classes. The
goal is to �nd basis vectors that maximize the ratio of between-class
variance to within-class variance. Finding the transform matrix in-
volves computing two covariance matrices: the within-class covariance
matrix Sw and the between-class covariance matrix Sb ([44, p. 120]).
The rows of the transform matrix are the m eigenvectors corresponding
to the m largest eigenvalues of the matrix S¡ 1

w Sb. An additional limit
for the dimension of the resulting features is presented by the fact that
for C classes there are at most C ¡ 1 linearly independent eigenvectors
([44, p. 124]).

It should be noted that the extra computational load caused by ap-
plying any of these transformations occurs mainly in the off-line train-
ing phase. The test phase consists of computing the features in the
usual way plus an additional multiplication once per analysis frame
with the m £ n matrix W derived off-line using the training data. Thus,
these transforms are particularly attractive in resource-constrained con-
text recognition applications.

2.3 Classi�cation and acoustic modeling

2.3.1 k-Nearest Neighbors

The k-nearest-neighbors ( k-NN) classi�er performs a class vote among
the k nearest training-data feature vectors to a point to be classi�ed
([44, p. 182][20, p. 125]). In our implementation, the feature vectors
were �rst decorrelated using principal component analysis and the Eu-
clidean distance metric was used in the transformed space. When the
k-NN classi�er is used, it is usually not feasible to perform classi�cation
on an individual frame basis, but the information of frames is usually
accumulated over a certain time period by averaging. For example, in
audio-based context recognition we estimated the mean and standard
deviation (std) of the features over one-second windows with an inten-
tion to model the slowly-changing attributes of environmental audio,
such as �nite-length acoustic events, and to reduce the computational
load at the classi�cation stage. These values were used as new feature
vectors. For musical instruments, we have used e.g. averaging over the
onset and steady state segments separately, and then catenating the
features from the different segments into a long feature vector.

The k-NN algorithm can be applied also to regression problems. The
difference is that in regression the output value to be predicted is contin-
uous in opposite to being discrete as in classi�cation tasks. In a typical
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scenario of k-NN regression the property value of an object is assigned to
be the average of the values of its k nearest neighbors. The average can
also be a distance weighted average, in which case the method is an ex-
ample of locally weighted learning [12]. The distance function must ful-
�ll the following requirements: the maximum value is at zero distance,
and the function decays smoothly as the distance increases [12]. In [P7]
we compute the tempo as a weighted median of the nearest neighbor
tempi, which increases the robustness compared to a weighted average.

2.3.2 Hidden Markov and Gaussian mixture models

A hidden Markov model (HMM) ([149, pp. 321-386]), is an effective
parametric representation for a time-series of observations, such as fea-
ture vectors measured from natural sounds. In this work, HMMs are
used for classi�cation by training a HMM for each class, and by select-
ing the class with the largest posterior probability.

In each of our classi�cation tasks, our acoustic data comprises a
training set that consists of the recordings O = ( O1; :::; OR ) and their
associated class labels L = ( l1; :::; lR ). Depending of the application, l r

can express the context where the recording has been made or the mu-
sical instrument playing on the musical excerpt r . To be more speci�c,
O r denotes the sequence of feature vectors measured from recording r .
The purpose of the acoustic models is to represent the distribution of
feature values in each class in this training set.

Description of a HMM

A continuous-density hidden Markov model (HMM) with N states con-
sists of a set of parameters µ that comprises the N -by-N transition ma-
trix, the initial state distribution, and the parameters of the state densi-
ties [88]. In the case of Gaussian mixture model (GMM) state emission
densities ([148]), the state parameters consist of the weights, means
and diagonal variances of the state GMMs. The possibility to model
sequences of states with different statistical properties and transition
probabilities between them makes intuitively sense in our applications,
since sounds are dynamic phenomena. For instance, one can imagine
standing next to a road, where cars are passing by. When a car ap-
proaches, its sound changes in a certain manner, and after it has passed
there is a clear change in its sound due to the Doppler effect. Naturally,
when no cars are passing by the sound scene is rather quiet. Hopefully,
the different states in the model are able to capture the different stages,
and the statistical variation between different roads, cars, and record-
ing times is modeled to some extent by the different components in the
GMM state densities.
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The HMM parameters can be iteratively optimized with the Baum-
Welch algorithm [149]. This algorithm iteratively �nds a local maxi-
mum of the maximum likelihood (ML) objective function ([18])

F (£) = log p(OjL ) =
RX

r =1

logp(O r jl r ) =
CX

c=1

X

r 2 A c

logp(O r jc); (2.10)

where £ denotes the entire parameter set of all the classes c 2 f 1; :::; Cg,
and Ac is the subset of [1; R] that denotes the recordings from the class
c. The optimization can be done for each class separately. The opti-
mization starts with an initial set of values for the model parameters
(the initial state distribution, transition probabilities, and parameters
of the state densities), and then iteratively �nds a better set of model
parameters. The re-estimation equations are omitted here due to space
reasons and since standard formulae were used in this thesis. See the
details in [149].

In the recognition phase, an unknown recording O is classi�ed using
the maximum a posteriori rule:

ĉ = arg max
c

p(cjO) = arg max
c

p(c)p(Ojc)
p(O)

; (2.11)

where we used the Bayes' rule. Since p(O) does not depend on c, and
if we assume equal priors p(c) for all classes, we can maximize p(Ojc).
The needed likelihoods can be ef�ciently computed using the forward-
backward algorithm, or approximated with the likelihood of the single
most likely path given by the Viterbi-algorithm [149][88].

Model initialization

Careful initialization is essential for the Baum-Welch algorithm to be
able to �nd good model parameters. This is especially true for com-
plex models with several states (NS) and component densities per state
(NC). A useful heuristic to train models so that the amount of states and
component densities is iteratively increased is the following: The mod-
els are initialized with a single Gaussian at each state. The component
with the largest weight is split until the desired value of NC is obtained.
Each component split is followed by a speci�ed number of Baum-Welch
iterations (e.g. 15), or until the likelihood converges. There are several
ways for initializing the state means and variances. One is based on
using global estimates over the whole training data of each class. E.g.,
for each class c a three-state HMM is initialized with means ¹ c ¡ 0:1¾c,
¹ c, and ¹ c + 0 :1¾c, where ¹ c is the mean vector computed from the train-
ing data of class c, and ¾c is the corresponding standard deviation vector.
The three variances can be set equal to ¾2

c . Another method is to use the
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the k-means clustering algorithm to cluster the data into as many seg-
ments as there are states in the model and estimate the initial means
and variances from the cluster populations.

Sometimes it may be possible to initialize the states using various
heuristics. For example, when training HMM models with a left-right
topology2 for musical instrument notes we may segment the note into as
many segments as there are states in the model, and then estimate the
initial state parameters from these segments. The Baum-Welch itera-
tions are then performed during which the algorithm essentially �nds
the optimal segment boundaries.

In practice we need to do experimentation to determine the suitable
method of initialization. Especially the k-means clustering initializa-
tion leads to models of varying quality, and often it is necessary to re-
peat the initialization a few times, and perform cross-validation on a
validation set to determine the quality of the resulting models.

What do HMM state densities model for non-speech sounds?

To gain insight into the properties of sounds modeled by different HMM
states it is useful to visually study the Viterbi segmentations after train-
ing, or in the test stage. In Figure 2.5, a three-state HMM has been
trained using a recording of the sound next to a road. The top panel
shows the amplitude of the signal as a function of time. The high am-
plitude peaks correspond to passing cars. The bottom panel shows the
resulting Viterbi segmentation through the three states. The state num-
ber one models the silent periods when there are no cars passing; the
second state the transition periods when a car is either approaching or
getting farther, and the third state the period when the car is just pass-
ing or is very close to the recording place. A similar example with a mu-
sical sound is depicted in Figure 2.5. A three-state HMM was trained on
trumpet recordings, and the segmentation is shown for a melody phrase
of 15 seconds in duration. By listening it was found that state one rep-
resents high-pitched notes and pauses between notes, low-pitched notes
are modeled with state three. Interestingly, state two models the initial
transients.

A discriminative training algorithm

Maximum Likelihood estimation is well justi�ed if the observations are
distributed according to the assumed statistical model. In our applica-
tions, it is unlikely that a single HMM could capture all the statistical
variation of the observations from an arbitrary audio environment or

2In a model with left-right topology, state transitions to the previous state are not
allowed but the process must either proceed to the next or remain in the same state.
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Figure 2.5: The top panel shows the amplitude of a recording made
next to a road with passing cars. The bottom panel shows the Viterbi
segmentation through a three-state HMM trained using the recording.
The length of the analysis window is 30 ms.

all the articulation and nuances of a musical instrument, for instance.
Moreover, the training databases are much smaller than for example
the available speech databases, preventing the reliable estimation of
parameters for complex models with high amounts of component densi-
ties. In applications where computational resources are limited such as
context-awareness targeted for embedded applications, we may have to
use models with as few Gaussians as possible, since their evaluation is
one of the computational bottlenecks in the recognition phase. In these
cases a model mismatch occurs and other approaches than ML may
lead into better recognition results. Discriminative training methods
such as the maximum mutual information (MMI) aim at maximizing
the ability to distinguish between the observation sequences generated
by the model of the correct class and those generated by models of other
classes [149].

Different discriminative algorithms have been proposed in the liter-
ature. The algorithm used in this thesis has been presented recently,
and one of its bene�ts is a straightforward implementation. The algo-
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Figure 2.6: The top panel shows the amplitude of a solo melody played
with a trumpet. The bottom panel shows the Viterbi segmentation
through a three-state HMM trained for the trumpet class. The length
of the analysis window is 30 ms.

rithm was proposed by Ben-Yishai & Burshtein, and is based on an ap-
proximation of the maximum mutual information criterion [18]. Their
approximated maximum mutual information (AMMI) criterion is:

J (£) =
CX

c=1

f
X

r 2 A c

log[p(c)p(O r jc)] ¡ ¸
X

r 2 B c

log[p(c)p(O r jc)]g; (2.12)

where Bc is the set of indices of training recordings that were recognized
as class c. The set Bc is obtained by maximum a posteriori classi�cation
performed on the training set. The parameter 0 · ¸ · 1 controls the
”discrimination rate”. The prior probabilities p(c) do not affect the max-
imization of J (£) , thus the maximization is equivalent to maximizing
the following objective functions:

Jc(£) =
X

r 2 A c

logp(O r jc) ¡ ¸
X

r 2 B c

logp(O r jc); (2.13)

for all the classes 1 · c · C. Thus, the parameter set of each class can be
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Figure 2.7: A possible taxonomy of Western orchestral instruments.

estimated separately, which leads to a straightforward implementation.
The authors give the re-estimation equations for HMM parameters [18].

This discriminative re-estimation can be iterated. We used typically
5 iterations, since the improvement in recognition accuracy was only
minor beyond that. In many cases, using just one iteration would be
enough since it sometimes gave the greatest improvement. The recog-
nition was done only at the �rst iteration, after which the set Bc stayed
�xed. The following iterations still increase the AMMI objective func-
tion and increase the accuracy at least in the training set. However,
according to our experience, continuing iterations too long causes the
algorithm to over�t the training data, leading into poor generalization
on unseen test data. Maximum of 5 iterations with ¸ = 0 :3 was ob-
served to give an improvement in most cases without much danger of
over�tting.

2.4 Methods for musical instrument recognition

This section describes relevant research on the classi�cation of musi-
cal instrument sounds and is background for publications [P1], [P2],
and [P3].

There exists a large variety of musical instruments in the world. In
practical applications, we naturally train the system with the classes of
instruments that are most likely for that particular application. In this
thesis, Western orchestral instruments are considered. This is done for
two reasons. First, the timbre of these instruments has been extensively
studied, providing insights into the information that makes recognition
possible and should therefore be attempted to extract from the sounds.
Second, recordings of these instruments are easily available, whereas
in the cases of more exotic instruments we would �rst have to make the
databases. Figure 2.7 presents a possible taxonomy of Western musical
instruments.
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In de�ning the musical instrument recognition task, several levels
of dif�culty can be found. Monophonic recognition refers to the recog-
nition of solo music or solo notes, and is the most often studied. This
study also uses isolated notes as test material mainly because sam-
ples with annotations were available with a reasonable effort, and there
were published isolated note recognition systems with which the perfor-
mance could be compared. However, this can be generalized to mono-
phonic phrases by introducing a temporal segmentation stage. Poly-
phonic recognition has received fewer attempts. The following sections
review the relevant research in these areas. For other reviews see [75,
74].

2.4.1 Monophonic recognition

Most systems have operated on isolated notes, often taken from the
same, single source, and having notes over a very small pitch range.
The most recent systems have operated on solo music taken from com-
mercial recordings. The studies using isolated tones are most relevant
for the results presented in publications [P1], [P2] and [P3].

Studies not testing generalization across databases

Table 2.1 presents examples of studies on classifying isolated notes on a
single collection of sounds, or where examples of an instrument within
the same collection may have existed both in the training and test set.
As we will see later, this makes the results too optimistic. Thus, the
following studies are interesting mainly from the methods point of view.

Kaminskyj and Materka used features derived from a root-mean-
square (RMS) energy envelope via PCA and used a neural network or a
k-nearest neighbor ( k-NN) classi�er to classify guitar, piano, marimba
and accordion tones over a one-octave band [90]. More recently, Kamin-
skyj ([89]) has extended the system to recognize 19 instruments over a
three-octave pitch range.

Fujinaga trained a k-NN with features extracted from 1338 spec-
tral slices of 23 instruments playing a range of pitches [57]. A genetic
algorithm was used for �nding good feature combinations. When the
authors added features relating to the dynamically changing spectral
envelope, and velocity of spectral centroid and its variance, the accu-
racy improved [56]. Their latest study incorporated small re�nements
and added spectral irregularity and tristimulus features [58].

Martin and Kim reported a system operating on full pitch ranges
of 14 instruments [125]. The best classi�er was the k-NN, enhanced
with the Fisher discriminant analysis to reduce the dimensions of the
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Table 2.1: Summary of selected earlier research on musical instrument
recognition on isolated notes with a single example of each instrument,
or where the same instrument may be present in the test and train sets.

Author year ref. Accuracy Number of instruments

Kaminskyj 1995 [90] 98 4

Jensen 1999 [85] 100 5

Kaminskyj 2000 [89] 82 19

Fujinaga 1998 [57] 50 23

Fraser & Fujinaga 1999 [56] 64 23

Fujinaga 2000 [58] 68 23

Martin & Kim 1998 [125] 72(93) 14(5 families)

Kostek 1999 [103] 97 4

81 20

Eronen & Klapuri 2000 [P1] 80(94) 30(6 families)

Agostini et al. 2003 [9] 70(81) 27(6 families)

Kostek 2004 [104] 71 12

Chetry et al. 2005 [130] 95 11

Park & Cook 2005 [133] 71(88) 12(3 families)

data, and a hierarchical classi�cation architecture for �rst recognizing
the instrument families. Jensen used a Gaussian classi�er and 16 pa-
rameters from his timbre model developed mainly for sound synthesis
for classifying between �ve instruments [85].

Kostek has calculated several different features relating to the spec-
tral shape and onset characteristics of tones taken from chromatic scales
with different articulation styles [103]. A two-layer feed-forward neural
network was used as a classi�er. Later, Kostek and Czyzewski also tried
using wavelet-analysis based features for musical instrument recogni-
tion, but their preliminary results were worse than with the earlier fea-
tures [105]. In [104], Kostek reports that a combination of wavelet and
MPEG-7 based features improved upon either of the features alone.

Agostini et al. [9] use spectral features and compare different classi-
�ers in classifying between 27 instruments from the McGill University
Master Samples collection. Support vector machines and quadratic dis-
criminant analysis are the most successful classi�ers. They report that
most relevant features are inharmonicity, spectral centroid, and the en-
ergy contained in the �rst partial. The inharmonicity was measured
as a cumulative distance between the �rst four estimated partials and
their theoretical values.

Park and Cook extract several features from harmonic components
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Table 2.2: Summary of selected research on musical instrument recog-
nition on isolated notes across different recording conditions.

Author year ref. Accuracy Number of instruments

Martin 1999 [124] 39(76) 27(8 families)

Eronen 2001 [P2] 35(77) 29(6 families)

Eggink & Brown 2003 [46] 66(85) 5(2 families)

Eronen 2003 [P3] 68 7

Livshin et al. 2003 [115] 60(81) 8-16(3-5 families)

Peeters 2003 [137] 64(85) 23(7 families)

and use these to train a neural network classi�er [133]. Their features
included spectral shimmer, spectral jitter, spectral spread, spectral cen-
troid, LPC noise, inharmonicity, attack time, harmonic slope, harmonic
expansion/contraction, spectral �ux shift, temporal centroid, and zero-
crossing rate. Chetry et al. use line spectral frequencies (LSF) as fea-
tures and train a codebook for each instrument using the k-means clus-
tering method [130].

A common limitation of all these studies is that they often used only
one example of each instrument, or when several databases are used,
allow samples of an instrument from a database be present in both the
test and training set. This signi�cantly decreases the generalizabil-
ity of the results, as we will demonstrate with our system in publica-
tion [P2], where the results are signi�cantly worse than in [P1] where
we used only samples from the McGill University Master Samples col-
lection. Generalizing across databases is dif�cult.

Studies testing generalization across databases

Table 2.2 lists research which test generalization across databases. An
important point is that examples of an instrument recorded in certain
condition, or from a single database, are included either in the test or
training set, but not both. This way, we get some evidence that the
system is learning to classify an instrument (such as a violin), and not
just the audio samples of a certain violin played by a certain performer
in a particular acoustic place.

Martin used a wide set of features calculated from the outputs of a
log-lag correlogram [124]. The classi�er used was a Bayesian classi�er
within a taxonomic hierarchy, enhanced with context dependent feature
selection and rule-one-category-out decisions.

Livshin et al. present an explicit test classifying instrument sam-
ples across databases [115]. It is shown how the generalization across
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databases lowers the recognition accuracy. In addition, the authors re-
port that using LDA is helpful for obtaining features that help the gen-
eralization across databases.

Peeters starts with a large set of acoustic features and then performs
iterative feature selection to arrive at an optimal set of features for each
part of a hierarchical classi�er [137, 143]. The classi�er is either k-NN
or a Bayesian classi�er with each class modeled as a Gaussian den-
sity. The presented results, 64% correct for 23 instruments and 85 %
for families are done across databases providing a realistic estimate of
the performance. The hierarchical classi�ers perform better than direct
classi�cation. Although the results cannot be directly compared to our
results in [P2], it is likely that his system is performing better and rep-
resents the state-of-the-art in isolated note classi�cation. Peeters does
report excluding some articulations which we did keep in our database,
such as muted sounds, which probably increases the performance in his
simulations. In addition, we used also synthetic notes for which the
classi�cation accuracy was very poor. However, it seems advantageous
to start with a very large set of features and then perform automatic
feature selection to reduce the feature set as proposed by Peeters. The
feature set that was used in [P2] was smaller, and we did not fully ex-
plore the set of possible feature combinations.

Recognition of monophonic phrases

Table 2.3 presents examples of systems evaluated on monophonic phrases.
On one hand, monophonic phrases are easier to classify than isolated
notes as there are more than one note to be used for recognition. Pub-
lication [P2] analyzes the recognition rate as the number of notes given
to the system for classi�cation is varied. On the other hand, being able
to measure onset characteristics will require a note segmentation or on-
set detection step, and may often be impossible when consecutive notes
overlap.

Marques built a system that recognized eight instruments based on
short segments of audio taken from two compact disks [123]. They used
16 mel-frequency cepstral coef�cients and a support vector machine as
a classi�er.

Brown has used speaker recognition techniques for classifying be-
tween oboe, saxophone, �ute and clarinet [26]. She used independent
test and training data of varying quality taken from commercial record-
ings. By using bin-to-bin differences of constant-Q coef�cients she ob-
tained an accuracy of 84 %, which was comparable to the accuracy of
human subjects in a listening test conducted with a subset of the sam-
ples. Other successful features in her study were cepstral coef�cients
and autocorrelation coef�cients. In an earlier study, her system classi-
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Table 2.3: Summary of selected research on musical instrument recog-
nition on monophonic phrases.

Author year ref. Accuracy Number of instruments

Dubnov & Rodet 1998 [43] not given 18

Brown 1999 [25] 94 2

Marques & Moreno 1999 [123] 83 8

Martin 1999 [124] 57(75) 27(8 families)

Brown 2001 [26] 84 4

Krishna & Shreenivas 2004 [8] 74 3

Livshin & Rodet 2004 [116] 88 7

Essid et al. 2006 [53] 93 10

�ed between oboe and saxophone samples [25].
Krishna & Shreenivas train a GMM with line spectral frequencies

(LSF) as features from individual notes of three instruments, and then
classify monophonic phrases using the models [8].

Livshin and Rodet start with a very large initial set of features and
then perform iterative feature selection to arrive at a feature set that
classi�es monophonic phrases at almost the same accuracy as the com-
plete feature set [116].

Essid et al. adopt a pairwise classi�cation strategy with GMMs or
SVMs as classi�ers [53]. An optimized subset of features was found
for each pair of classes using a feature selection method. The authors
perform pairwise classi�cation between instrument pairs, and choose
the �nal result as the class that wins most pairwise classi�cations. The
authors demonstrate that the system outperforms a baseline system
where a GMM is trained for each class.

Content based retrieval of instrument samples

The MPEG-7 standard presents a scheme for instrument sound descrip-
tion, and it was evaluated in a retrieval task as a collaboration between
IRCAM (France) and IUA/UPF (Spain) in [142]. The evaluated features,
or descriptors in MPEG-7 terminology, were calculated from a repre-
sentation very similar to our sinusoid envelopes, which were discussed
in 2.2. The authors performed an experiment, where random notes were
selected from a database of sound samples, and then similar samples
were searched using the descriptors, or just random selection. The sub-
jects were asked to give a rating for the two sets of samples selected
in the alternative ways. A ”mean score” of approximately 60 % was ob-
tained using one descriptor, and approximately 80 % when using �ve
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Table 2.4: Summary of selected research on musical instrument recog-
nition on polyphonic material.

Author year ref. Number of instruments Polyphony

Eggink & Brown 2003 [46] 5 2

Livshin & Rodet 2004 [116] n/a 2

Essid 2005 et al. [52] 5 max 4

Leveau 2007 et al. [110] 10 4

Kitahara 2007 et al. [97] 5 max 4

Little & Pardo 2008 [114] 4 4

descriptors.

2.4.2 Polyphonic recognition

Polyphonic instrument recognition, i.e., recognition of instruments on
sound mixtures has received less research interest than monophonic
instrument classi�cation. The problem is substantially more dif�cult
than the monophonic case. In addition to labeling the instruments,
the method needs to estimate the number of instruments in the mix-
ture. The main dif�culty lies in the fact that feature extraction for
each instrument is the mixture is very dif�cult since the harmonic par-
tials overlap. The methods may either try to separate individual notes
or instruments from the mixture and apply techniques developed for
monophonic recognition, or alternatively try to extract robust features
directly from the polyphonic mixture. Table 2.4 lists some approaches
trying to cope with the polyphonic situation.

Godsmark and Brown used a ”timbre track” representation, in which
spectral centroid was presented as a function of amplitude to segregate
polyphonic music to its constituent melodic lines [60]. In assigning pi-
ano and double bass notes to their streams, the recognition rate was
over 80 %. With a music piece consisting of four instruments, the pi-
ano, guitar, bass and xylophone, the recognition rate of their system
decreased to about 40 %.

The work of Kashino et al. in music transcription involves also in-
strument recognition. In [93], a system transcribing random chords
of clarinet, �ute, piano, trumpet and violin with some success was pre-
sented. Later, Kashino and Murase have built a system that transcribes
three instrument melodies [91, 92]. Using adaptive templates and con-
textual information, the system recognized three instruments, violin,
�ute and piano with 88.5 % accuracy after the pitch of the note was pro-
vided. The work was continued by Kinoshita et.al. [96]. The authors
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presented a system that could handle two note chords with overlapping
frequency components using weighted template-matching with feature
signi�cance evaluation. They reported recognition accuracies from 66
% to 75 % with chords made of notes of �ve instruments.

Eggink & Brown utilize the missing feature theory by marking fre-
quency regions with overlapping partials as unreliable, assuming nearly
harmonic spectra and known fundamental frequencies [46]. The fea-
tures are logarithmic energies at 60Hz wide spectral bands spanning
the frequency range from 50Hz to 6kHz, with 10Hz overlap between
adjacent bands. Instruments are modeled with a GMM, and a binary
mask is used to exclude unreliable feature components from the cal-
culation of the GMM likelihood. A potential problem here is that the
method assumes independence of feature components which does not
hold for spectral energies. In the tests, the fundamental frequency was
supplied to the system. The authors tested the system in a more realis-
tic condition with analyzed F0s, but reported only preliminary results.

Essid et al. [52] apply their pairwise classi�cation strategy also for
recognition of polyphonic mixtures. They train pairwise classi�ers be-
tween all possible instrument combinations and show promising results
in recognizing typical instrument combinations for jazz music.

Leveau et al. [110] decompose the signal using instrument speci�c
harmonic atoms. The authors report that classifying the instrument
label without knowing the number of instruments can be done only with
17% accuracy.

Kitahara et al. apply linear discriminant analysis to �nd a feature
set which is little affected by overlapping. The authors quantitatively
evaluate the in�uence of the overlapping on each feature as the ratio
of the within class variance to the between-class variance in the dis-
tribution of training data obtained from polyphonic sounds [97]. The
motivation for this is the assumption that if a feature greatly suffers
from the overlapping, it will have a large variation.

Livshin and Rodet report preliminary experiments on instrument
recognition on duets [116]. They demonstrate that their recognizer de-
veloped for monophonic phrases performs rather well in recognizing the
dominant instrument in duets when applied directly on the two-note
mixtures. They also develop a system that uses an F0 estimator to �nd
the harmonic partials in a frame, and then generate two �ltered sam-
ples for recognition: one retaining only the harmonic partials and the
other only the residual. The monophonic recognizer is applied sepa-
rately to the samples. This latter method is more accurate in recogniz-
ing the weaker instrument.

Little and Pardo present a very interesting approach for labeling the
presence of an instrument where the learning done is done on weakly
labeled mixtures [114]. This means that the system is presented with
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examples where only the presence of a target instrument is indicated,
but the exact times during which it is active is not needed. The authors
report that the system trained with weakly labeled mixtures performs
better than one trained with isolated examples, and suggest that this is
because the training data, in the mixed case, is more representative of
the testing data, even when the training mixtures do not use the same
set of instruments as the testing mixtures.

2.5 Methods for audio-based context recognition

In this section, we review some research results relevant for audio-
based context recognition and especially publication [P4]. We start by
brie�y discussing context awareness in general without limiting to au-
dio input only. This because the methods used for other sensory types
are sometimes quite similar to those used in the audio domain, although
specialized features can be developed for audio. One of the reasons for
this is that since we are dealing with environmental sounds, the in-
put can contain practically any sounds, which makes the utilization of
highly specialized feature extractors a dif�cult task and favors generic,
possibly data-driven feature extraction methods.

The second �eld to be reviewed is context recognition based on audio
which is most relevant for us. When publication [P4] was written, there
were few publications on the topic. Recently, it has started to attract in-
creasingly more research interest. In addition, we review some results
on domains which have a different problem formulation but bear simi-
larity with regard to data or methods used. These include audio classi-
�cation and retrieval, personal audio archiving, and video sound track
segmentation.

2.5.1 Context awareness

In many cases the context-awareness functionality is build upon an ar-
ray of different sensors sensing the context. In [106], the set of sen-
sors included accelerometers, photodiodes, temperature sensors, touch
sensors, and microphones. Low level features were then extracted from
these sensor data inputs. The purpose of the feature extraction step is to
transform the (often high dimensional) input data into a more compact
representation while keeping suf�cient amount of information for sepa-
rating the different classes. As an alternative to extracting features de-
signed using domain expertice or heuristics, blind, data driven transfor-
mations can be used. For example, principal component analysis (PCA)
or independent component analysis (ICA) can be used to transform the
raw input into a low dimensional representation [76, 154].
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In general, the process of context recognition is very similar regard-
less of the sensors or data sources used for the recognition. The fea-
ture vectors obtained from sensors are fed to classi�ers that try to iden-
tify the context the particular feature vectors present. As classi�ers,
e.g. hidden Markov models (HMMs) [35], or a combination of a self-
organizing map and a Markov chain have been used [106].

2.5.2 Audio-based context awareness

Recognizing the context or environment based on audio information has
started to attract increasing amount of research interest. One of the ear-
liest studies was done by Clarkson, who classi�ed seven contexts using
spectral energies from the output of a �lter bank and a HMM classi-
�er [35]. In [155], Sawhney describes preliminary experiments with dif-
ferent features and classi�ers in classifying between voice, traf�c, sub-
way, people, and other. The most successful system utilized frequency-
band energies as features and a nearest-neighbor classi�er. Kern clas-
si�es between street, restaurant, lecture, conversation, and other using
a set of low-level features transformed using Linear Discriminant Anal-
ysis (LDA) and a Bayes classi�er with HMM class models [94].

In publication [P4], we compared various features and classi�ers in
recognizing between 24 everyday contexts, such as restaurant, car, li-
brary, and of�ce. The �nal system used catenated MFCCs and their
�rst-order derivatives as features and hidden Markov model with dis-
criminative training for classi�cation. In addition, a listening test was
made to compare the system's performance to the human abilities. The
average recognition accuracy of the system was 58% against 69% ob-
tained in the listening tests in recognizing between 24 everyday con-
texts. The accuracies in recognizing six high-level classes were 82% for
the system and 88% for the subjects.

More recent studies have reported sometimes high performance �g-
ures with various methods and also concrete implementations on mobile
devices. On a set of 27 contexts, Bonnevier has reported an accuracy
of 69% with a Bayesian classi�er and a subset of features obtained by
running a feature selection algorithm on an initial set of MPEG-7 fea-
tures, MFCCs, and zero-crossing rate [21]. Note that the method was
allowed to pick individual features from a feature vector such as the
MFCC which may raise concerns about over�tting the training data.

Ma et al. presented a HMM based environmental noise classi�ca-
tion system and reported over 91% accuracy in ten-way classi�cation
of contexts bar, beach, bus, car, football match, launderette, lecture, of-
�ce, railway station and street using three second test excerpts [120].
MFCCs augmented with the energy term and their �rst and second or-
der derivatives were used as features. The authors also performed a
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listening test on the same data. The listener's performance was signif-
icantly worse than the system's; this is probably due to the fact that
only 3 seconds of test data was given for them. The context aware sys-
tem was implemented as a client-server system where the server used
an of�ine database to produce the noise models which were then used
for online noise classi�cation. Using the same database, Perttunen et
al. [145] computed the averaged Mel scale spectrum over three second
segments and used a Support Vector Machine (SVM) classi�er and re-
ported further improvement in the classi�cation accuracy.

Aucouturier et al. have analyzed the typical Bag-of-frames (BOF)
approach, where framewise features such as MFCCs are modeled with
GMMs. A limitation of this approach is that the it ignores the tempo-
ral sequencing of the feature vectors: the likelihood of a feature vector
sequence given the GMM parameters is the same irrespective of the
temporal ordering of the feature vectors. In [13], they report on a listen-
ing test where human subjects are made to listen to ”spliced” and not-
spliced versions of environmental audio recordings. Spliced versions
are done by splitting the audio into short frames, scrambling the or-
der of the frames and concatenating again. The authors conclude that
splicing has a signi�cant but relatively small effect on the human per-
formance on audio context recognition, and that the BOF approach is
rather suf�cient approach for audio context recognition in opposite to
music similarity where the drop in recognition ability is larger. The au-
thors also report that their result is in contradiction to our earlier study
in human perception of audio environments where identi�cation of indi-
vidual sound events has been reported as a cue for identi�cation [144].

In [14], Aucouturier et al. report a 90% precision in query-by-example
of audio from four environmental sound classes after retrieving the �ve
�rst recordings. The precision is measured as the ratio of returned
recordings from the correct class to the number of retrieved recordings.
The signal is modeled with MFCC coef�cients and each recording with
a GMM, and their distance is measured with the Kullback-Leibler (KL)
divergence ([20, p. 55]) using Monte Carlo simulation. An interesting
result is that, according to the authors, in environmental sounds major-
ity of the frames are important for classi�cation whereas in polyphonic
music a minority of the frames differentiate the music from other music
pieces, and majority of the frames is in fact detrimental for the perfor-
mance of music similarity.

2.5.3 Audio classi�cation and retrieval

The features typically used for audio-based context awareness are simi-
lar to those used in different audio information retrieval tasks [55]. The
earliest approaches were done on classifying only a few types of envi-
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ronmental noises. El-Maleh et al. classi�ed �ve environmental noise
classes (a car, street, babble, factory, and bus) using line spectral fea-
tures and a Gaussian classi�er [47]. Vehicle sound classi�cation was ap-
proached using discrete hidden Markov models by Couvreur et al. [37].
They used linear prediction cepstral coef�cients as features. The au-
thors also described an informal listening test, which showed that, on
the average, humans were inferior in classifying these categories com-
pared to their system.

Speech/music discrimination is a typical example and the paper by
Scheirer and Slaney describes a basic approach using a combination
of several features [156]. In some studies environmental noise is in-
cluded as one of the categories. See for example the papers by Lu et al.
([119]), and Li et al. ([113]). Various granularities of the task description
are possible by further subdividing the classes. Zhang and Kuo ([181])
classi�ed between harmonic environmental sound, non-harmonic envi-
ronmental sound, environmental sound with music, pure music, song,
speech with music, and pure speech. B üchler et al. report on classifying
clean speech, speech in noise, noise, and music in hearing aids with very
high accuracy except for the ”speech in noise category” [19].

The MPEG-7 standard by the Moving Picture Experts Group presents
methods for multimedia content description and also for describing gen-
eral sound sources. Casey has used a front-end where log-spectral ener-
gies are transformed into a low-dimensional representation with singular-
value decomposition and independent component analysis [31]. The
proposed classi�er uses single-Gaussian continuous-density HMMs with
full covariance matrices trained with Bayesian maximum a-posteriori
(MAP) estimation. Casey has reported impressive performance �gures
using the system on a database consisting e.g. of musical instrument
sounds, sound effects, and animal sounds.

In a realistic audio retrieval system we need to be able to ef�ciently
compute distances between models of audio clips in a audio database.
Helen and Virtanen present various similarity measures between GMM
or HMM models of features for audio retrieval of speech, music, and
environmental sounds [72].

2.5.4 Analysis of video soundtracks

Analyzing and categorizing video soundtracks is a related research �eld
to audio-based context recognition. Describing soundtracks using key
audio effects is an interesting approach used for sound track catego-
rization. In [28], Cai et al. propose a framework for detecting key audio
effects and describing an audio scene. They use a hierarchical proba-
bilistic model, where an HMM is �rst built for different audio effects
based on sound samples, and then a higher level model is used to con-

40



nect the individual models. The optimal key effect sequence is searched
through the candidate paths with the Viterbi algorithm. This approach
is interesting since individual sound events have been found to be a
strong cue for audio context identity [144], although the complexity of
the system is likely to be too large for context awareness applications.
More recently, the authors have proposed an unsupervised co-clustering
approach for the same task [27].

2.5.5 Personal audio archiving

Ellis and Lee have worked on an application to record personal expe-
rience as continuous, long audio recordings [50]. Automatic analysis of
the content for indexing purposes is an essential requirement as it is ex-
pected that only a fraction of the material is of any value. The authors
performed automatic segmentation and labeling of 62 hours of recorded
personal audio. They used the Bayesian Information Criterion (BIC)
([20, p. 216]) as a segmentation criterion, as earlier used in speaker
segmentation. The distance matrix between various segments was cal-
culated using the Kullback-Leibler divergence ([20, p. 57]) between sin-
gle diagonal-covariance Gaussians �tted to the spectral features, and
spectral clustering was performed on the similarity matrix to group the
segments. The most successful features were average log-domain audi-
tory spectrum, normalized entropy deviation, and mean entropy.

2.5.6 Discussion

In recent years, progress has been made in audio-based context recogni-
tion. Very good performance has been reported e.g. in [14, 120, 145],
although the set of used recordings has been smaller than we have
used in publication [P4]. Moreover, the database presented in [120]
provides only little variation between the different recordings from the
same environment and thus leads to high recognition percentages. This
was tested by repeating the experiments of [120] using their publicly
available data. We used a simple approach where each recording was
modeled with a Gaussian �tted to its features, and classi�cation was
done with a k-Nearest Neighbor classi�er with symmetrized Kullback-
Leibler divergence as the distance metric. This lead to over 90% accu-
racy on the dataset of [120].
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Chapter 3

Music content analysis

Music content analysis is a broad �eld covering tasks such as

² transcription of melody, bass, or chords

² analysis of meter and structure

² classi�cation of music by genre, artist, or mood

² �nding remix or cover versions of original songs.

This chapter reviews relevant research on meter and structure analysis
as background for publications [P5], [P6], [P7], and [P8].

3.1 Meter analysis

Musical meter is a hierarchical structure, which consists of pulse sen-
sations at different time scales. The most prominent level is the tactus,
often referred as the foot tapping rate or beat. Here, we use the word

Figure 3.1: A musical signal with the tatum, tactus (beat), and measure
levels illustrated. Reprinted from [P5]. c° 2006 IEEE.
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Figure 3.2: Overview of the beat and tatum analysis system of [P6],
which is a good representative of the main modules in a meter analysis
system. Reprinted from [P6]. c° 2006 University of Victoria.

beat to refer to the individual elements that make up a pulse. Figure 3.1
illustrates a musical meter where the dots denote individual beats and
each sequence of dots corresponds to a particular metrical level. We use
the term period of a pulse to refer to the time duration between succes-
sive beats and phase to refer to the time when a beat occurs with respect
to the beginning of a piece. The tempo of a piece is de�ned as the rate
of the tactus pulse. In a musically meaningful meter, the pulse periods
are slowly varying and each beat at the larger levels must coincide with
a beat at the smaller levels.

3.1.1 Overview

Meter analysis involves estimating the possibly time-varying period of
one or more metrical levels, and the locations of each beat. A full meter
analysis system can estimate the periods and locations at the three most
prominent metrical levels (measure, tactus, and tatum), whereas beat
tracking involves estimating the time-varying tempo and the locations
of the beats at the tactus level. In some applications it is suf�cient to
perform tempo estimation , i.e., to estimate the rate of the tactus pulse
ignoring the phase.

Automatic rhythm analysis often entails the steps of measuring mu-
sical accentuation, analyzing the periodicity in the accent signals, and
determining the period corresponding to one or more metrical levels.
Figure 3.2 depicts an overview of the beat and tatum analysis system
in [P6].

3.1.2 Musical accent analysis

The purpose of musical accent analysis is to extract features that corre-
late with the beginnings of sounds and discard information irrelevant
for tempo estimation. The purpose is to device a feature that reacts to
events that give emphasis to a moment in music, such as beginnings of
all discrete sound events, especially the onsets of long pitched events,
sudden changes in loudness or timbre, and harmonic changes. Fig-
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Figure 3.3: 10 second excerpt of the audio waveform of the song ”25 or 6
to 4” by Chicago (top panel), and the corresponding accent signal (lower
panel).

ure 3.3 depicts an example of a musical waveform and extracted accent
signal which reacts to spectral changes in the piece. Bello et al. divide
the features used in onset detection to two broad groups: methods based
on the use of signal features and methods based on probabilistic signal
models [17]. The signal features include e.g. temporal features such
as amplitude envelope, spectral features such as spectral difference or
spectral �ux, spectral features using phase such as the mean absolute
phase deviation, and time-frequency and time-scale analysis based on
e.g. wavelet decomposition of the signal. Another group of features is
based on an assumption that the signal can be described by some prob-
abilistic model. For example, a statistical measure of ”surprise” may
consist of adapting some signal model based on incoming data, and an-
alyzing when incoming data in a short window no longer �ts the model.
Another example is the log-likelihood ratio test, which entails training
two probabilistic models with data on both sides of a time instant, and
computing the likelihood ratio of these models.

In publications [P5], [P6], and [P7] we apply various spectral fea-
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tures for musical accent analysis. The main steps in the methods are
decomposing the signal into frequency bands and measuring the degree
of change in the bands. The frequency decomposition can be done with
the help of the DFT ([P5]), using a multirate �lterbank ([P6]), or using a
chroma analyzer or the mel-frequency �lterbank [P7]. Chroma features
will be described in more detail in section 3.2.2. In publication [P5],
an accent feature extractor is presented which utilizes 36 logarithmi-
cally distributed subbands for accent measurement and then folds the
results down to four bands before periodicity analysis. The bene�t of
using a wide range of subbands is that it is possible to detect also har-
monic changes in classical or vocal music which do not have a strong
beat. The method in [P6] is designed with the goal of keeping the com-
putational cost low. The accent feature extractor based on the chroma
features in [P7] can be considered to further emphasize the onsets of
pitched events and harmonic changes in music. Measuring the degree
of change consists of half-wave recti�cation (HWR) and weighted differ-
entiation of an accent band envelope.

3.1.3 Pulse periodicity and phase analysis

Musical accent analysis is followed by periodicity analysis, since musi-
cal meter concerns the periodicity of the accent, not the onsets them-
selves. A natural choice is to apply a periodicity estimator, such as
autocorrelation, to the accent signal to �nd intrinsic repetitions. The
autocorrelation is de�ned as

½(l) =
N ¡ 1X

n=0

a(n)a(n ¡ l); 0 · l · N ¡ 1 (3.1)

for a frame of length N of the accent signal a(n). The autocorrelation
may be applied separately for a set of subbands, in which case a(n) rep-
resents the accent signal from a single subband. Performing periodicity
analysis directly on half-wave recti�ed differentials of subband power
envelopes was proposed by Scheirer ([158]), and was an important ad-
vance compared to earlier methods based on discrete onset detection.
Figure 3.4 depicts an example periodicity measurement from a signal
using autocorrelation. Offset and scale variations have been normal-
ized from the autocorrelation, see details in [P6]. The autocorrelation
will show peaks at the lag corresponding to the basic periodicity of the
accent signal, and its integer multiples.

A straightforward solution for beat or tatum period estimation con-
sist of weighting the autocorrelation or other periodicity observation
with a prior, and selecting the period corresponding to the maximum
peak. This is the principle used e.g. in [P5], [P6] and [49].
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Figure 3.4: (a) autocorrelation and (b) summary periodicity, with beat
(B) and tatum (T) periods shown. Reprinted from [P6]. c° 2006 Univer-
sity of Victoria.

When an estimate of the period has been obtained, the remaining
task is to position the individual beats to the timeline. This often en-
tails making a prediction to the next beat location given the location
of the previous beat and the new period estimate, and �nding a local
maximum of the accent signal near the predicted position. At the end of
the signal, the best path through the accent signal may be searched. A
good example of such a method is the dynamic programming approach
presented by Ellis [49].

Some periodicity estimators provide an estimate of the phase in ad-
dition to period. Scheirer proposed the use of a bank of comb-�lter res-
onators with constant half-time for beat tracking [158]. The accent sig-
nals are fed to a bank of comb-�lter resonators with delays tuned across
the range of beat periods to be measured. The energy at each band in-
dicates the strength of periodicity in the signal corresponding to that
particular delay. The delays of the comb-�lter give an estimate for the
beat phase. This is equivalent to using the latest ¿ outputs of a res-
onator with delay ¿. The phase estimation in [P5] and [P6] is based on
examining resonator outputs and de�ning a weight for the deviation of
the phase from an ideal beat location. Ideally, the location of a beat is
characterized by a large value on all accent channels, and the location
does not deviate much from the ideal location obtained by adding the
current period estimate to the previous beat location.
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Table 3.1: Summary of selected research on music meter analysis. The
values in the column Input denote A=audio, S=symbolic or MIDI.

Author year ref. Approach Input Output

Allen multiple agent S beat

& Dannenberg 1990 [10]

Rosenthal 1992 [153] multiple agent S beat, measure,

time signature

Brown 1993 [24] autocorrelative S tempo, measure period

Parncutt 1994 [134] rule-based S measure, beat

Large 1995 [107] oscillator S beat

McAuley 1995 [126] oscillator S beat

Scheirer 1998 [157] oscillator A beat

Toiviainen 1998 [169] oscillator S beat

Goto 1999 [64] multiple-agent S beat, half-note, measure

Eck 2000 [45] rule-based S tempo

Raphael 2001 [150] probabilistic S+A transcription

Seppänen 2001 [160] histogramming A tatum+beat

Wang & Vilermo 2001 [177] histogramming A beat

Goyon et al. 2002 [67] histogramming A tatum

Cemgil & Kappen [33] probabilistic S beat

Jensen and Andersen [87] histogramming A beat

Laroche [108] probabilistic A beat

Uhle and Herre [173] histogramming A tatum period, tempo,

time signature

Hainsworth & probabilistic A beat

Macleod 2004 [70]

Klapuri et al. 2006 [P5] probabilistic A measure, beat, tatum

Seppänen et al. 2006 [P6] autocorrelative A beat, tatum

Alonso et al. 2007 [11] autocorrelative A tempo

Davies & Plumbley 2007 [39] autocorrelative A beat

Dixon 2007 [42] multiple agent A beat

Ellis 2007 [49] autocorrelative A beat

Peeters 2007 [140] autocorrelative A measure, beat, tatum

Seyerlehner et al. 2007 [163] regression A tempo

Shiu & Kuo 2008 [165] probabilistic A beat

Eronen & Klapuri 2008 [P7] regression A tempo

3.1.4 Methods for music meter analysis

This section reviews previous work on music meter analysis and serves
as an introduction to publications [P5], [P6], and [P7]. Tempo estima-
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tion methods can be divided into two main categories according to the
type of input they process. The earliest ones processed symbolic (MIDI)
input or lists of onset times and durations, whereas others take acous-
tic signals as input. Examples of systems processing symbolic input
include the ones by Rosenthal [153], Dixon [41], Brown [24] and Toivi-
ainen and Eerola [170]. Some of the systems such as the one by Dixon
([41]) can be extended to process acoustic signals by employing an onset
detector as a preprocessing step.

The best performance on realistic, acoustic music material is typi-
cally obtained with systems that have originally been designed to pro-
cess acoustic signals. One approach to analyze acoustic signals is to
perform discrete onset detection and then use e.g. inter onset interval
(IOI) histogramming to �nd the most frequent periods, see e.g. [161].
However, it has been found better to measure musical accentuation in a
continuous manner instead of performing discrete onset detection [68].

The broad approaches of meter analysis systems could include

² rule-based

² autocorrelative

² oscillating �lters

² histogramming

² multiple agent

² probabilistic

² regression

This is the categorization proposed by Hainsworth ([69]) with the ad-
dition of the regression category. There are methods that do not nicely
�t into any of these categories, but we consider the categorization to be
useful anyway for characterizing some of the most prominent aspects of
the systems.

Another method of classifying meter analysis systems is by causal
operation [69]. If a system is causal, the meter estimate at a given
time depends only on past and present data. A noncausal system can
use future data and backward decoding. In some applications, such as
automatic accompaniment, causal operation is essential. In others, such
as producing rhythm related metadata for digital music archives, the
methods can be noncausal.

Table 3.1 presents a hopefully representative set of the various ap-
proaches.
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Rule-based

Rule-based approaches tend to be simple and encode sensible music-
theoretic rules [69]. They were among the �rst approaches to meter
analysis. An example of a rule-based system is the one by Parncutt
who devised a model to predict the tactus and measure for a series of
repeated rhythms [134]. A simpler model for tempo prediction from
symbolic data was presented by Eck [45].

Autocorrelation

Autocorrelation is a method for �nding periodicities in data and has
been applied in many meter analysis systems [69]. The autocorrelation
provides information only on the periods, therefore phase estimation re-
quires further processing. The lag which maximizes the autocorrelation
value often coincides with the beat, although there are peaks at inte-
ger multiples of the beat. Davies and Plumbley try to explicitly model
the ideal outputs of an autocorrelation function to different metrical
structures using comb �lter templates [39]. Brown used the autocorre-
lation to predict the beat and measure period from single melodic lines
in symbolic format [24]. Ellis �rst estimates the beat period using auto-
correlation and then �nds the individual beats using dynamic program-
ming [49]. Alonso et al. use a subspace analysis method to perform
harmonic+noise decomposition before accent feature extraction and pe-
riodicity analysis using autocorrelation or other related periodicity esti-
mators [11]. Peeters proposes the combination of DFT and autocorrela-
tion for period estimation to suppress the harmonics in the periodicity
observation [140].

Oscillating �lters

Two distinct approaches can be found in oscillating �lter methods for
meter analysis [69]. One is based on exciting an adaptive oscillator
by an input signal and, if successful, the oscillator starts to resonate
at the frequency of the beat. Large used a single nonlinear oscillator
with adaptive phase and period to track the beat of piano performances
represented in symbolic format [107]. In his method, a sequence of im-
pulses at note onsets acted as a driver and perturbed both the period
and phase of an oscillator. Other examples of methods using an adap-
tive oscillator include those by McAuley [126] and Toiviainen [169]. The
input to the systems by Large ([107]) and McAuley ([126]) consisted of
series of impulses each corresponding to an onset of an individual note.
The goal of Toiviainen was to build an interactive MIDI accompanist
that tracks the performance in real time and plays back a prede�ned
accompaniment in synchrony with the performance [169].
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The second approach of oscillating �lters is based on using a bank of
comb �lter resonators with delays spanning the range of periods to be
estimated. This approach was pioneered by Scheirer who implemented
one of the �rst successful methods for beat tracking from audio [157].
The output of a comb �lter with delay ¿ for input v(n) is given by

r (¿; n) = ®¿r (¿; n¡ ¿) + (1 ¡ ®¿)v(n) (3.2)

where the feedback gain ®¿ = 0 :5¿=T0 is calculated based on a selected
half-time T0 in samples. The comb �lters have an exponentially decay-
ing impulse response and the half-time refers to the delay during which
the response decays to half of its initial value. Scheirer used a half-time
equivalent to 1.5–2 seconds in his beat tracking system [157]. In pub-
lication [P5] we use a half-time equivalent to 3 seconds since the goal
is to analyze also longer, measure level pulses. A bank of comb �lters
can be used as a periodicity estimator when the delays ¿ are set so that
they get values across the range of possible periods to be estimated. The
comb �lter which gives the most energetic output is likely to correspond
to the beat period or its multiple or sub-division. Moreover, an estimate
of the phase is available by examining the internal state of the delay
of the most energetic comb �lter [157]. This method is well suited for
causal beat tracking. A disadvantage of this method that it is compu-
tationally intensive, especially if the comb �lter bank is used to process
several frequency bands separately as proposed by [157]. McKinney and
Moelants compared the tempo histograms obtained from tempo tapping
data of human subjects and periodicity outputs of a comb �lterbank,
autocorrelation, and an IOI histogram, and concluded that the output
of a comb �lterbank was closest to the tempo histogram obtained from
human subjects [127].

A bank of comb-�lters performs well in period and phase estima-
tion [P5], but is computationally intensive. In publication [P6] a com-
putationally lighter solution combining autocorrelation and discrete co-
sine transform is used for periodicity estimation. For phase estimation,
we still use comb-�lters but now in an adaptive manner, tuning the
comb-�lter parameters according to the current and previous period es-
timates.

Histogramming

Histogramming methods are based on detecting discrete onsets from the
input signal and histogramming the inter-onset-intervals of detected
onsets to �nd the most prominent periodicity. A good example of this
category of methods is the one by Sepp änen [160]. He �rst performed
onset detection followed by tatum period estimation by IOI histogram-
ming. Several acoustic features were then extracted at locations de�ned
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by the tatum signal and used in a pattern recognition system to classify
which of the tatum instances corresponded to beats. Sepp änen reports
that the method did not match the Sheirer method in beat tracking per-
formance. Other examples of histogramming methods include the ones
by Goyon et al. [67], Wang and Vilermo [177], Uhle and Herre [173], and
Jensen and Andersen [87].

Multiple agent

The basic idea of multiple agent methods is that there are multiple
agents or hypotheses independently tracking the beat [69]. Each agent
receives scores based on how well it �ts to the data. Low scoring agents
may be killed during the process. At the end of the signal, the agent
with the highest score wins and determines the beat. Early methods
operating on symbolic or MIDI input include e.g. the ones by Allen and
Dannenberg [10] and Rosenthal [153]. Later methods operating on au-
dio signals include those by Goto [64] and Dixon [42] 1.

Goto �rst performs onset detection on several frequency ranges [64].
The onsets are then fed to multiple agents which make parallel pulse
hypotheses based on the onset time vectors. The agents calculate the
inter-beat interval and predict the next beat time. Information on har-
monic changes is used to determine the type of the pulse (beat, half note,
or measure) and estimate the hypothesis reliability [64].

Dixon has developed a method called BeatRoot which uses a multiple
agent architecture [42]. The �rst versions of the method processed MIDI
input. In the latest version a spectral-�ux based onset detector is used
to make the system applicable for beat tracking on audio.

Probabilistic

Probabilistic methods de�ne a model for the meter process whose pa-
rameters are then estimated. The basic idea here is that the under-
lying meter process goes through a sequence of states, and generates
a sequence of observations such as periodicity vectors or onset times.
Cemgil and Kappen ([33]) formulated a linear dynamic system for beat
tracking which has since been used by other authors such as Shiu and
Kuo ([165]) and Hainsworth and Macleod ([70]). The beat process is
modeled as a linear dynamic system as follows:

xn+1 = ©(n + 1 jn)xn + ²n ; (transition equation) (3.3)

yn = M (n)xn + vn ; (observation equation) (3.4)

1Goto and Dixon have written many early papers on the topic: we selected here the
most recent and representative articles.
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where xn is the hidden state variable and yn the observation, and ²n

and vn are noise terms. The state variable is

xn = [ Án ; ¿n ]T ; (3.5)

where Án and ¿n are the phase (temporal location) and period of the
current beat, respectively. The next beat location is predicted as

Án+1 = Án + ¿n (3.6)

and the next period as the previous period, i.e., ¿n+1 = ¿n . Consequently,
the state transition matrix ©(n + 1 jn) can be written as

©(n + 1 jn) =

"
1 1
0 1

#

: (3.7)

Shiu and Kuo ([165]) and Hainsworth and Macleod ([70]) observe only
onsets and not the period. Then,

M (n) =
h

1 0
i

: (3.8)

Thus, the observation yn is the nth observed onset time and corresponds
to the Án in xn . Beat tracking according to this model consist of the
sequential estimation of the state trajectory between times 0 and n.
This is solved with Kalman �ltering in ([165]) and with particle �ltering
in [70].

A different probabilistic formulation is presented in [P5]. There, the
meter process is modeled as a hidden Markov model depicted in Fig-
ure 3.5. The hidden variables are the tatum, beat (tactus), and mea-
sure periods, denoted by ¿A , ¿B , and ¿C , respectively. The observation
is the periodicity vector (output of the resonance �lterbank) s. Arrows
indicate dependencies between the variables. The transition probabil-
ities of the model are designed to impose smoothness on the adjacent
period estimates, and to model the dependencies of the different pulse
levels. The optimal sequence of period estimates is found by Viterbi
decoding through the model. Thus, the model estimates the periods of
the three pulses simultaneously. The phase estimation is done after
period estimation. Two separate hidden Markov models are evaluated
in parallel, one for the beat phase and another for the measure phase.
In both models, the observation consists of the bandwise output of the
resonator corresponding to the found pulse period. Transition proba-
bilities are designed to impose smoothness between successive phase
estimates. Phase estimates are obtained by Viterbi decoding through
the beat and measure phase models. Hainsworth ([69]) reports that the
method in [P5] outperforms his method in [70]. However, since the ob-
servations fed to these two probabilistic models are different, we cannot
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Figure 3.5: Hidden Markov model for the temporal evolution of the
tatum, beat, and measure pulse periods. Reprinted from [P5]. c° 2006
IEEE.

yet draw general conclusions on what is the best probabilistic model for
the meter process.

Other approaches for meter analysis which could be categorized as
probabilistic include those by Raphael ([150]), who performed rhythm
transcription with a hidden Markov model that described the simul-
taneous evolution of three processes: a rhythm process, a tempo pro-
cess, and an observable process. The rhythm process modeled the posi-
tion within a measure a note can have. The observation was IOI data
measured from MIDI or from audio with the help of an onset detec-
tor. Laroche modeled an ideal accent signal as a sequence of discrete
pulses, which was then correlated with the measured accent signal to
determine a set of beat period candidates. Based on the beat period can-
didates, dynamic programming was applied to �nd the beat phase [108].

Regression

We add here a new category of tempo estimators which is based on us-
ing regression. Seyerlehner et al. proposed the k-Nearest Neighbor
algorithm as an interesting alternative to peak picking from periodic-

53



ity functions [163]. Peak picking stages are error prone and one of the
potential performance bottlenecks in rhythm analysis systems. For ex-
ample, an autocorrelation type beat tracker may select the beat period
by picking the maximum peak from the autocorrelation function, pos-
sibly weighted by the beat prior. Using the k-Nearest Neighbor was
motivated based on the observation that songs with close tempi have
similar periodicity functions. The authors searched the nearest neigh-
bors for a periodicity vector and predicted the tempo according to the
value that appeared most often within the k songs but did not report
signi�cant performance improvement over reference methods. Publica-
tion [P7] studies this approach further and shows signi�cant improve-
ment in tempo estimation accuracy over the method presented in [P5].

3.2 Structure analysis and music thumbnailing

This section describes the necessary background and related research
for the chorus detection method presented in publication [P8].

3.2.1 Overview

Music thumbnailing refers to the extraction of a characteristic, repre-
sentative excerpt from a music �le. Often the chorus or refrain is the
most representative and ”catchiest” part of a song. A basic application
is to use this excerpt for previewing a music track. This is very useful if
the user wishes to quickly get an impression of the content of a playlist,
for example, or quickly browse the songs in an unknown album. In ad-
dition, the chorus part of a song would often make a good ring tone for a
mobile phone, and automatic analysis of the chorus section would thus
facilitate automatical extraction of ring tone sections from music �les.

Western popular music is well suited for automatic thumbnailing as
it often consists of distinguishable sections, such as intro, verse, chorus,
bridge, and outro. For example, the structure of a song may be intro,
verse, chorus, verse, chorus, chorus. Some songs do not have as clear
verse-chorus structure but there still often exist separate sections, such
as section A and section B which repeat. In this case the most often re-
peating and energetic section is likely to contain the most recognizable
part of the song.

The goal of music structure analysis is to analyze the location of one
or more sections from the music �le. The methods typically start by
computing features from the signal using either �xed-length frames or
beat-synchronous frames. Next, the goal is to �nd the segment bound-
aries and to group repeating segments, such as all choruses. Peeters
et al. ([141]) divide the methods into two main categories: the ”state”
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Figure 3.6: Self-distance matrix of the song ”Superstar” by Jamelia.
The ellipses mark the diagonal stripes of low-distance corresponding to
chorus repetitions. This particular song has four choruses marked with
1, 2, 3, and 4. The notation x-y indicates that the particular diagonal
stripe is caused by a low distance between the chorus instances x and y.
The dashed ellipses indicate low distance stripes caused by matching a
chorus to itself which are hidden by the main diagonal.

approach and the ”sequence” approach. The state approach considers
each part of a music track to be generated by a state. Each state has
characteristic acoustic information which separates the parts generated
by different states from each other. A part does not have to be repeated
later in the track. Representing musical parts as states with different
acoustic properties is motivated by the knowledge that in popular mu-
sic the different parts often have a characteristic accompaniment which
stays constant during the part. In this case, the goal of the structure
analysis is to �nd the most likely state sequence that could have gener-
ated the acoustic features. A good example of the state approach is the
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Figure 3.7: A schematic view of a music structure analyzer.

work by Logan and Chu who used agglomerative clustering or a hidden
Markov model and Viterbi decoding to assign feature frames to different
segments [117]. A basic problem especially with the HMM based seg-
mentation is how to constrain the temporal span of the segmentation
to be long enough. When a HMM is trained using short-time features
for a music �le, similar low-level feature vectors may be grouped to the
same state but it is unlikely that this would match with high-level song
segment structure. For example, in Figure 2.6 different states model dif-
ferent parts of the trumpet notes. One solution is to use a large number
of states in the HMM model, and then histogram the decoded sequence
of states and use the histograms as new features [112].

The sequence approach assumes that there exist repeating sequences
in the music track. A sequence is de�ned as a time interval with cer-
tain succession of musical properties, such as notes or chords. Different
repeats of a sequence are not necessarily identical but similar. These
sequences are visible in a self-distance matrix (SDM) as off-diagonal
stripes indicating a succession of pairs of times with high similarity.
Figure 3.6 shows an example SDM for the song ”Superstar” by Jamelia.

We will give here a short introduction to the steps of a music struc-
ture analysis method which is based on the sequence approach and SDM
processing. This serves as an introduction to [P8]. Figure 3.7 depicts
the basic operations of a music structure analyzer that is based on self-
distance analysis [65, 136]. The method starts with feature extraction
and SDM calculation. This is followed by �nding repeated sections from
the SDM, grouping repeated sections belonging to the same high-level
segment (e.g. verse), and selecting the chorus sections. The following
sections describe these steps in more detail.

3.2.2 Chroma feature extraction

Whereas MFCCs are applicable to a wide variety of sounds such as
speech, music, and environmental sounds, chroma is a music-speci�c
feature for describing the spectral content of musical sounds. The chroma
is motivated by the Shephard helix ([164]) of musical pitch perception [66].
Chroma features are typically used for music structure analysis ([16,
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Figure 3.8: A schematic view of chroma feature analysis. The top panel
shows the magnitude spectrum of a note A4 with fundamental fre-
quency 440 Hz. The energy corresponding to the same pitch class is
accumulated over several octaves on the same pitch class bin.

66]), key estimation (e.g. [62, 138]), cover song identi�cation ([84]), or
detecting harmonic changes for bar line analysis [83]. Figure 3.8 depicts
a schematic view of the chroma feature analysis. Energy at a musical
semitone scale is accumulated to twelve pitch classes over a range of oc-
taves [16]. In the �gure, the note frequency is represented as MIDI note
number. The conversion from frequency in Hertz to MIDI note number
is done using the equation

MIDI note number = 69 + round(12 log(
f

440
)=log(2)); (3.9)
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where round denotes rounding to nearest integer. Note that using MIDI
note numbers is not necessary for chroma feature analysis but is used
in the �gure for the convenience of representing the x-axis.

A straightforward way of calculating the chroma features is to map
each bin of a short-time discrete Fourier transform to exactly one of the
twelve pitch classes C, C#, D, D#, E, F, F#, G, G#, A, A#, B, with no
overlap. A relatively long analysis frame is needed to get suf�cient res-
olution for the lower notes. In [P8] we use 186 ms frames. The energy is
calculated from a range of six octaves from C3 to B8 and summed to the
corresponding pitch classes. The chroma vectors are often normalized
by dividing each vector by its maximum value.

Another alternative for calculating the the chroma features is to use
a multiple fundamental frequency estimator to estimate the strength of
a range of F0 candidates, which are then folded to chroma bins. This
kind of approach was proposed by Paulus and Klapuri for music struc-
ture analysis in [136]. We apply their chroma analysis method as a
�rst step in musical accent feature estimation in [P7]. The input sig-
nal sampled at 44.1 kHz sampling rate and 16-bit resolution is �rst di-
vided into 93 ms frames with 50% overlap. In each frame, the salience,
or strength, of each F0 candidate is calculated as a weighted sum of
the amplitudes of its harmonic partials in a spectrally whitened signal
frame [98]. The range of fundamental frequencies used here is from
80 Hz to 640 Hz. Next, a transform is made into a musical frequency
scale having a resolution of 1/3rd of a semitone (36 bins per octave).
For each bin, only the maximum-salience fundamental frequency com-
ponent is retained. Finally the octave equivalence classes are summed
over the whole pitch range using a resolution of three bins per semitone
to produce a 36 dimensional chroma vector xb(k), where k is the frame
index and b = 1 ; 2; :::; b0 is the pitch class index, with b0 = 36.

There exist several variants for measuring information similar to
the chroma feature. The pitch class pro�le (PCP) is a synonym for the
chroma features [59]. Gomez calls her variant of the chroma feature
analysis the harmonic pitch class pro�le (HPCP) [63]. Purwins et al.
compute a twelve-dimensional chroma representation from the constant
Q transform ([23]) and call the features constant-Q pro�les [147]. The
constant-Q transform achieves a constant-Q resolution whereby time
resolution increases and frequency resolution decreases with increas-
ing frequency (Q denotes the ratio of frequency to resolution). Moreover,
the frequencies of the transform bins can be made to coincide with mu-
sical frequencies. The pitch histogram by Tzanetakis and Cook, which
is based on detecting and histogramming dominant pitches from the
output of a multiple F0 estimator, is also a closely related feature [172].

In music structure analysis, it is desired that the distance would
be high between different song segments (e.g. verse and chorus) and
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small between instances of the same segment (e.g. different repetitions
of the chorus). The chroma features reveal similarities in melody and
harmonic accompaniment between different sections of the song even
if the used instrumentation or lyrics would change between sections.
The MFCC features are sensitive for changing accompaniment between
different choruses and differences in lyrics at different instances of the
verse. Bartsch and Wake�eld reported that chroma features outperform
MFCC features in music thumbnailing [16]. Most current structure
analysis methods use chroma features and optionally augment them
with MFCC features or features describing the rhythm. Paulus and
Klapuri have presented a detailed study of the suitability of different
features for music structure analysis [135].

3.2.3 Self-similarity analysis

The next step is to calculate song self-similarity (or equivalently self-
distance). Various distance functions such as the Euclidean distance or
the cosine distance (inner product) can be used. Specialized distance
functions have been presented by Goto ([66]) and Lu et al. [118]. Before
distance calculation, the feature vectors are usually normalized, e.g., to
a mean of zero and standard deviation of one, or to a maximum element
of one.

The self-distance measurements can be represented in a self-distance
matrix (SDM). Figure 3.6 shows an example SDM for the song ”Super-
star” by Jamelia. Each entry D(i; j ) in the SDM represents the dis-
tance of the beat synchronous features of two time instances i and j
of the music �le. See details in publication [P8]. The song has four
choruses, which repeat with almost the same melodic, harmonic, and
instrumentation content, resulting in strong diagonal segments of low
self-distance into the SDM. A diagonal segment which starts at the
point (i; j ) and ends at (¶i; ¶j ) indicates that the musical segment which
starts at time i and ends at ¶i repeats starting at time j and ending at
time ¶j . The diagonal stripe is created to the SDM since the feature
vector sequences during these time intervals are similar.

There are also diagonal segments of low self similarity correspond-
ing to the verse, see e.g. the diagonal stripe before the stripe corre-
sponding to the repetition of choruses 1 and 2. In addition, there are
usually many short segments of low self-distance corresponding to re-
peated melodic and/or rhythmic phrasing.

If a song has varying tempo and constant-length analysis frames are
used, the diagonal stripes in the self-distance matrix will not be diag-
onal anymore but curved according to the tempo changes. Beat syn-
chronous feature segmentation will keep the stripes diagonal.

Bartsch and Wake�eld ([16]) and Goto ([66]) used a representation
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equivalent to the SDM called time-lag triangle. In the SDM both axes
represent time, in the time-lag triangle the axes are time and lag. The
matrix D(i; j ) can be converted to a time-lag triangle L(l ij ; j ) with l ij =
i ¡ j . The time-lag triangle transforms a diagonal repetition into a hor-
izontal constant-lag line.

3.2.4 Detecting repeating sections

The next step is to detect repeating segments from the SDM or time-lag
triangle. This is not a straightforward task since the diagonal stripes
corresponding to repetitions can be very weak when the features are
extracted from realistic audio recordings. A straightforward method
would be to binarize 2 the SDM using some known methods for image
binarization. However, the problem is that this will create many er-
roneous detected regions of small self-distance in locations where just
a few feature vectors happen to be similar to each other. A better al-
ternative is to utilize the knowledge that we are looking for diagonal
stripes of low self-distance. Bartsch and Wake�eld proposed to calcu-
late moving averages of the SDM values [16]. Goto proposed a two-stage
adaptive thresholding method where sums are calculated across the di-
agonals of the SDM, and adaptive thresholding is then applied to detect
a certain number of diagonals to be searched for repetitions [66]. The
�nal repetitions are searched using another adaptive thresholding on
the selected one-dimensional diagonal segments of the SDM. A slightly
varied version of this method is used in [P8]. Note that both Bartsch
and Wake�eld and Goto proposed the methods for the time-lag triangle,
but this is an equivalent representation to the SDM [65].

3.2.5 Grouping and labeling sections

Each diagonal segment in the SDM represents just a pair of repeated
sections. If a complete description for the musical pieces is desired,
next it is necessary to group the segments representing the same mu-
sical section. Cooper and Foote construct a segment level distance ma-
trix and apply the Singular Value Decomposition to cluster similar seg-
ments [36]. Goto groups together segments detected from the time-lag
triangle having close starting and ending points, and in addition uti-
lizes knowledge of already found segments to search for missing seg-
ments [66].

The remaining problem is how to assign meaningful labels to the
sections. Most studies have considered only labeling the chorus, and

2Binarization is an image processing operation during which an image consisting of
multiple shades of gray is converted to one having only two levels, black and white.
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used various heuristics, such as selecting the most often repeating sec-
tion as a chorus [66]. Ong presents an extension of the Goto method
to obtain a more complete segmentation [131]. Only few studies have
attempted full description including segmentation and assigning musi-
cally meaningful labels for the segments. Examples include Maddage
et al. who perform explicit segmentation into vocal & nonvocal sections
to aid structure analysis [121], and Paulus and Klapuri who proposed
using N-grams for automatic segment labeling [136].

3.2.6 Methods for music structure analysis

Table 3.2 summarizes selected research on music structure analysis and
chorus detection. This is not a complete listing but hopefully a repre-
sentative set of the various approaches. The methods are categorized
according to the features used and the main approach, ”sequence” or
”state”. In addition, the table lists the information produced by the sys-
tem. ”Thumbnail” means that the system produces a single representa-
tive section to be used as a thumbnail. Methods that produce segmen-
tation information return the boundaries of all musical parts, but with-
out musically meaningful labels such as intro, verse, chorus, bridge, or
outro. Some methods produce the boundaries of all parts but label only
e.g. the chorus, or the chorus and verse. The methods that produce a
complete description including segment boundaries and musical labels
for the parts can be considered the most advanced.

One of the �rst examples music thumbnail extraction using cluster-
ing was that of Logan and Chu [117]. Levy et al. propose a hierarchical
timbre model where a large HMM modeling different ”timbre types” of
music is �rst trained, and the most likely sequence of states is obtained
for a music �le by Viterbi decoding through this model [112, 111]. His-
tograms of the decoded sequence of states are then used to characterize
different musical sections. Rhodes et al. also use state occupancy his-
tograms as features and propose an explicit prior probability distribu-
tion for the section durations in a Bayesian structure analysis frame-
work [152].

Cooper & Foote [36] �rst calculate a self-distance matrix. Segment
boundaries are found by correlating a kernel along the diagonal of the
matrix. A segment-level SDM is them computed, and segments are clus-
tered by applying singular value decomposition (SVD) on the segment-
level SDM. Paulus and Klapuri present a related method where ini-
tial segments are �rst found by kernel correlation [136]. They de�ne
the probability that two segments belong to the same musical part as
a function of distances between segments, and then try to optimize a
probabilistic �tness measure for different segment description candi-
dates using these probabilities. Jensen solves the problem using the
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shortest path algorithm for the directed acyclic graph [86].
The use of the self-similarity representation for music structure anal-

ysis was proposed by Foote, who �rst considered using the matrix for
visualizing music and audio content [54]. Several methods have been
proposed to automatically extract structural information from the self-
distance matrix. Wellhausen & Crysandt used the MPEG-7 spectral
envelope features to calculate a similarity matrix and detected diagonal
line segments from it [178]. Chai used chroma features and proposed
distance function to overcome variations in the key between different oc-
currences of the same part [34]. Bartsch & Wake�eld [16] and Goto [66]
operated on an equivalent time-lag triangle representation.

Some methods apply classi�cation of music segments to help label-
ing. Lu et al. ([118]) and Maddage ([121]) use classi�cation between
instrumental / vocal sections as further cues for segment labeling. For
example, Lu et al. classify a segment as intro, bridge, or outro if it is
classi�ed as instrumental and depending on the temporal position.
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Table 3.2: Summary of selected research on music structure analysis
and chorus detection.

Author year ref. Features Approach Output

Foote 1999 [54] MFCC sequence visualization

Logan & Chu 2000 [117] MFCC state thumbnail

Dannenberg & Hu chroma or sequence segmentation

2002 [38] transcription

Peeters et al. 2002 [141] bandwise state segmentation

FFT

Cooper & Foote 2003 [36] MFCC state segmentation+

verse+chorus

Wellhausen & MPEG-7 sequence choruses

Crysandt 2003 [178] spect. env.

Lu et al. 2004 [118] CQT sequence segmentation+

intro+bridge+

outro

Bartsch & chroma sequence thumbnail

Wake�eld 2005 [16]

Chai 2005 [34] chroma sequence segmentation

Goto 2006 [66] chroma sequence choruses

Maddage 2006 [121] chroma+octave- state full description

scale cepstral

coef�cients

Eronen 2007 [P8] MFCC+chroma sequence thumbnail

Jensen 2007 [86] rhythmogram+ state segmentation

PLP+

chroma

Ong 2007 [131] HPCP sequence segmentation

Peeters 2007 [139] MFCC+ sequence segmentation

spect. contrast+

chroma

Levy & MPEG-7 state segmentation

Sandler 2008 [111] AudioSpec.Proj.

Paulus & MFCC+chroma+ state full description

Klapuri 2008 [136] rhythmogram
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Chapter 4

Applications

This Chapter discusses some applications of music content analysis, fo-
cusing on applications that can utilize the methods presented in this
thesis. We conclude with a brief discussion on where the analysis al-
gorithms should be run in a practical environment where the user has
computing devices connected to an online music service.

4.1 Music recommendation and search

Most of the commercial interest in the music information retrieval �eld
is probably targeted towards the problems of music recommendation
and automatic playlist generation. Here, the task can be de�ned for
example as follows: given an example song, return a list of songs with
similar characteristics. A question raises how well do methods based on
audio content only perform in returning similar songs. Finding similar
music based on content attributes has received plenty of research inter-
est, see e.g. [132]. A certain level of performance can be obtained using
audio information for music recommendation. However, there seems
to exist a ”glass ceiling” above which it is dif�cult to get using only
low-level signal features. The performance seems to saturate around
60%-70% of good matches [15].

Similar conclusions were obtained in a user study reported by Lehtiniemi
in [109]. For that study, the author of this thesis implemented a content-
based music recommendation method which utilized a similarity met-
ric proposed by Pampalk [132]. Mel-frequency cepstral coef�cients are
extracted from music �les and modeled with single-Gaussian densi-
ties with full covariance matrices. Song distance is calculated with
the Kullback-Leibler (KL) divergence between the Gaussian distribu-
tions. In addition, the rhythmic aspects of signals are modeled and com-
pared with the so-called �uctuation pattern feature which measures the
strength of amplitude modulation on a set of frequency bands. The �nal
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distance between music �les is a weighted sum of the timbral distance
returned by the KL divergence and the distance of the �uctuation pat-
tern features. To make the system scale to large music collections, a
clustering scheme was implemented where the distance between songs
is computed only within songs in the same cluster. The author imple-
mented the method into a prototype end-to-end mobile music service.
The users of the service were able to select a seed song and request
playlists of similar music to their mobile phone and stream the songs
over a network connection. The users were requested to vote whether
the returned song was similar to the seed song. On the average, 63%
of the songs were considered acceptable. The most annoying errors are
cross-genre confusions the system makes: e.g. some classical and jazz
songs are confused by the system, sometimes also music from the rap
and rock genres. Within some music types such as metal, the recom-
mendations based on content attributes only can be surprisingly good.
The general conclusion is that the content attributes need to be aug-
mented with higher level metadata such as genre and release year to
make the recommendations acceptable. This kind of song similarity is
not expected to suf�ce as the only source of music recommendations, but
can be used to e.g. provide recommendations to new content for which
there are not yet enough material to train a collaborative-�ltering ([73])
based music recommender.

4.2 Active music listening

Active music listening can be de�ned as a form of music enjoyment
where the listener has some control over the content besides basic trans-
port controls of play, stop, rewind, forward, and changing the song. For
example, in seamless playback or beat mixing the user may make tran-
sitions from one song to another while the system takes care of mixing
the song in a continuous fashion. Beat and possibly measure level anal-
ysis is utilized to time-synchronize the beats, and time stretching (or
pitch shifting) to align the tempos during the transition. In clubs and
discos professional DJs vary music tracks also by looping and rearrang-
ing them. However, DJ devices are expensive and have complicated
user interfaces making them unattractive for the public. The devices
may require manual preparation by adding loop points or segmenting
the music in advance. Some computer applications may offer a semi-
automatic approach consisting of automatic beat tracking followed by
a step where the user taps in the downbeats (for example, in Magix
Music Maker 10). The availability of fully automatic methods for ex-
tracting music rhythm information such as beats and measures from
musical �les can bring these functionalities to amateur listeners.
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Figure 4.1: A prototype music player interface with buttons for looping
and skipping measures in a beat synchronous manner.

One novel example of active music listening is presented here. The
ideas were originally presented by Timo Kosonen and the author in [102].
The idea in this music player concept is to allow the user to repeat parts
of the music �le in an easy manner. The user interface is depicted in Fig-
ure 4.1. A loop button has been included in addition to the traditional
music player controller buttons. When the user presses the loop button,
the system starts to loop the currently playing measure of the music.
The end result is an entertaining music listening experience especially
with electronic music, where the user may easily repeat parts of the �le
in order to e.g. make the music �le longer. For example, when a user
wishes to entertain his guests in a home party, he may make simple
DJ-like effects such as looping portions of music in an easy way.

Another technique examined in this prototype was to study whether
the listening experience during fast forward and rewind can be made
more pleasing by utilizing rhythm information. When the user enables
fast forward or rewind, the system will proceed as follows: it will �rst
render the currently playing beat until the end, and then skip to the
beginning of the next measure in the case of fast forward, or in the
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beginning of the previous measure if the user initiated rewind, and play
the �rst beat. Then it jumps again to another measure, plays the �rst
beat, and so on. The audible effect of this compared to the conventional
method of fast forward or rewind is that the user is able to hear the
tempo of the piece during fast forward or rewind.

Tzanetakis and Cook ([171]), Goto ([66]), and Boutard et al. ([22])
have studied a skip to section functionality for ef�cient music brows-
ing. Displaying musical sections with different colors and allowing the
user to skip between the sections help the user �nd a section of inter-
est within a music track. Wood and O'Keefe extended an open source
music player with a ”mood bar” that presents a graphical mapping of
a low-level feature along the music timeline [180]. However, their pub-
lications do not discuss using musical meter for intra-track skipping.
Moreover, their implementations do not keep the music playback con-
tinuous when the user presses a skip button; their implementations
may be good choices, if the goal is only to allow the user to locate a sec-
tion of interest quickly. The focus of the presented active music listening
interface is more on entertainment; we want to make intra-track music
browsing more pleasing by preserving the rhythm sensation, and allow
the user to focus on a particular section by a looping functionality.

4.3 Music variations and ring tone extraction

Jehan has presented methods to manipulate music recordings, for ex-
ample, by creating ”music textures” that continue in�nitely by concate-
nating music track segments, pieces of music tracks between onsets,
with a similar metrical location [83]. For example, a music track seg-
ment occurring on a downbeat is a candidate for occurring on a down-
beat in the extended music texture. The presented music player inter-
face did not utilize segmentation into the sound onset level but created
longer versions of music tracks by repeating full measures or varied ver-
sions of music tracks by changing the playback order of measures or full
beats.

The bottom part of the user interface in Figure 4.1 has simple con-
trols for recording the playback order of the song. During or before
playback, the user may press record and the system records which mu-
sical segments (beats and measures) are rendered and in which order.
This allows the user to record a personalized version of a song by loop-
ing some segments, or to record only a part of the song to be used as
a personalized ring tone. The idea in the player interface is that the
variation is not stored as audio �le but as metadata: a simple metadata
format indexing the beats, measures, and sections of the songs can be
used to store the variations in a compact way.
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Figure 4.2: A prototype tool for visualizing, listening, and �xing auto-
matically analyzed chorus segments for ring tone use.

One of the interesting uses for chorus detection is automatic extrac-
tion of ring tone segments from arbitrary music �les. The chorus is
often the most catchiest and memorable part of a song and thus suit-
able to be used as a ring tone. However, as the analysis methods are
not perfect and especially determining the accurate boundaries of the
chorus start and end section is challenging (see details in [P8]), there
may be a need for tools to perform further adjustments to the analyzed
chorus section. Figure 4.2 presents a prototype user interface developed
by Timo Kosonen and the author which can be used to visualize, listen
to, and correct chorus section analysis results. The motivation of this
interface was twofold: to operate as a chorus annotation tool to pro-
vide evaluation material for the algorithm, and to test the feasibility of
a semiautomatic ring tone creation scheme where an algorithm is run
�rst and then a manual inspection is done to verify the result.

The user interface provides mechanisms to make checking the suit-
ability of the chorus section as a ring tone very fast. With the press
of the space bar, the operator can start playing the chorus section from
the beginning. Special buttons exist to adjust the beginning and end of
the chorus section backward and forward. Moreover, when moving the
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location of the chorus section, the system automatically quantizes the
start to the nearest beat. This makes it possible to very fast adjust the
location so that the sample beginning remains continuous and does not
cause clicks: the playback can often be started in the beginning of a full
beat in a smooth manner.

4.4 A note on practical implementations

Considering practical mobile music services and applications that use
automatically analyzed music metadata, there are several alternatives
on where the analysis algorithms should be run. It is possible to run
analysis the on the mobile device for the user's music �les. The bene�t
of this is that it does not matter where the material has come from,
the same analysis can be performed for over-the-air (OTA) downloaded
content or content transferred from a PC, or even content recorded with
the mobile computer. However, the analysis consumes battery power,
more complex algorithms are slow to run on current devices, and, if
the content is protected with some digital rights management (DRM)
technology, the audio waveform may not be accessible.

There are certain applications where it is convenient to perform the
analysis on the mobile computer. One example are various beat syn-
chronized visualizations where changes in the graphics are synchro-
nized to the beat of the music. In this case the beat tracking can be
performed in real time during the music playback and rendering of the
visualization. For beat tracking this is feasible as it can be performed
computationally ef�ciently while maintaining suf�cient analysis accu-
racy, as is demonstrated in publication [P6].

Another alternative is to run analyzers on the user's personal com-
puter (PC). There we have more computing power than on the mobile
terminal. However, the disadvantage is that songs downloaded OTA to
the mobile device would have to be separately transferred to the PC for
analysis, and then the analysis results synchronized back to the mobile
device. In addition, this requires that the user has an additional device
in addition to the mobile phone to be able to use those features of the
application that require the metadata.

A good place to run the analysis is on the servers of a music service
or a speci�c metadata provider. This has the bene�t of having to run
the analysis only once on each music �le, and the analysis results can
be delivered to each user needing the �le metadata. The metadata can
be downloaded speci�cally to the mobile computer or PC, or it can be
attached to the header section when downloading the �les. On a ser-
vice, we can utilize parallelism and huge computer farms to run even
complex analyzes to large catalogues. In addition, since many music
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feature extractors are still in their very early stages and provide in-
formation that is semantically on a low level, there is the possibility
to create part of the metadata manually by employing human experts.
The process could even be a semiautomatic one where an automatic an-
alyzer is run �rst, and then a human operator checks the results. One
of the purposes of the tool presented in �gure 4.2 was to test this kind
of a semiautomatic process. The problem is, however, that the cost will
be at a signi�cantly higher level compared to fully automatic processes
if we need to include a step where a human operator is needed.

A challenge when providing metadata from a service is that one
needs a reliable mechanism to identify user's own music �les such that
metadata can be downloaded for those. Audio �ngerprinting ([30][29])
is the only reliable solution, but this again consumes battery power. A
problem occurs with non-commercial content such as user-created mixes
or amateur production that are not found in the catalogue. A solution
to this would be to send the content from the mobile terminal to the ser-
vice for analysis but this consumes the scarce upstream network band-
width. However, we have already seen the �rst services that provide
analyses for user's own �les, see The Analyze API by the Echonest cor-
poration [7].
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Chapter 5

Conlusions and future
work

5.1 Conclusions

This thesis presented several methods for audio classi�cation and mu-
sic content analysis. As suggested by human timbre perception experi-
ments, utilizing both spectral and temporal information is bene�cial in
musical instrument classi�cation. A wide set of features was proposed
and implemented in publication [P1] resulting in very good performance
on the McGill University Master samples collection. Furthermore, ex-
periments were carried out to investigate the potential advantage of a
hierarchically structured classi�er, from which we could not obtain ben-
e�ts in terms of classi�cation performance.

In [P2], we studied the importance of different features for musi-
cal instrument recognition in detail. Warped linear prediction based
features proved to be successful in the automatic recognition of musi-
cal instrument solo tones, and resulted in better accuracy than what
was obtained with corresponding conventional LP based features. The
mel-frequency cepstral coef�cients gave the best accuracy in instrument
family classi�cation, and would be the selection also for the sake of
computational complexity. The best overall accuracy was obtained by
augmenting the mel-cepstral coef�cients with features describing the
type of excitation, brightness, modulations, synchronity and fundamen-
tal frequency of tones. However, a problem remains on how to gener-
alize across instruments and recording locations: as more than one ex-
ample of an instrument are included in the evaluation the performance
of the system signi�cantly drops. This effect is evident from the per-
formance evaluations in [P2] where the overall accuracy is signi�cantly
lower than in [P1].

The use of left-right hidden Markov models for instrument note mod-
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eling was proposed in publication [P3]. In addition, we studied two
computationally attractive methods to improve the performance of the
system: using linear transforms to transform catenated MFCC and
¢ MFCC coef�cients and discriminative training of the HMMs. Trans-
forming the features to a base with maximal statistical independence
using independent component analysis can give an improvement of 9
percentage points in recognition accuracy in musical instrument classi-
�cation. Discriminative training of HMMs can improve the performance
when using models with a small number of states and component den-
sities.

The audio classi�cation system proposed in [P3] is generic and was
applied to audio-based context recognition in [P4]. Contrary to musi-
cal instrument sounds, no clear bene�t is obtained by using linear fea-
ture transforms when classifying environmental sounds. Discrimina-
tive training can be used to improve the accuracy when using very low-
order HMMs as context models, which may be necessary on resource
constrained mobile devices.

The general conclusion from [P4] is that building context aware ap-
plications using audio is feasible, especially when high-level contexts
are concerned. In comparison with the human ability, the proposed sys-
tem performs rather well (58% versus 69% for contexts and 82% versus
88% for high-level classes for the system and humans, respectively).
Both the system and humans tend to make similar confusions mainly
within the high-level categories. The recognition rate as a function of
the test sequence length appears to converge only after about 30 to 60s.
This poses a challenge for automatic systems since we would like to
minimize the amount of time the feature extractor is running to save
the battery power.

Publications [P5] to [P7] present several methods for music meter
analysis. Publication [P5] presents a complete meter analysis system
which performs the analysis jointly at three different time scales. The
probabilistic model represents primitive musical knowledge and is ca-
pable of performing joint estimation of the tatum, tactus, and measure
pulses. Several assumptions and approximations were presented to ob-
tain reasonable model parameters with limited amount of training data.
The system won the ISMIR 2004 and MIREX 2006 tempo induction con-
tests.

Publication [P6] presented a computationally ef�cient method for
beat and tatum estimation. A simpli�ed back-end for beat and tatum
tracking was presented. The computationally intensive bank of comb-
�lter resonators was substituted with a discrete cosine transform peri-
odicity analysis and adaptive comb �ltering. The back-end incorporated
similar primitive musicological knowledge as the method presented in
cite [P5], but with signi�cantly less computational load. A novel method
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based on adaptive comb-�ltering was presented for beat phase estima-
tion. Complexity evaluation showed that the computational cost was
less than 1% of two reference methods. A real-time implementation of
the method for the S60 smartphone platform was written.

The regression approach for tempo estimation proposed in [P7] was
found to be superior compared to peak picking techniques applied on
the periodicity vectors as is done e.g. in [P5] and [P7]. We conclude that
most of the improvement is attributed to the regression based tempo es-
timator with a smaller contribution to the proposed F0-salience chroma
accent features and GACF periodicity estimation, as there is no statis-
tically signi�cant difference in error rate when the accent features used
in [P5] are combined with the proposed tempo estimator. In addition,
the proposed regression approach is straightforward to implement and
requires no explicit prior distribution for the tempo as the prior is im-
plicitly included in the distribution of the k-NN training data vectors.
The accuracy degrades gracefully when the size of the training data is
reduced.

In publication [P8] we presented a computationally ef�cient and ro-
bust method for chorus section detection. The method analyzed song
self distance by summing the self-distance matrices based on the MFCC
and chroma features. A scoring method for selecting the chorus section
from several candidates was proposed. In addition, a method utilizing
a matched �lter for re�ning the location of the �nal chorus section was
proposed. The method provides accuracies suf�cient for practical appli-
cations while being fast to compute.

A motivation for our research has been to study which music descrip-
tors can be estimated robustly enough for practical applications. Tempo
and chorus section estimation accuracies reach a level of 80% or beyond
which starts to be suf�cient for practical applications, such as active lis-
tening or music search. Music tempo perception is ambiguous also for
human subjects which makes it possible that we are approaching the
practical limits of obtainable performance. The chorus detector is ap-
plicable to music preview and thumbnailing for popular and rock music
especially if a fade-in and fade-out is applied at the chorus boundaries.
For automatic ring tone segment analysis there are more strict require-
ments for the beginning and end of the segment, and the performance is
not yet suf�cient. A semiautomatic annotation interface was presented
in section 4.3 as one possible solution.

In many methods special emphasis was put on keeping the meth-
ods computationally ef�cient. In section 4.4 we discussed the bene�ts
and disadvantages of alternative locations for running automatic music
content analyzers: these are a mobile device, a PC computer, or a ded-
icated centralized server. Irrespective of where the analyzers are run,
computational ef�ciency is important. On a mobile device it is vital in
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order to keep the battery consumption low, on a PC computer an impor-
tant part of the user experience is created by the application responding
fast, and on a server we need to analyze catalogues of several million
�les. Publications [P3] and [P4] proposed the linear feature transforms
and discriminative training of HMMs as potential sources for improve-
ment in non-speech audio classi�cation tasks with negligible additional
computational cost in the on-line classi�cation stage. Publication [P6]
demonstrated how the performance of a beat tracking system can be
kept at a good level while making a drastic reduction in computational
cost. Publication [P8] presents a method for chorus detection which per-
formed well and runs fast enough for processing catalogues of music of
the size of several million tracks.

5.2 Future work

The music content analysis methods presented in this thesis, as most
other methods developed to date, operate only on the audio signal. We
expect that subdomain speci�c music content descriptors, e.g. special
methods for jazz, classical, pop and rock genres may be necessary to
further boost the performance to a level needed by practical applica-
tions. On a general level, we should study ways to leverage existing
textual metadata such as genre, style, or textual information from e.g.
record reviews to obtain more robust analysis of music content. In ad-
dition, automatic synchronization of MIDI �les to corresponding audio
�les may be an interesting approach to e.g. perform tempo analysis for
classical music.

Context-awareness using audio is a challenging topic but automatic
systems can approach the human ability as was demonstrated in [P4].
Future research will need to answer the question on whether audio-
based context sensing is useful in more general use cases and appli-
cation scenarios, implementing the methods in power-ef�cient ways on
mobile devices, and combining the various sensory information in an
optimal manner. In addition, we need to solve the problems related to
frictional noises when the device is being carried in bags and purses.
So far the research has been done on clean recordings, next we need to
analyze the performance on audio collected in realistic usage scenarios.

In musical instrument recognition, the challenge is to perform reli-
able recognition or instrument labeling in polyphonic mixtures. We be-
lieve that one of the most potential research directions is using partially
labeled data as suggested by [114]. This stems mainly from the practi-
cal dif�culty of obtaining fully segmented and labeled training material.
An interesting approach would be to test this approach on really large
databases where the presence of a certain instrument is indicated in the
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title of the track or album, or collect this information as user tags from a
music service. In addition, considering practical applications being able
to label the most dominant instrument may be suf�cient, without hav-
ing to identify all the instruments in a mixture. This would facilitate
�nding music with piano, or music with blues guitar and so on.

In music meter analysis, algorithm accuracy in tempo estimation
starts to be suf�cient for practical applications. Remaining main chal-
lenges are in beat phase estimation, and especially measure phase es-
timation. Estimation of the phase is important in applications where
something needs to be synchronized to the tempo. One approach to im-
prove phase estimation is the utilization of harmonic information in an
ef�cient manner. The regression approach proposed in [P7] might be
applicable to phase estimation as well.
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Errata and Clari�cations
for the Publications

5.3 Publication [P1]

In Chapter 3: ”Traditionally, the features provided by the timbre re-
search can be divided into spectral and temporal ones. In instrument
recognition systems reported so far, only features of either type have
been used.” The latter sentence is not correct. At that point, earlier re-
search had used both spectral and temporal features, see e.g. [85, 103].
But to our knowledge, none of the systems had combined cepstral coef-
�cients with other spectral and temporal features, which is proposed in
the paper.

In Figure 3, the saxophones are erroneously depicted as brass in-
struments. Although nowadays made of brass, the saxophones are sin-
gle reed instruments with a conical bore. The family classi�cation re-
sults in Table 2 are also done with saxophones in the brass family. This
does not change the conclusions based on the paper.

5.4 Publication [P6]

In the Abstract, the sentence ”Complexity evaluation showed that the
computational cost is less than 1% of earlier methods.” should be changed
to ”Complexity evaluation showed that the computational cost is less
than 1% of two earlier methods.”.

5.5 Publication [P8]

In the Introduction, the sentence ”Similarity-matrix based approaches
include the ones by Wellhausen & Crysandt [5] and Cooper & Foote [6].”
should be changed to ”An example of a similarity-matrix based approach
is the one by Wellhausen & Crysandt [5]”. The Cooper & Foote method
should be categorized as ”state” approach, see 3.2.
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ABSTRACT

In this paper, a system for pitch independent musical instrument
recognition is presented. A wide set of features covering both
spectral and temporal properties of sounds was investigated, and
their extraction algorithms were designed. The usefulness of the
features was validated using test data that consisted of 1498 sam-
ples covering the full pitch ranges of 30 orchestral instruments
from the string, brass and woodwind families, played with differ-
ent techniques. The correct instrument family was recognized
with 94% accuracy and individual instruments in 80% of cases.
These results are compared to those reported in other work. Also,
utilization of a hierarchical classiÞcation framework is consid-
ered.

1.  INTRODUCTION

Music content analysis in general has many practical applications,
including e.g. structured coding, database retrieval systems, auto-
matic musical signal annotation, and musiciansÕ tools. A subtask
of this, automatic musical instrument identiÞcation, is of signiÞ-
cant importance in solving these problems, and is likely to pro-
vide useful information also in other sound source identiÞcation
applications, such as speaker recognition. However, musical sig-
nal analysis has has not been able to attain as much commercial
interest as, for instance, speaker and speech recognition. This is
because the topics around speech processing are more readily
commercially applicable, although both areas are considered as
being highly complicated.

First attempts in musical instrument recognition operated with a
very limited number of instruments and note ranges. De Poli and
Prandoni used mel-frequency cepstrum coefÞcients calculated
from isolated tones as an inputs to a Kohonen self-organizing
map, in order to construct timbre spaces [2]. Kaminsky and
Materka used features derived from an rms-energy envelope and
used a neural network or a k-nearest neighbour classiÞer to clas-
sify guitar, piano, marimba and accordion tones over a one-octave
band [5].

The recent systems have already shown a considerable level of
performance, but have still been able to cope with only a quite
limited amount of test data. In [7], Martin reported a system that
operates on single isolated tones played over the full pitch ranges
of 15 orchestral instruments and uses a hierarchical classiÞcation
framework. Brown [1] and Martin [8] have managed to build clas-
siÞers that are able to operate on test data that include samples
played by several different instruments of a particular instrument
class, and recorded in environments which are noisy and reverber-

ant. However, even the recent systems are characterized eithe
a limited application context or by a rather unsatisfactory pe
formance.

In this paper, we aim at utilizing a widest range of features cha
acterizing the different properties of sounds. This is done in ord
to handle a certain defect in the earlier proposed systems: fail
to make simultaneous and effective use of both spectral and te
poral features, which is suggested by the work in psychoaco
tics. Signal processing methods were implemented that attemp
extract cues about the temporal development, modulation prop
ties, irregularities, formant structure, brightness, and spectral s
chronicity of sounds. Although all the factors in sound sourc
identiÞcation, and especially their interrelations are not known
large number of them have been proposed. Thus it looked parti
larly attractive for us to utilize as much as possible of that info
mation simultaneously in a recognition system, and to see if th
would allow us to build a more robust instrument recognition sy
tem than described in experiments so far.

Our current implementation handles the isolated tone conditi
well, and we are hoping that it will generalize to still more realis
tic contexts. A practical goal of our research is to build an instr
ment recognition module that can be integrated to an automa
transcription system [6].

This paper is organized as follows. In Section 2, we short
review the literature in sound source identiÞcation and percepti
In Section 3, we Þrst take a look at the features used in instrum
recognition systems and discuss the approach taken in this pa
Then we describe our feature extraction algorithms. In Section
the selected features are validated with thorough simulations a
the classiÞcation results are compared to those of earlier stud

2.  DIMENSIONS OF TIMBRE

A considerable amount of effort has been done in order to Þnd
perceptual dimensions oftimbre, the ÔcolourÕ of a sound. Ofte
these studies have involved multidimensional scaling expe
ments, where a set of sound stimuli is presented to subjects, w
then give a rating to their similarity or dissimilarity. On the basi
of these judgements a low-dimensional space, which best acco
modates the similarity ratings, is constructed and a perceptua
acoustic interpretation is searched for these dimensions.

Two of the main dimensions described in these experiments h
usually been spectral centroid and rise time [3][9]. The Þrst me
ures the spectral energy distribution in the steady state portion
a tone, which corresponds to perceived brightness. The secon
the time between the onset and the instant of maximal amplitu
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The psychophysical meaning of the third dimension has varied,
but it has often related to temporal variations or irregularity in the
spectral envelope. A good review over the enormous body of tim-
bre perception literature can be found in [4]. These available
results provide a good starting point for the search of features to
be used in musical instrument recognition systems.

3.  CALCULATION OF FEATURES

Traditionally, the features provided by the timbre research can be
divided into spectral and temporal ones. In instrument recognition
systems reported so far, only features of either type have been
used. For instance, Kaminsky and Materka used temporal features
derived from a short time rms-energy envelope [5]. In the research
of Martin [7][8], a selection of temporal features calculated from
the outputs of a log-lag correllogram was used, but the spectral
shape was not considered at all. Brown reports good results been
achieved with cepstral coefÞcients calculated from oboe and sax-
ophone samples [1]. She used mel-frequency cepstrum coefÞ-
cients from 23 ms frames, which were then grouped into one or
three clusters.

We wanted to test if combining the two types of features, cepstral
coefÞcients and temporal features, would yield the necessary

extra discriminating power needed for instrument recognitio
with a wider set of instruments. The feature set we used is p
sented in Table 1.

3.1 Feature extraction methods
The short-time rms-energy envelope contains information es
cially about the duration of excitation. We estimated rise-tim
decay-time, strenght and frequency of amplitude modulatio
crest factor and detected exponential decay from the rms-ene
curve calculated in 50% overlapping 10ms frames.

The spectral centroid of the signal is calculated over time in 20m
windows. At each window, the rms-energy of the spectrum is es
mated using logarithmic frequency resolution. After that, th
spectral centroid is calculated. We use both the absolute value
spectral centroid and a normalized value, which is the absol
value divided by the fundamental frequency. The fundamen
frequency estimation method used here is the one presented
Klapuri in [6].

Sinusoid track representation provides many useful temporal f
tures. We Þrst calculate the harmonic amplitude on each of B
scale bands, which resemble the frequency resolution of the co
lea. Knowledge about the fundamental frequency is applied

Table 1: Feature descriptions
1 Rise time, i.e., the duration of attack
2 Slope of line Þtted into rms-energy curve after attack
3 Mean square error of line Þt in 2
4 Decay time
5 Time between the end of attack and the maximum of

rms-energy
6 Crest factor, i.e.,max / rms of amplitude
7 Maximum of normalized spectral centroid
8 Mean of normalized spectral centroid
9 Mean of spectral centroid
10 Standard deviation of spectral centroid
11 Standard deviation of normalized spectral centroid
12 Frequency of amplitude modulation, range 4-8Hz
13 Strength of amplitude modulation, range 4-8Hz
14 Heuristic strength of the amplitude modulation in

range 4-8Hz
15 Frequency of amplitude modulation, range 10-40Hz
16 Strength of amplitude modulation, range 10-40Hz
17 Standard deviation of rise times at each Bark band
18 Mean error of the Þt between each of steady state

intensities and mean steady state intensity
19 Mean error of Þt between each of onset intensities

and mean onset intensity
20 Overall variation of intensities at each band
21 Fundamental frequency
22 Standard deviation of fundamental frequency

23-33 Average cepstral coefÞcients during onset
34-44 Average cepstral coefÞcients after onset
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Figure 2. Clarinet tone: intensities as a function of Bark fre-
quency plot. At the low end of clarinet playing range the
odd partials are much stronger than the even partials.

Figure 1.Flute tone: intensities as a function of Bark fre-
quency. Especially amplitude modulation can be seen clear
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order to resolve whether any harmonics are found on each band.
The amplitude envelopes of single harmonic frequencies can be
calculated efÞciently with anO(n) algorithm, wheren is the sam-
ple length. If more than one harmonic frequencies are found, then
amplitude envelopes are calculated separately and the resulting
band-amplitude is the mean of these. The band-wise intensity is
calculated by multiplying the amplitude by the center frequency
of the band.

The intensities are decimated by a factor of about 5ms to ease the
following computations and smoothed by convolving with a 40ms
half-hanning (raised-cosine) window. This window preserves sud-
den changes, but masks rapid modulation. Figures 1 and 2 display
intensity versus Bark frequency plots for 261Hz tones produced
by ßute and clarinet, respectively.

When the intensity matrix is calculated, a number of features can
be easily extracted. The similarity of shape between intensity
envelopes is measured by Þtting the envelopes into a mean enve-
lope and calculating the mean of mean squre errors. This is done
separately for the onset period and the rest of the waveform. The
error value of the onset period, accompanied with the standard
deviation of bandwise rise times, can be considered as a measure
of onset asynchrony. Another measure that can be extracted from
the intensity envelope curves is the overall variation of intensities
at each band.

The spectral shape of tones is modelled with cepstral coefÞcients,
which are calculated with a method adapted from an automatic
speech recognition system described in [11]. Calculation proce-
dure is done in 25% overlapping windowed frames of size
approximately 20ms. Autocorrelation sequence is calculated Þrst
and then used for LPC coefÞcient calculation with Levinson-
Durbin algorithm. LPC coefÞcients are then converted into ceps-
tral coefÞcients, which have been found to be a robust feature set
for use in speech and instrument recognition [1]. We used two sets
of 11 coefÞcients, averaged over the onset and the rest of the sam-
ple.

4.  CLASSIFICATION

Musical instruments form a natural hierarchy, which includes dif-
ferent instrument families. In many applications, classiÞcation
down to the level of instrument families is sufÞcient for practical
needs. For example, searching a database to Þnd string music
would make sense. In addition to that, a classiÞer may utilize a
hierarchical structure algorithmically while assigning a sound into
a lowest level class, individual instrument. This has been pro-
posed and used by Martin in [7][8]. In the following, we give a
short review of his principles. At the top level of the taxonomy,
instruments are divided into pizzicato and sustained. Second level
comprises instrument families, and the bottom level individual
instruments. ClassiÞcation occurs at each node, applying knowl-
edge of the best features to distinguish between possible sub-
classes. This way of processing is suggested to have some
advantages over direct classiÞcation at the lowest end of the tax-
onomy, because the decision process may be simpliÞed to take
into account only the small number of possible subclasses.

In our system, at each node a Gaussian or a k-NN classiÞer
used with a Þxed set of features. The Gaussian classiÞer tur
out to yield the best results at the highest level, where the num
of classes is two. At the lower levels, k-NN classiÞer was use
Bad features are likely to decrease classifying performan
which makes evaluating the salience of each feature essential.
features used at a node were selected manually by monitoring
ture values of possible subclasses. This was done one feature
time, and only the features making clear distinction were includ
into the feature set of the node.

We implemented a classiÞcation hierarchy similar to that pr
sented by Martin in [7], with the exception that his samples an
taxonomy did not include piano. In our system the piano w
assigned to an own family node because of having a unique se
some features, especially cepstral coefÞcients. According to M
tin, classiÞcation performance was better if the reeds and
brass were Þrst processed as one family and separated at the
stage. We wanted to test this with our own feature set and test d
and tried the taxonomy with and without the Brass or Reeds no
which is marked with a Ô*Õ in Figure 3.

5.  RESULTS

Our validation database consisted of 1498 solo tones covering
entire pitch ranges of 30 orchestral instruments with several ar
ulation styles (e.g. pizzicato, martele, bowed, muted, ßutter),
illustrated in Figure 3. All tones were from the McGill Maste
Samples collection [10], except the piano and quitar tones wh
were played by amateur musicians and recorded with a D
recorder. In order to achieve comparable results to those descri
by Martin in [7], similar way of cross validation with 70% / 30%
splits of train and test data was used. A difference to the meth
of Martin was to estimate the fundamental frequency of the te
sample before classiÞcation, which was then compared to
pitch ranges of different instruments, taking only the possib
ones into classiÞcation.

In Table 2, we present the classiÞcation results made in the th
different ways. Hierarchy 1 is the taxonomy of Figure 6 withou
the Brass or Reeds node. In the No-hierarchy experiment class
cation was made separately for each classiÞcation level. The H
archy 2 proved out to yield slightly better results, like Martin
reported in [7]. But interestingly, in our experiments, the dire
classiÞcation at each level performed best at both tasks, wh
was not the case in MartinÕs experiments where the Hierarch
yielded the best results. At the current implementation, classiÞ
tion result at the lower level of hierarchy is totally dependent o
the results of the higher levels, and the error cumulates as the c
siÞcation proceeds.

Table 2: ClassiÞcation results

Hierarchy 1 Hierarchy 2
No

hierarchy

Pizzicato / sustained 99.0% 99.0% 99.0%
Instrument families 93.0% 94.0% 94.7%
Individual
instruments

74.9% 75.8% 80.6%
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No signiÞcant advantage was achieved with hierarchical classiÞ-
cation. Perhaps the biggest beneÞt of hierarchical approach would
be got if more than one possible choises at each node were taken
into account and the salience of the features was automatically
evaluated. ClassiÞcation of this kind has been used in [8].

The achieved performance both in instrument family and individ-
ual instrument classiÞcation was better than reported by Martin in
[7]. His systemÕs classiÞcation accuracies were approximately
90% in instrument family and 70% with individual instruments,
while the data set consisted 1023 samples of 15 different instru-
ments, being a subset of our data. Comparison to other systems is
not reasonable because of the different amount of instruments or
different method of performance evaluation used [1][5][8].

6.  CONCLUSIONS

A system for musical instrument recognition was presented that
uses a wide set of features to model the temporal and spectral
charactreristics of sounds. Signal processing algorithms were
designed to measure these features in acoustic signals. Using this
input data, a classiÞer was constructed and the usefulness of the
features was veriÞed. Furthermore, experiments were carried out
to investigate the potential advantage of a hierarchically struc-
tured classiÞer.

The achieved performance and comparison to earlier results dem-
onstrates that combining the different types of features succeeded
in capturing some extra knowlege about the instrument properties.
Hierarchical structure could not bring further beneÞts, but its full
potential should be reconsidered when a wider data set including
more instruments, as well as different examples from a particular
instrument class is available. Future work will concentrate on
these areas, and on integrating the recognizer into a system that is
able to process more complex sound mixtures.
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Instrument

SustainedPizzicato

Strings Reeds BrassPiano Strings Flute or

Brass or *
Reeds

Guitar
Violin
Viola
Cello
Double

Violin
Viola
Cello
Double

Bass Flute
Alto Flute
Flute
Piccolo

Contra Bassoon
Bassoon
Contrabass Clarinet
Bass Clarinet
Bb Clarinet
Eb Clarinet
Oboe

English Horn
French Horn
Bass Trombone
Alto Trombone
Tenor Trombone
Trumpet
Bach Trumpet
Tuba
Bass Sax
Baritone Sax
Tenor Sax
Alto Sax
Soprano Sax

Piano

Piccolo

Figure 3.The taxonomy presented by Martin in [7] with the exception that the Piano node is added.
Instrument families are bolded, and individual instruments are listed at the bottom level.
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ABSTRACT

Several features were compared with regard to recognition per-
formance in a musical instrument recognition system. Both mel-
frequency and linear prediction cepstral and delta cepstral coefÞ-
cients were calculated. Linear prediction analysis was carried out
both on a uniform and a warped frequency scale, and reßection
coefÞcients were also used as features. The performance of earlier
described features relating to the temporal development, modula-
tion properties, brightness, and spectral synchronity of sounds
was also analysed. The data base consisted of 5286 acoustic and
synthetic solo tones from 29 different Western orchestral instru-
ments, out of which 16 instruments were included in the test set.
The best performance for solo tone recognition, 35% for individ-
ual instruments and 77% for families, was obtained with a feature
set consisting of two sets of mel-frequency cepstral coefÞcients
and a subset of the other analysed features. The confusions made
by the system were analysed and compared to results reported in a
human perception experiment.

1.  INTRODUCTION

Automatic musical instrument recognition is a fascinating and
essential subproblem in music indexing, retrieval, and automatic
transcription. It is closely related to computational auditory scene
analysis. However, musical instrument recognition has not
received as much research interest as speaker recognition, for
instance.

The implemented musical instrument recognition systems
still have limited practical usability. Brown has reported a system
that is able to recognize four woodwind instruments from mono-
phonic recordings with a performance comparable to that of
humanÕs [1]. MartinÕs system recognized a wider set of instru-
ments, although it did not perform as well as human subjects in a
similar task [2].

This paper continues the work presented in [3] by using new
cepstral features and introducing a signiÞcant extension to the
evaluation data. The research focuses on comparing different fea-
tures with regard of recognition accuracy in a solo tone recogni-
tion task. First, we analyse different cepstral features that are
based either on linear prediction (LP) or Þlterbank analysis. Both
conventional LP having uniform frequency resolution and more
psychoacoustically motivated warped linear prediction (WLP) are
used. WLP based features have not been used for musical instru-
ment recognition before. Second, other features are analysed that
are related to the temporal development, modulation properties,
brightness, and spectral synchronity of sounds.

The evaluation database is extended to include several exam-
ples of a particular instrument. Both acoustic and synthetic iso-
lated notes of 16 Western orchestral instruments are used for
testing, whereas the training data includes examples of 29 instru-

ments. The performance of the system and the confusions
makes are compared to the results reported in a human percep
experiment, which used a subset of the same data as stimuli [

2.  FEATURE EXTRACTION

2.1. Cepstral features

For isolated musical tones, the onset has been found to
important for recognition by human subjects [4]. Motivated b
this, the cepstral analyses are made separately for the onset
steady state segments of a tone. Based on the root mean sq
(RMS) -energy level of the signal, each tone is segmented in
onset and steady state segments. The steady state begins whe
signal achieves its average RMS-energy level for the Þrst tim
and the onset segment is the 10 dB rise before this point.

For the onset portion of tones, both LP and Þlterbank analy
were performed in approximately 20 ms length hamming wi
dowed frames with 25% overlap. In the steady state segme
frame length of 40 ms was used. If the onset was shorter than
ms, the beginning of steady state was moved forward so tha
least 80 ms was analysed. Prior to the analyses, each acoustic
nal was preemphasized with the high pass Þlter
ßatten the spectrum.

The LP coefÞcients were obtained from an all-pole appro
mation of the windowed waveform, and were computed using t
autocorrelation method. In the calculation of the WLP coefÞ
cients, the frequency warping transformation was obtained
replacing the unit delays of the predicting Þlter with Þrst-ord
all-pass elements. In thez-domain this can be interpreted by the
mapping

. (1)

In the implementation this means replacing the autocorre
tion network with a warped autocorrelation network [5]. Th
parameterl is selected in such a way that the resulting frequen
mapping approximates the desired frequency scale. By selec
l =0.7564 for 44.1 kHz samples, a Bark scale approximation w
obtained [6]. Finally, the obtained linear prediction coefÞcientsan
are transformed into cepstral coefÞcientscn with the recursion [7,
pp. 163]

. (2)

The number of cepstral coefÞcients was equal to the analy
order after the zeroth coefÞcient, which is a function of the cha
nel gain, was discarded.

For the mel-frequency cepstral coefÞcient (MFCC) calcul
tions, a discrete Fourier transform was Þrst calculated for the w

1 0.97z 1ÐÐ,

z 1Ð z÷ 1Ð® z 1Ð lÐ

1 l z 1ÐÐ
--------------------=

cn anÐ 1
n
--- kckan kÐ

k 1=

n 1Ð

åÐ=
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dowed waveform. The length of the transform was 1024 or 2048
point for 20 ms and 40 ms frames, respectively. 40 triangular
bandpass Þlters having equal bandwith on the mel-frequency
scale were simulated, and the MFCCs were calculated from the
log Þlterbank amplitudes using a shifted discrete cosine transform
[7, p.189].

In all cases, the median values of cepstral coefÞcients were
stored for the onset and steady state segments. Delta cepstral
coefÞcients were calculated by Þtting a Þrst order polynomial
over the cepstral trajectories. For the delta-cepstral coefÞcients,
the median of their absolute value was calculated. We also experi-
mented with coefÞcient standard deviations in the case of the
MFCCs.

2.2. Spectral and temporal features

Calculation of the other features analysed in this study has
been described in [3] and will be only shortly summarized here.

Amplitude envelopecontains information e.g. about the type
of excitation; i.e. whether a violin has been bowed or plucked.
Tight coupling between the excitation and the resonance structure
is indicated by a short onset duration. To measure the slope of the
amplitude decay after the onset, a line was Þtted over the ampli-
tude envelope on a dB scale. Also, the mean square error of the Þt
was used as a feature. Crest factor, i.e. maximum / RMS value
was also used to characterize the shape of the amplitude envelope.

Strength and frequency of amplitude modulation (AM)was
measured at two frequency ranges: from 4-8 Hz to measure trem-
olo, i.e. AM in conjunction with vibrato, and 10-40 Hz for graini-
ness or roughness of tones.

Spectral centroid (SC)corresponds to perceived brightness
and has been one of the interpretations for the dissimilarity rat-
ings in many multidimensional scaling studies [4]. SC was calcu-
lated from a short time power spectrum of the signal using
logarithmic frequency resolution. The normalized value of SC is
the absolute value in Hz divided by the fundamental frequency.
The mean, maximum and standard deviation values of SC were
used as features.

Onset asynchronyrefers to the differences in the rate of the
energy development of different frequency components. A sinu-
soid envelope representation was used to calculate the intensity
envelopes for different harmonics, and the standard deviation of
onset durations for different harmonics was used as a one feature.
Another feature measuring this property is obtained by Þtting the
intensity envelopes of individual harmonics into the overall inten-
sity evelope during the onset period, and the average mean square
error of those Þts was used as a feature.

Fundamental frequency (f0)of tones is measured using the
algorithm from [8], and used as a feature. Also, its standard devi-
ation was used as measure for vibrato.

3.  EXPERIMENTAL SETUP

Samples from Þve different sources were included in the vali-
dation database. First, the samples used in [3] consisted of the
samples from the McGill University Master Samples Collection
(MUMS) [9], as well as recordings of an acoustic guitar made at
Tampere University of Technology. The other sources of samples
were the University of Iowa website, IRCAM Studio Online
(SOL), and a Roland XP-30 synthesizer. The MUMS and SOL

samples are recorded in studios with different acoustic charac
istics and recording equipment, and the samples from Iowa U
versity are recorded in an anechoic chamber. The samples fr
the Roland synthesizer were played on the keyboard and recor
through analog lines into a Silicon Graphics Octane workstatio
The synthesizer has a dynamic keyboard, thus these samples
varying dynamics. The samples from SOL include only the Þ
1.5 seconds of the played note.

Cross validation aimed at as realistic conditions as possi
with this data set. On each trial, the training data consisted of
the samples except those of the particular performer and ins
ment being tested. In this way, the training data is maximally u
lized, but the system has never heard the samples from t
particular instrument in those circumstances before. There w
16 instruments that had at least three independent recordings
these instruments were used for testing. The instruments can
seen in Figure 4. A total of 5286 samples of 29 Western orches
instruments were included in the data set, out of which 3337 sa
ples were used for testing. The classiÞer made its choice am
the 29 instruments. In these tests, a random guesser would s
3.5% in the individual instrument recognition task, and 16.7%
family classiÞcation.

In each test, classiÞcations were performed separately for
instrument family and individual instrument cases. Ak-nearest
neighbours (kNN) classiÞer was used, where the values ofk were
11 for instrument family and for 5 individual instrument classiÞ
cation. The distance metric was Mahalanobis with equal cova
ance matrix for all classes, which was implemented by using t
discrete form of the Karhunen-Loeve transform to uncorrelate t
features and normalize the variances, and then by using the eu
dean distance metric in the normalized space.

4.  RESULTS

Different orders of the linear prediction Þlter were used to s
the effect of that on the performance of several LP and WL
based features. The results for instrument family and individu
instrument recognition are shown in Figure 1. The feature vec
at all points consisted of two sets of coefÞcients: medians over
onset period and medians over the steady state. The optimal a
ysis order was between 9 and 14, above and below which p
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Figure 1.ClassiÞcation performance as a function of analysis
order for different LP based features.
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formance degrades. The number of cepstral coefÞcients was one
less than the analysis order. WLP cepstral and reßection coefÞ-
cients outperformed LP cepstral and reßection coefÞcients at all
analysis orders calculated. The best accuracy with LP based fea-
tures was 33% for individual instruments (66% for instrument
families), and was obtained with WLP cepstral coefÞcients
(WLPCC) of order 13.

In Figure 2, the classiÞcation accuracy is presented as a func-
tion of features. The cepstral parameters are mel-frequency ceps-
tral coefÞcients or their derivatives. The optimal number of
MFCCs was 12, above and below which the performance slowly
degraded. However, optimization of the Þlter bank parameters
should be done for the MFCCs, but was left for future research.
By using the MFCCs both from the onset and steady state, the
accuracies were 32% (69%). Because of computational cost con-
siderations the MFCC were selected as the cepstrum features for
the remaining experiments. Adding the mel-frequency delta cep-
strum coefÞcients (DMFCC) slightly improved the performance,
using the MFCCs and DMFCCs of the steady state resulted in
34% (72%) accuracy.

The other features did not alone prove out very successful.
Onset duration was the most successful with 35% accuracy in
instrument family classiÞcation. In individual instruments, spec-
tral centroid gave the best accuracy, 10%. Both were clearly infe-
rior to the MFCCs and DMFCCs. It should be noted, however,
that the MFCC features are vectors of coefÞcients, and the other
features consist of a single number each.

The best accuracy 35% (77%) was obtained by using a feature
vector consisting of the features printed in italics in Figure 2. The
feature set was found by using a subset of the data and a simple

backward select algorithm. If the MFCCs were replaced wi
order 13 WLPCCs, the accuracy was 35% (72%).

In practical situations, a recognition system is likely to hav
more than one note to use for classiÞcation. A simulation w
made to test the systemÕs behaviour in this situation. Ran
sequences of notes were generated and each note was clas
individually. The Þnal classiÞcation result was pooled across
sequence by using the majority rule. The recognition accurac
were averaged over 50 runs for each instrument and n
sequence length. Figure 3 shows the average accuracies for i
vidual instrument and family classiÞcation. With 11 rando
notes, the average accuracy increased to 51% (96%). In ins
ment family classiÞcation, the recognition accuracy for the ten
saxophone was the worst (55% with 11 notes), whereas the ac
racy for the all other instruments was over 90%. In the case
individual instruments, the accuracy for the tenor trombone, tub
cello, violin, viola and guitar was poorer than with one note, th
accuracy for the other instruments was higher.

The recognition accuracy depends on the recording circu
stances, as may be expected. The individual instrument reco
tion accuracies were 32%, 87%, 21% and 37% for the samp
from MUMS, Iowa, Roland and SOL sources, respectively. Th
Iowa samples included only the woodwinds and the French ho
which were on the average recognized with 49% accuracy. Th
the recognition accuracy is clearly better for the Iowa samp
recorded in an anechoic chamber. The samples from the ot
three sources are comparable with the exception that the sam
from SOL did not include tenor or soprano sax. With synthesiz
samples the performance is clearly worse, which is probably d
to both the varying quality of the synthetic tones and the varyi
dynamics.

5. DISCUSSION

The confusion matrix for the feature set giving the best acc
racy is presented in Figure 4. There are large differences in
recognition accuracies of different instruments. The soprano s
is recognized correctly in 72% of the cases, while the classiÞ
tion accuracies for the violin and guitar are only 4%. French ho
is the most common target for misclassiÞcations.

It is interesting to compare the behaviour of the system
human subjects. Martin [2] has reported a listening experime
where fourteen subjects recognized 137 samples from the McG
collection, a subset of the data used in our evaluations. The diff
ences in the instrument sets are small, MartinÕs samples did
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include any sax or guitar samples, but had the piccolo and the
English horn, which were not present in our test data. In his test,
the subjects recognized the individual instrument correctly in
45.9% of cases (91.7% for instrument families). Our system made
more outside family confusions than the subjects in MartinÕs test.
It was not able to generalize into more abstract instrument fami-
lies as well as humans, which was also the case in MartinÕs com-
puter simulations [2]. In individual instrument classiÞcation, the
difference is perhaps smaller.

The within-family confusions made by the system are quite
similar to the confusions made by humans. Examples include the
French horn as tenor trombone and vice versa, tuba as French
horn, or B-ßat clarinet as E-ßat clarinet. The confusions between
the viola and the violin, and the cello and the double bass were
also common to both humans and our system. In the confusions
occurring outside the instrument family, confusions of the B-ßat
clarinet as soprano or alto sax were common to both our system
and the subjects.

6.  CONCLUSIONS

Warped linear prediction based features proved to be success-
ful in the automatic recognition of musical instrument solo tones,
and resulted in better accuracy than what was obtained with corre-
sponding conventional LP based features. The mel-frequency
cepstral coefÞcients gave the best accuracy in instrument family
classiÞcation, and would be the selection also for the sake of com-
putational complexity. The best overall accuracy was obtained by
augmenting the mel-cepstral coefÞcients with features describing
the type of excitation, brightness, modulations, synchronity and
fundamental frequency of tones.

Care should be taken while interpreting the presented results
on the accuracy obtained with different features. First, the best set
of features for musical instrument recognition depends on the
context [2,4]. Second, the extraction algorithms for features other
than cepstral coefÞcients are still in their early stages of develop-
ment. However, since the accuracy improved when cepstral fea-
tures were added with other features, this approach should be
further developed.
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ABSTRACT 

In this paper, we describe a system for the recognition of 
musical instruments from isolated notes or drum samples. 
We first describe a baseline system that uses uses mel-
frequency cepstral coefficients and their first derivatives as 
features, and continuous-density hidden Markov models 
(HMMs). Two improvements are proposed to increase the 
performance of this baseline system. First, transforming 
the features to a base with maximal statistical 
independence using independent component analysis can 
give an improvement of 9 percentage points in recognition 
accuracy. Secondly, discriminative training is shown to 
further improve the recognition accuracy of the system. 
The evaluation material consists of 5895 isolated notes of 
Western orchestral instruments, and 1798 drum hits. 

1 INTRODUCTION 

Earlier work on musical instrument recognition has mainly 
used classifiers that are not able to effectively model the 
temporal evolution of spectral features. The Gaussian 
mixture model (GMM) ([1]) is able to effectively 
parameterize the distribution of observations. However, it 
does not explicitly model the dynamic evolution of feature 
values within a played note. One approach is to extract 
features that explicitly try to measure the temporal 
characteristics of isolated notes [2], or to manually 
segment the notes and use averages of cepstral coefficients 
during the onset (the beginning of a note) and steady state 
as features [3]. However, this has only a limited ability to 
model the temporal evolution even if feature variances 
were also used as features. Moreover, often the extraction 
of temporal features is computationally rather demanding 
and the effect is even greater if this is combined with the 
use of a nearest-neighbour classifier, for instance. 

Hidden Markov models (HMM) are the mainstream 
statistical model used in the speech recognition 
community, and are now becoming increasingly popular 
also in non-speech applications.  To our knowledge, Casey 
is the only researcher who has used HMMs to model 
musical instrument samples [4]. As a part of the 
development of the generalized audio descriptors for the 
MPEG-7 standard, he has evaluated the proposed methods 
using a database consisting of a wide variety of audio, 
including music, speech, environmental sounds, and 
different musical instrument sounds. 

However, Casey’s evaluation data has included 
examples of only a few instruments. In addition, little 
detail has been given on the difficulty of the evaluation 

material, making assessing the accuracy of his method in 
instrument recognition difficult. Moreover, no details were 
given on the topology of the resulting models, since their 
algorithm attempts to force some of the transition 
probabilities to zero during training [4].  

In this paper, we take a different approach. Based on 
the knowledge of physical properties of musical 
instruments, and on the other hand the psychological 
studies on timbre perception, there is a clear motivation for 
using HMMs with a left-right topology to model isolated 
notes. Most musical instruments have a distinctive onset 
period, followed by a steady state, and finally decay (or 
release). For instance, some instruments are characterized 
by onset asynchrony, which means that the energy of 
certain harmonics rises more quickly than the energy at 
some other frequencies. Also the decay is often 
characterised by the prominence of certain frequencies 
with respect to others. This causes the features relating to 
the spectral shape to have different value distributions 
during the onset, steady state, and decay. Thus, a left-right 
HMM with three states might well model this temporal 
evolution. 

This paper first describes the development of a 
baseline instrument recognizer that uses mel-frequency 
cepstrum (MFCC) and delta cepstrum (

�

MFCC) 
coefficients as features, and HMMs to model the feature 
distributions. The system is evaluated using a database 
consisting of isolated notes of 27 Western orchestral 
instruments, and a smaller database of drum hits. We 
propose two improvements to improve the performance of 
the system. First, we use the independent component 
analysis (ICA) to transform the feature vector consisting of 
catenated MFCC and 

�

MFCC features to a basis with 
maximal statistical independence. This transform is shown 
to give an almost consistent improvement in recognition 
accuracy over the baseline with no rotation. Second, we 
propose using discriminative training of the HMMs. 
Especially with computationally attractive models with 
low number of components in state densities, 
discriminative training gives an improvement over the 
baseline maximum likelihood (ML) training using the 
Baum-Welch re-estimation algorithm. 

2 FEATURE EXTRACTION 

2.1 Feature extraction 
 
Mel-frequency cepstral coefficients (MFCC) were found 
to be a well-performing feature set in musical instrument 
recognition [3], and are used as the front-end parameters in 



our system. The input signal is first pre-emphasized with 

an FIR filter having the transfer function 11 -- az , where a 
was  between 0.97 and 0.99 in our simulations. MFCC 
analysis is performed in 30 ms windowed frames advanced 
every 15 ms for the orchestral instruments. For the 
analysis of short drum sounds, the frame length was 
reduced into 20 ms, and the hop size was 4 ms. The 
number of triangular filters was 40, and they occupied the 
band from 30Hz to half the sampling rate. For the drum 
sounds, the lowest frequency was 20Hz. The number of 
cepstral coefficients was 12 after the zeroth coefficient 
was discarded, and appending the first time derivatives 
approximated with a 3-point first-order polynomial fit 
resulted in a feature vector size of n = 24. The resulting 
features were both mean and variance normalized.  

2.2 Transforming features using independent 
component analysis (ICA) 

 
Independent component analysis (ICA) has recently 
emerged as an interesting method for finding decorrelating 
feature transformations [4][5][6]. The more well-known 
methods for include the principal component analysis and 
linear discriminant analysis. The goal of ICA is to find 
directions of minimum mutual information, i.e. to extract a 
set of statistically independent vectors from the training 
data X. The use of an ICA transformation has been 
reported to improve the recognition accuracy in speech 
recognition [5]. In the MPEG-7 generalized audio 
descriptors, ICA is proposed as an optional transformation 
on the spectrum basis obtained with singular value 
decomposition [4], and Casey’s results have shown the 
success of this method on a wide variety of sounds. Our 
approach is slightly different from all these studies. We 
perform ICA on concatenated MFCC and 

�

MFCC 
features. In [4] and [5] only static features were used, and 
in [6] logarithmic energies and their derivatives were used. 

In order to construct the m-by-n ICA transform matrix 
W, the extracted MFCC and 

�

MFCC coefficients from the 
training data samples are gathered into a matrix 

[ ]TxxxX ,...,, 21=  where each column represents the 
catenated MFCC (s) and 

�

MFCC (d) features from the 

analysis frame t, i.e. [ ]¢= )2/(1)2/(21 ,...,,,...,, nddnssst xxxxxx . 

The total amount of feature vectors from all recordings of 
all the classes in the training set is denoted by T. The class 
and recording indices are omitted here since ICA does not 
utilize class information. The ICA demixing matrix W is 
applied on X producing the transformed observation space 
O = WX, which is of dimension m-by-T, where nm£ . 
The inequality is due to possible dimensionality reduction 
in the preprocessing step, which consists of a whitening 
transform.   

The efficient FastICA algorithm was used for finding 
the ICA basis transformation [7]. It should be noted that 
the extra computational load caused by applying the ICA 
transformation occurs mainly in the off-line training phase. 
The test phase consists of computing the MFCC and 

�

MFCC features in the usual way plus an additional 

multiplication with the m-by-n matrix W derived off-line 
using the training data.  

3 CLASSIFICATION 

3.1 The hidden Markov model 
 
Hidden Markov models with a left-right topology are used 
to model the distribution of feature vectors from each 
instrument category, and the classification is made with 
the maximum-a-posteriori rule. A continuous density 
hidden Markov model (HMM) with N states consists of a 
set of parameters q  that comprises the N-by-N transition 
matrix, the initial state probabilities, and the parameters of 
the state densities. We use diagonal-covariance Gaussian-
mixture state densities which are parameterized by the 
weights, means, and diagonal variances. The model 
parameters are estimated using a training set that consists 

of the recordings [ ]ROO
�

,...,1=  and their associated 

class labels ),...,( 1 RllL = . Specifically, [ ]
rT

r ooO ,...,1=  

denotes the sequence of feature vectors measured from the 

recording r. The length of the observation sequence rO  is 

rT . In this paper, each recording represents a single note 
played by an orchestral instrument, or a drum hit. 

In our baseline system, the HMM parameters are 
iteratively optimized using the Baum-Welch re-estimation 
that finds a local maximum of the maximum likelihood 
(ML) objective function 

� �
= Î

=Q
C

c Ar

r

c

cpF
1

)|(log)( O ,  

where Q  denotes the entire parameter set of all the classes 
},...,1{ CcÎ , and cA  denotes the recordings from the class 

c. In the recognition phase, an unknown recording Y  is 
classified using the maximum a posteriori rule: 

)|(maxargˆ cpc
c

Y=  

which is due to the Bayes’  rule and assuming equal priors 
for all classes c. In this paper, the Viterbi-algorithm was 
used to approximate the above likelihoods.  

3.2 Discr iminative training 
 
In the case that a statistical model fits poorly the data, 
training methods other than ML may lead into better-
performing models. Discriminative training methods such 
as the maximum mutual information (MMI) aim at 
maximizing the ability to distinguish between the 
observation sequences generated by the model of the 
correct class and those generated by models of other 
classes [8]. The MMI objective function is given as 

( ) �
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where )( rlp  and )(cp  are prior probabilities. 
Unfortunately, this requires rather complicated 



optimization involving the entire model set even if 
observations from a single class were used. 

In this paper, a recently-proposed discriminative 
training algorithm is used. The algorithm was proposed by 
Ben-Yishai and Burshtein, and is based on an 
approximation of the maximum mutual information [9]. 
Their approximated maximum mutual information 
(AMMI) criterion is: 

( ) ( ) ( )[ ] ( ) ( )[ ]� � �
= Î Î �

�

�

�

� �

-=Q
C

c Ar Br

rr

c c

cpcpcpcpJ
1

loglog OO l , 

where cB  is the set of indices of training recordings that 

were recognized as c. cB  is obtained by maximum a 
posteriori classification performed on the training set, 
using initial models trained with the Baum-Welch 
algorithm. The “discrimination rate”  is controlled using 
the parameter 10 ££ l . 

The prior probabilities )(cp  do not affect the 
maximization of )(QJ , thus the maximization is 
equivalent to maximizing for all the classes Cc ££1  the 
following objective functions:  

( ) ( ) ( )� �
Î Î

-=Q
c cAr Br

rr
c cpcpJ OO loglog l . 

Thus, the parameter set of each class can be estimated 
separately, which leads to a straightforward 
implementation. Ben-Yishai and Burshtein have derived 
the re-estimation equations for HMM parameters [9]. Due 
to space restrictions, we present only the re-estimation 
equation for the transition probability from state i to state 
j: 
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The state at time t is denoted by tq , and the length of the 

observation sequence rO  is rT . In a general form, for 
each parameter n  the re-estimation procedure is 
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n
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where )(nN  and )(nD  are the accumulated statistics 
computed according to the set cA , and )(nDN  and )(nDD  
are the statistics computed according to the set cB , 
obtained by recognition on the training set. Thus, in a 
typical situation the set cB  includes examples from the 
class c and some other confusing classes. This 
discriminative re-estimation can be iterated in a manner 
similar to the standard expectation-maximisation. We 
typically used 5 iterations, although using just one 
iteration seemed to be sufficient in many situations, since 
the recognition accuracy did not improve much after the 
first iteration. 

4 VALIDATION EXPERIMENTS 

4.1 Validation database 
 
Our experimental setup aimed at testing the system’s 
generalization ability across significant variations in 
recording setup and instrument instances. Samples from 
five different sources were used in the validation database. 
The sources were the McGill University Master Samples 
collection (MUMS) [10], the University of Iowa 
Electronic Music Studios website [11], IRCAM Studio 
Online [12], a Roland XP-30 synthesizer, and recordings 
arranged by Keith Martin at MIT Media Lab [2]. A total of 
5895 samples of 27 Western orchestral instruments were 
included in the database, of which 4940 were included in 
the training set and 955 were tested. The division into 
training and test sets was done so that all the samples from 
a particular instrument instance in a certain recording 
session were either in the training or test set, i.e. the 
recognition was done across recordings and different 
instrument pieces. The recognition was performed at an 
intermediate level of abstraction using seven classes, 
which were the brass, saxophones, single reed clarinets, 
double reed oboes, flutes, bowed strings, and plucked 
strings. A random guesser would score 14% correct in 
these conditions. The drum database consisted of samples 
from 8 different synthesizer sound banks and the MUMS 
collection [10]. Samples of two sound banks were used in 
the training set (total of 1123 drum hits), and the samples 
of the seven remaining sources were used for testing (a 
total of 675). The five possible categories were bass drum, 
cymbal, hi hat, snare, and tom-tom. 
 

4.2 Results 
 
The Baum-Welch algorithm was used to train the baseline 
HMMs. The number of states (NS) and component 
densities per state (NC) was varied. Increasing the number 
of components in each state was obtained by gradually 
increasing the model order until the desired order NC was 
obtained by splitting the component with the largest 
weight. The state means and variances were initialized 
using a heuristic segmentation scheme, where each sound 
was segmented into as many adjacent segments as there 
were states in the model. The initial mean and variance for 
each state were estimated from the statistics accumulated 
from the different segments of all samples. During 
training, a straightforward form of regularization was 
applied by adding a small constant to the variance 
elements falling below a predetermined threshold. 

Table 1 presents the results obtained using the baseline 
system using MFCC plus � MFCC features and HMMs 
trained using the Baum-Welch algorithm. In Table 2, the 
features have been ICA transformed; the HMM training is 
similar to the baseline. Table 3 shows the results using the 
MFCC plus � MFCC front-end, but using discriminative 
training of HMMs. In Table 4, both enhancements have 
been combined and the ICA transformed input is modelled 
with discriminatively trained HMMs. It can be observed  



that using the ICA transform gives an almost consistent 
improvement in recognition accuracy across the set of 
model orders tested. Using discriminative training 
improves the accuracy mainly with models having low 
number of components in state densities. This is 
understandable since low-order models give relatively low 
recognition accuracy in the training set, and there is not so 
much danger of over-fitting due to discriminative training 
as with higher order models. Different values of l  were 
tested, and the results are shown for l =0.3.  

Tables 5 and 6 show the results for the drum database 
using the baseline system and the ICA transformation. 
Here the improvement is not consistent across the different 
model orders evaluated, which may be partly due to the 
larger mismatch in training and testing conditions in this 
database, and the relatively smaller size of training data 
where examples from only two sound banks are included. 

5 CONCLUSION 

A system for the recognition of musical instrument 
samples was described. Applying an ICA-based transform 
of features gave an almost consistent improvement in 
recognition accuracy compared to the baseline. The 

accuracy could be further improved by using 
discriminative training of the hidden Markov models. 
Future work will consider the extension of these methods 
for monophonic phrases.  
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 NC = 1 NC = 2 NC = 3 NC = 4 
NS = 2 80 80 78 78 
NS = 3 78 81 85 85 

 

Table 6. Percentage correct in drum recognition, ICA-based 
transformation applied. 

 NC = 1 NC = 2 NC = 3 NC = 4 
NS = 2 79 79 80 78 
NS = 3 76 77 79 81 

 

Table 5. Percentage correct in drum recognition, MFCC plus 
�

MFCC features.  

% correct NC=1 NC=2 NC=4 NC=6 NC=8 
NS = 2 51 57 61 65 66 
NS = 3 57 64 64 66 68 
NS = 4 60 60 65 61 61 
NS = 5 65 67 63 65 62 

 

Table 4. ICA-based transformation applied and discriminative 
training of HMMs. 

% correct NC=1 NC=2 NC=4 NC=6 NC=8 
NS = 2 45 51 59 61 62 
NS = 3 58 63 59 59 58 
NS = 4 58 61 60 61 64 
NS = 5 58 62 62 61 62 

 

Table 3. Percentage correct in instrument identification, 
baseline features and discriminative training of HMMs. 

% correct NC=1 NC=2 NC=4 NC=6 NC=8 
NS = 2 48 56 60 63 66 
NS = 3 57 62 63 65 67 
NS = 4 58 61 66 60 61 
NS = 5 63 66 64 66 62 

 

Table 2. Percentage correct in instrument identification, ICA-
based transformation applied and ML training of HMMs. 

% correct NC=1 NC=2 NC=4 NC=6 NC=8 
NS = 2 44 47 57 60 59 
NS = 3 53 59 60 58 58 
NS = 4 59 57 60 62 62 
NS = 5 56 60 60 60 62 

 

Table 1. Percentage correct in instrument identification, 
baseline system with MFCC plus 

�

MFCC features and ML 
training. 
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Audio-Based Context Recognition
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Abstract—The aim of this paper is to investigate the feasibility
of an audio-based context recognition system. Here, context
recognition refers to the automatic classiÞcation of the context
or an environment around a device. A system is developed and
compared to the accuracy of human listeners in the same task.
Particular emphasis is placed on the computational complexity
of the methods, since the application is of particular interest in
resource-constrained portable devices. Simplistic low-dimensional
feature vectors are evaluated against more standard spectral
features. Using discriminative training, competitive recognition
accuracies are achieved with very low-order hidden Markov
models (1Ð3 Gaussian components). Slight improvement in recog-
nition accuracy is observed when linear data-driven feature
transformations are applied to mel-cepstral features. The recog-
nition rate of the system as a function of the test sequence length
appears to converge only after about 30 to 60 s. Some degree of
accuracy can be achieved even with less than 1-s test sequence
lengths. The average reaction time of the human listeners was
14 s, i.e., somewhat smaller, but of the same order as that of the
system. The average recognition accuracy of the system was 58%
against 69%, obtained in the listening tests in recognizing between
24 everyday contexts. The accuracies in recognizing six high-level
classes were 82% for the system and 88% for the subjects.

Index Terms—Audio classiÞcation, context awareness, feature
extraction, hidden Markov models (HMMs).

I. INTRODUCTION

CONTEXT recognition is de�ned as the process of auto-
matically determining the context around a device. Infor-

mation about the context would enable wearable devices to pro-
vide better service to users’ needs, e.g., by adjusting the mode
of operation accordingly. A mobile phone can automatically go
into an appropriate pro�le while in a meeting, refuse to receive
calls, or a portable digital assistant can provide information cus-
tomized to the location of the user [1].

Many sources of information for sensing the context are avail-
able, such as luminance, acceleration, or temperature. Audio
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provides a rich source of context-related information, and recog-
nition of a context based on sound is possible for humans to
some extent. Moreover, there already exist suitable sensors, i.e.,
microphones, in many portable devices.

In this paper, we consider context recognition using acoustic
information only. Within this scope, a context denotes a loca-
tion with different acoustic characteristics, such as a restaurant,
marketplace, or a quiet room. Differences in the acoustic char-
acteristics can be due either to the physical environment or the
activity of humans and nature. We describe the collection of
evaluation data representing the common everyday sound en-
vironment of urban people, allowing us to assess the feasibility
of building context aware applications using audio. Using this
data, a comprehensive evaluation is made of different features
and classi�ers. The main focus is on �nding methods suitable
for implementation on a mobile device. Therefore, we evaluate
linear feature transforms and discriminative training to improve
the accuracy obtained with very low-order HMMs.

An experiment was conducted to facilitate the direct compar-
ison of the system’s performance with that of human subjects.
A forced-choice test with identical test samples and reference
classes for the subjects and the system was used. We also made
a qualitative test to assess the information on which the human
subjects base their decision. To our knowledge, this study is the
�rst attempt to present a comprehensive evaluation of a com-
puter and human performance in audio-based context recog-
nition. Some preliminary results on context recognition using
audio have been described in [2], [3].

This paper is organized as follows. Section II reviews
previous work. Section III presents the feature extraction al-
gorithms used in this study. In Section IV, the classi�cation
methods are described. Section V presents an assessment of the
computer system. In Section VI, a test on human perception
of audio contexts is described. Finally, in Section VII, these
results are compared to the performance of the system.

II. PREVIOUS WORK

The research on context awareness is still at its early stages
and very few applications have been constructed that make use
of other context information than global positioning system
(GPS) location [4]. One of the earliest prototypes of a con-
text-aware system was the ParcTab developed at the Xerox
Palo Alto Research Center [5]. The ParcTab featured, e.g.,
contextual information and commands, automatic contextual
recon�guration and context-triggered actions.

In many cases, the context-awareness functionality is build
upon an array of different sensors sensing the context. In [6], the
authors used accelerometers, photodiodes, temperature sensors,
touch sensors, and microphones, from which simple low-level
features were extracted. Another approach is to transform the

1558-7916/$20.00 © 2006 IEEE
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raw input into a low-dimensional representation using principal
component analysis (PCA) or independent component analysis
(ICA) [7], [8].

In general, the process of context recognition is very similar
regardless of the sensors or data sources used for the recogni-
tion. The feature vectors obtained from sensors are fed to classi-
� ers that try to identify the context the particular feature vectors
present. As classi� ers, e.g., hidden Markov models (HMMs) [9],
or a combination of a self-organizing map and a Markov chain,
have been used [6].

Only few studies have attempted to classify contexts using
acoustic information. Clarkson has classi� ed seven contexts
using spectral energies from the output of a� lter bank and a
HMM classi� er [9]. In [10], Sawhney describes preliminary
experiments with different features and classi� ers in classifying
between voice, traf� c, subway, people, and others. The most
successful system utilized frequency-band energies as features
and a nearest-neighbor classi� er.

El-Malehet al.classi� ed� ve environmental noise classes (a
car, street, babble, factory, and bus) using line spectral features
and a Gaussian classi� er [11]. Couvreuret al. used HMMs to
recognize� ve types of environmental noise events: car, truck,
moped, aircraft, and train, using linear prediction cepstral coef-
� cients as features and discrete HMMs [12]. The authors also
described an informal listening test, which showed that, on the
average, humans were inferior in classifying these categories
compared to the system.

The features we are using are similar to those used in different
audio information retrieval tasks [13]. Scheirer and Slaney de-
scribed a speech/music discrimination system, which used a
combination of several features [14]. More recent studies in-
clude that of Luet al. [15] and Li et al. [16] who also included
environmental noise as one of the categories. Zhang and Kuo
[17] classi� ed between harmonic environmental sound, nonhar-
monic environmental sound, environmental sound with music,
pure music, song, speech with music, and pure speech.

Casey has used a front-end where log-spectral energies
are transformed into a low-dimensional representation with
singular-value decomposition and ICA [18]. The classi� er uses
single-Gaussian continuous-density HMMs with full covari-
ance matrices trained with Bayesian maximuma posteriori
(MAP) estimation. Casey’s system was evaluated on a database
consisting e.g., of musical instrument sounds, sound effects,
and animal sounds.

To our knowledge, context recognition using audio has not
been studied to this extent before. The results existing in the
literature have used only a limited number of categories, often
focusing into a certain noise type such as vehicle sounds.
In this paper, we present results using comprehensive data
measured from several everyday contexts. The most promising
features presented in the literature are compared on this data.
We propose a linear transformation of the concatenated cepstral
and delta cepstral coef� cients using PCA or ICA and show that
this slightly improves the classi� cation accuracy. Moreover,
we demonstrate that compact diagonal-covariance Gaussian
HMMs and discriminative training are an effective classi� er for
this task. To our knowledge, discriminatively trained HMMs
have not been used for audio-based context recognition before.

III. A COUSTICMEASUREMENTS ANDFEATURE EXTRACTION

A. Recording Procedure

To obtain a realistic estimate of the feasibility of building
context-aware applications using audio input, we paid special
attention to gathering a data set that would be representing of
the everyday sound environment encountered by urban people.
The recording procedure has been described in [19] and is
summarized here. A total of 225 real-world recordings from
a variety of different contexts were made using two different
recording con� gurations. The� rst con� guration has been
developed by Zacharov and Koivuniemi [20]. It consists of a
head-and-torso simulator with multiple microphones and is
capable of storing multiple audio formats simultaneously. For
the purpose of this study, we only utilized the binaural record-
ings (two channels) and stereo recordings (two channels). The
microphones mounted in the ears of the dummy head enable a
realistic binaural reproduction of an auditory scene. The stereo
setup consisted of two omnidirectional microphones (AKG
C460B), separated by a distance of one meter. This construction
was attached to the dummy head. The acoustic material was
recorded into a digital multitrack recorder in 16-bit and 48-kHz
sampling rate format. A total of 55 recordings were made with
this setup. The remaining measurements were made with an
easily portable stereo setup using AKG C460B microphones.

The recording of spatial sound material was done for sub-
jective evaluations. In computer simulations, we only used the
left channel from the stereo setup. Table I shows the division of
recordings into different categories.

B. Feature Extraction

A wide set of feature extractors was implemented for this
study in order to evaluate the accuracy obtained with each, and
to select a suitable feature set for the system.

All features are measured in short analysis frames. A typ-
ical analysis frame length in this study was 30 ms with 15-ms
overlap. The hanning window function was used. The following
features were evaluated in this study.

Zero-crossing rate (ZCR)is de� ned as the number of zero-
voltage crossings within a frame.
Short-time average energyis the energy of a frame and
is computed as the sum of squared amplitudes within a
frame.
Mel-frequency cepstral coefÞcients (MFCC)are a percep-
tually motivated representation of the coarse shape of the
spectrum [21]. We used 11 or 12 MFCC coef� cients cal-
culated from the outputs of a 40-channel� lterbank.
Mel-frequency delta cepstral coefÞcients (MFCC) are
used to describe the dynamic properties of the cepstrum.
We used a three-point linear� t to approximate the� rst
time derivative of each cepstral coef� cient.
Band-energyrefers to the energies of subbands normal-
ized with the total energy of the signal. We experimented
with four and ten logarithmically-distributed subbands.
Spectral centroidrepresents the balancing point of the
spectral power distribution.
Bandwidthis de� ned as the estimated bandwidth of the
input signal [16].
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TABLE I
STATISTICS OF THEAUDIO MEASUREMENTS

Spectral roll-off[16] measures the frequency below which
a certain amount of spectral energy resides. It measures
the“skewness” of the spectral shape.
Spectralßux (SF)is de� ned as the difference between the
magnitude spectra of successive frames [14].
Linear prediction coefÞcients (LPCs)were extracted
using the autocorrelation method [22, p. 103]. The
number of LPC coef� cients extracted was 12.
Linear prediction cepstral coefÞcientsare obtained using
a direct recursion from the LPC coef� cients [22, p. 115].
The number of cepstral coef� cients was 12 after dis-
carding the zeroth coef� cient.

All the features were mean and variance normalized using
global estimates measured over the training data.

C. Feature Transforms

The main idea of linear data-driven feature-transformations
is to project the original feature space into a space with a lower
dimensionality and more feasible statistical properties, such as
uncorrelatedness. In this work, three different techniques were
used. The PCA� nds a decorrelating transform [25, p. 115], ICA
results in a base with statistical independence [25, p. 570], and
the linear discriminant analysis (LDA) tries to maximize class
separability [25, p. 120].

PCA projects the original data into a lower dimensional
space such that the reconstruction error is as small as possible,
measured as the mean-square error between the data vectors in
the original space and in the projection space. Projection onto
a lower dimensional space reduces the amount of parameters

to be estimated in the classi� er training stage, and uncorrelated
features are ef� ciently modeled with diagonal-covariance
Gaussians.

The goal of ICA is to� nd directions of minimum mutual in-
formation, i.e., to extract a set of statistically independent vec-
tors from the training data. Here, the FastICA algorithm was
used for� nding the ICA basis transformation [23].

Himberget al. have used PCA and ICA to project multidi-
mensional sensor data from different contexts into a lower di-
mensional representation, but reported only qualitative results
[4]. In speech recognition, the use of an ICA transformation
has been reported to improve the recognition accuracy [24]. In
the MPEG-7 generalized audio descriptors, ICA is proposed as
an optional transformation for the spectrum basis obtained with
singular value decomposition, and Casey’s results have shown
the success of this method on a wide variety of sounds [18]. Our
approach is different from all these studies, since we perform
ICA on concatenated MFCC andMFCC features. Including
the delta coef� cients is a way to include information on tem-
poral dependencies of features, which is ignored if the transform
is applied on static coef� cients only. In [18] and [24], delta co-
ef� cients were not considered.

The third feature transform technique tested here, LDA, dif-
fers from PCA and ICA by utilizing class information. The goal
is to � nd basis vectors that maximize the ratio of between-class
variance to within-class variance.

It should be noted that the extra computational load caused
by applying any of these transformations occurs mainly in the
off-line training phase. The test phase consists of computing the
features in the usual way plus an additional multiplication once
per analysis frame with the transform matrix derived off-line
using the training data.

IV. CLASSIFICATION METHODS

A. -Nearest Neighbors

The most straightforward classi� cation method is nearest
neighbor classi� cation. The -nearest-neighbors (-NN) clas-
si� er performs a class vote among thenearest training-data
feature vectors to a point to be classi� ed [25, p. 182]. In our
implementation, the feature vectors were� rst decorrelated
using PCA and the Euclidean distance metric was used in the
transformed space. Averaging over 1-s-long segments was used
to reduce the amount of calculations and required storage space.

B. HMM

1) Description of the Model:A HMM [22, pp. 321–386] is
an effective parametric representation for a time-series of obser-
vations, such as feature vectors measured from natural sounds.
In this work, HMMs are used for classi� cation by training a
HMM for each class, and by selecting the class with the largest
a posterioriprobability.

2) Model Initialization: We used the maximum-likelihood
based Baum–Welch algorithm to train the“baseline” HMMs
for each class separately. The number of states (NS) and the
number of component densities per state (NC) was varied. The
models were initialized with a single Gaussian at each state, and
the component with the largest weight was then split until the
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Fig. 1. Recognition accuracy obtained with different features using the GMM and 1-NN classi� ers and 30 s of each test signal.

desired value of NC was obtained. Each component split was
followed by 15 Baum–Welch iterations, or until the likelihood
converged.

3) Discriminative Training of HMMs:In applications
where computational resources are limited, we are forced to
use models with as few Gaussians as possible, since their
evaluation poses the computationally most demanding step in
the recognition phase. In these cases the HMM is not able to
fully represent the feature statistics and other approaches than
maximum likelihood parameter estimation may lead into better
recognition results. Discriminative training methods such as
the maximum mutual information (MMI) aim at maximizing
the ability to distinguish between the observation sequences
generated by the model of the correct class and those generated
by models of other classes [22, p. 363].

We used a discriminative training algorithm recently pro-
posed by Ben–Yishai and Burshtein [26]. The algorithm
is based on an approximation of the MMI. It starts from a
“baseline” model set trained with the Baum–Welch algorithm,
followed by an iterative discriminative training phase. At each
discriminative training iteration, new statistics for the model
parameters are accumulated not only from the observations
of the correct class, but also from a set of confusing classes.
The set of confusing classes is obtained by MAP classi� cation
performed on the training set. An interested reader should refer
to [26] for more details of the algorithm.

V. EVALUATION

A. Experimental Setup

Two training and testing setups were formed from the sam-
ples. Setup 1 consisted of 155 recordings of 24 contexts that
were used for training and 70 recordings of 16 contexts were
tested. Random division of recordings into the training and tests
sets was done 100 times. The contexts selected into the test set
had to have at least� ve recordings from different locations at
different times. Setup 2 was used in the listening test and in the
direct comparison, and had two nonoverlapping sets of 45 sam-
ples from 18 different contexts in the test set.

A higher level of abstraction may be suf� cient for some
applications. Hence, the recordings were also categorized
into six high-level classes that are more general according to
some common characteristics. These classes are: 1) outdoors,
2) vehicles, 3) public/social, 4) of� ces/meetings/quiet, 5) home,
and 6) reverberant places. It should be noted that the allocation
of individual contexts into high-level classes is ambiguous;
many contexts can be associated with more than one high-level
class.

B. Results

1) Comparison of Features:In the� rst experiment, we com-
pared the accuracy obtained with different features. In this ex-
periment, classi� cation performance was evaluated using leave-
one-out cross-validation on all the recorded data. The classi� ers
were trained with all recordings except the one that was left out
for classi� cation. In this way, the training data is maximally uti-
lized but the system has never heard the test recording before.
The overall recognition rate was calculated as the sample mean
of the recognition rates of the individual contexts.

The recognition rates obtained at the context level using in-
dividual features with two different classi� ers, the 1-NN and
a one-state HMM (a GMM), are shown in Fig. 1. The test se-
quence duration was 30 s taken from the beginning of each test
recording and the duration of each training recording was 160 s.
The random guess rate for 24 classes is shown with the dashed
line in Fig. 1. The 1-NN classi� er performs on the average better
than the GMM. This is indicative of complicated distributions
of many features, which are not well modeled with a GMM with
� ve diagonal-covariance Gaussians. The MFCC coef� cients are
well modeled with a GMM. With 12 MFCC features, we ob-
tained a recognition accuracy of 63% using the GMM classi� er,
and with ten band-energy features the recognition accuracy was
61% using the 1-NN classi� er.

2) Discriminative Training: The second experiment studied
the HMM and the MFCC features in more detail. The MFCC
coef� cients were augmented with the delta coef� cients. We
trained models with different NSs and NCs, and varied the
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TABLE II
RECOGNITION ACCURACY USING ONE-STATE HMMs
WITH VARYING NUMBER OF COMPONENTDENSITIES

TABLE III
RECOGNITION ACCURACY (%) AND STANDARD DEVIATION USING

HMMs WITH VARYING TOPOLOGIES ANDNUMBER OF STATES

TABLE IV
RECOGNITION ACCURACY (%) AND STANDARD DEVIATION WHEN
CONFUSIONSWITHIN THE SIX HIGHER LEVEL CLASSESALLOWED

model topology. The second aim was to compare the baseline
maximum-likelihood training using the Baum–Welch algo-
rithm and discriminative training. The division into training
and test data was done according to Setup 1. The amount of
training data used from each recording was 160 s. In order to
obtain reliable accuracy estimates and to utilize the test data
ef� ciently, the recognition was performed in adjacent 30-s
windows with 25% overlap, and the� nal recognition result has
been averaged over the different train/test divisions, recognition
windows, recordings, and classes.

Tables II–IV show the results from this experiment. The base-
line models were obtained after 15 Baum–Welch iterations.
Three iterations of discriminative training were then applied on
the models obtained from Baum–Welch re-estimation. Using
an HMM with two or three states, or a one-state HMM with
two or three component densities gives acceptable accuracies
especially when discriminative training is used, taking into
account the low computational demand of having to evaluate
just a few diagonal covariance Gaussians.

3) Linear Feature Transforms:In the next experiment, we
evaluated the use of the three linear feature transforms: PCA,
ICA, and LDA. Table IV shows the recognition accuracies when
the different transforms were applied on a feature vector con-
sisting of concatenated MFCCs and their derivatives. On the

TABLE V
RECOGNITIONACCURACY USING LINEAR FEATURE TRANSFORMS

Fig. 2. Recognition accuracy as a function of test sequence length for the
individual contexts and the six high-level classes. The left panel shows details
of a test sequence length less than 1 s; the shortest length 0.03 corresponds to a
single frame.

average, applying the ICA or PCA transforms gives a slight im-
provement in recognition accuracy (Table V). In these experi-
ments, we used a two-state HMM with one component density
per state.

In [24], the authors reported improvements in speech recogni-
tion over the baseline using MFCC coef� cients without a trans-
form when these same transforms were applied either to the
log-energy outputs of the MFCC� lter bank, or the static MFCC
coef� cients. We made experiments also with these methods but
improvement over the baseline was observed only when the con-
catenated MFCCs and deltas were transformed.

4) Effect of Test Sequence Length:In Fig. 2, the recognition
rates obtained using the ICA transformed MFCC features and
two-state HMMs are presented when the length of the test se-
quence was varied. The results for the six high-level classes have
been derived from the results at the context level when confu-
sions within the higher level categories are allowed.

As expected, increasing the length of test sequence improves
the overall recognition rate. However, it takes rather long for
the result to converge (around 60 s). With less than 20 s of test
data, the recognition accuracy drops fast. Thus, this amount can
be regarded as the lower limit for reliable recognition. The left
panel shows the details with very short recognition sequence
lengths ranging from just a single frame (30 ms) to 1 s. Even
with these very short analysis segments some degree of accuracy
can be obtained.
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Fig. 3. Confusion matrix of the listening test experiment using stereo samples. The boxes indicate the high-level classes, which are (from left to right, top to
bottom) outdoors, vehicles, public/social, of� ces/meetings/quiet, home, and reverberant.

VI. HUMAN PERCEPTION OFAUDIO CONTEXTS

A. Setup of the Experiment

We also carried out an experiment on human recognition of
audio contexts in order to obtain a performance baseline for
the assessment of the system. This experiment was organized
in three listening tests.

1) Stimuli, Reproduction System, and Listening Conditions:
The stimuli for the listening tests were the recordings from the
Setup 2 as described in Section V-A. All stimuli employed in
this experiment were 1-min-long samples and were de� ned
using two levels of categorization: context and high-level
context.

All tests were performed in an ITU-R BS.1116-1 compliant
listening room [27]. Audio samples were reproduced at a nat-
ural sound level over a stereophonic setup using Genelec 1031A
loudspeakers placed at in front of the listener. The test de-
sign and administration were performed using the Presentation
software [28]. This system allows very accurate monitoring of
the reaction time between sample replay and subject responses.

2) Description of the Three Listening Tests:The focus of
the main test was in studying the accuracy and reaction time
of humans in audio context recognition. The second test com-
pared the human ability in recognition with three different sound
con� gurations, namely, the monophonic, stereophonic, and bin-
aural reproduction techniques, in an assumed order of increasing
degree of spaciousness. A subset of 18 samples from nine dif-
ferent contexts was selected for each con� guration in this part
of the experiment. For the binaural samples, crosstalk cancel-
lation � lters were designed based on the MIT KEMAR HRTF
measurements [29] in order to obtain appropriate reproduction
of the signal over loudspeakers (i.e., a binaural to transaural
conversion).

The aim of the third test was to obtain a qualitative descrip-
tion of the recognition of auditory scenes. Subjects were asked
to listen to nine samples and rate the information they used in

the recognition process. After each stimulus, listeners� lled in a
form in which they were asked to evaluate and rate on a six-point
discrete scale, how important different cues were in recognition
(0 accounted for a cue not used and 5 for a cue considered very
important).

In the three tests, subjects were instructed to try to recognize
the context as fast as possible. A list of possible contexts was
given to the test subjects. The list included also contexts not pre-
sented during the test. Recognition time was measured from the
starting time of the stimulus presentation to the� rst keyboard
press, after which the subject could select the context recog-
nized by an additional keyboard press.

Eighteen subjects participated in the test, which was designed
for two groups, each including the same number of stimuli and
identical contexts. This permitted the use of more samples from
the database, still keeping the total duration of the test within
1 h. The listening test started with a training session including
nine samples not included in the actual test to familiarize the
subjects with the user interface and the test setup.

B. Results of the Listening Test

Two measures were analyzed from this listening test, the
recognition rate and the reaction time for each stimulus. Sta-
tistical methods employed were different due to the different
nature of the two measures. First, recognition rate was analyzed
as a set of right or wrong answers using a nonparametric sta-
tistical procedure, i.e., the Friedman and Kruskal–Wallis tests.
For the reaction time, the statistical analysis was performed
with a classical parametric statistical procedure (ANOVA),
after discarding data considered as outliers.

1) Stereo Test:Rate was calculated for both context and
high-level context recognition. As a result, the average recog-
nition rate was 69% for contexts and 88% for the high-level
contexts. Fig. 3. presents the confusion matrix for this experi-
ment averaged over all listeners (differences between the two
groups are not signi� cant). Context and high-level context with
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Fig. 4. Confusion matrix when the system was tested on the samples from the listening test. Compare this to Fig. 3. The boxes indicate the high-level classes,
which are (from left to right, top to bottom): Outdoors, vehicles, public/social, of� ces/meetings/quiet, home, and reverberant.

TABLE VI
RECOGNITION ACCURACY (%) FOR THE DIFFERENT

PRESENTATIONTECHNIQUES

the highest recognition rate were respectivelynature(96%) and
outdoors(97%), whereas those with the lowest rate werelibrary
(35%) andofÞce/other quiet places(76%). Reaction time was
also compared for the 18 contexts. Overall, the average reaction
time was 13 s, ranging from 5 s (nature) to 21 s (library).

2) Mono/Stereo/Binaural Test:In the analysis of the second
test, recognition rates were compared for monophonic, stereo-
phonic, and binaural presentations. The average rate for con-
text recognition with the three presentation techniques is shown
in Table VI. The recognition rate averaged over the three tech-
niques was 66% for context and it increased to 88% for high-
level contexts. Differences in recognition accuracy can be ob-
served between the different presentation techniques, especially
with the stereo con� guration in the case of context recognition,
but this is not statistically signi� cant overall. An average recog-
nition time of 14 s was found for all stimuli. Comparing now the
three presentation techniques, a signi� cant difference was found
with lower average recognition time for the stereo and binaural
presentation (13 s) than the mono one (15 s).

3) Qualitative Test: In the last test, data on the qualitative
assessment of recognition cues was collected and analyzed.
The two measures computed from the questionnaire were a per-
centage of speci� c cues used in recognition (i.e., cue not used
for a 0 rating and cue used otherwise) and its importance for
the recognition process (i.e., an average of rates over subjects),
as shown in Table VII. As a result, it was found that human
activity and spatial information cues are most often used (67%

TABLE VII
CUES USED FORAUDIO CONTEXT RECOGNITION

of cases), with a lower importance for spatial information, how-
ever (1.88 rating against 2.55 for human activity). Prominent
events were also mentioned as an important cue for recognition
with a rate of 2.50.

C. Conclusion of the Subjective Test

This listening test showed that humans are able to recognize
contexts in 69% of cases. The recognition rate increases to
88%, when considering high-level categorization of contexts
only. Recognition time was 13 s on average. It should be noted,
however, that reaction time for high-level context detection
alone would probably be signi� cantly faster. Indeed, some of
the subjects reported that they could exclude most of the con-
texts fast, but the� nal decision between speci� c contexts from
the same high-level context class took more time. Differences
between the different reproduction techniques were also found,
but these were not statistically signi� cant. The presentation
technique was only found to be signi� cant for the reaction time.

D. Performance Comparison Between the System
and Human Listeners

A direct comparison between the system and the human
ability was made using exactly the same test samples and
reference classes as in the listening test. Figs. 3 and 4 show the
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averaged confusion matrices for the subjects and the system
on this test setup, respectively. The boxes indicate the six
high-level categories. The amount of test data given to the
system was 30 s, since the human subjects did not usually listen
through the whole 60 s. The averaged recognition accuracies of
the computer system are 58% and 82% against the accuracies
69% and 88% obtained in the listening test for contexts and
high-level classes, respectively.

VII. CONCLUSION

Building context aware applications using audio is feasible,
especially when high-level contexts are concerned. In com-
parison with the human ability, the proposed system performs
rather well (58% versus 69% for contexts and 82% versus 88%
for high-level classes for the system and humans, respectively).
Both the system and humans tend to make similar confusions
mainly within the high-level categories.

Computationally ef� cient recognition methods were eval-
uated. Quite reliable recognition can be achieved using only
a four-dimensional feature vector that represents subband
energies, and even simplistic one-dimensional features achieve
recognition accuracy signi� cantly beyond chance rate. Dis-
criminative training leads to slightly but consistently better
recognition accuracies particularly for low-order HMM models.
Slight increase in recognition accuracy can also be obtained by
using PCA or ICA transformation of the mel-cepstral features.

The recognition rate as a function of the test sequence length
appears to converge only after about 30 to 60 s. Some degree of
accuracy can be achieved even in analysis frames below 1 s. The
average reaction time of human listeners was 14 s, i.e., some-
what smaller but of the same order as that of the system.
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Analysis of the Meter of Acoustic Musical Signals
Anssi P. Klapuri, Antti J. Eronen, and Jaakko T. Astola, Fellow, IEEE

Abstract—A method is decribed which analyzes the basic pat-
tern of beats in a piece of music, the musical meter. The analysis
is performed jointly at three different time scales: at the tempo-
rally atomic tatum pulse level, at the tactus pulse level which cor-
responds to the tempo of a piece, and at the musical measure level.
Acoustic signals from arbitrary musical genres are considered. For
the initial time-frequency analysis, a new technique is proposed
which measures the degree of musical accent as a function of time
at four different frequency ranges. This is followed by a bank of
comb Þlter resonators which extracts features for estimating the
periods and phases of the three pulses. The features are processed
by a probabilistic model which represents primitive musical knowl-
edge and uses the low-level observations to perform joint estima-
tion of the tatum, tactus, and measure pulses. The model takes into
account the temporal dependencies between successive estimates
and enables both causal and noncausal analysis. The method is val-
idated using a manually annotated database of 474 music signals
from various genres. The method works robustly for different types
of music and improves over two state-of-the-art reference methods
in simulations.

Index Terms—Acoustic signal analysis, music, musical meter
analysis, music transcription.

I. INTRODUCTION

M ETER analysis, here also calledrhythmic parsing, is an
essential part of understanding music signals and an in-

nate cognitive ability of humans even without musical educa-
tion. Perceiving the meter can be characterized as a process of
detecting moments of musical stress (accents) in an acoustic
signal and Þltering them so that underlying periodicities are dis-
covered [1], [2]. For example, tapping a foot to music indicates
that the listener has abstracted metrical information about music
and is able to predict when the next beat will occur.

Musical meter is a hierarchical structure, consisting of pulse
sensations at different levels (time scales). Here, three metrical
levels are considered. The most prominent level is thetactus,
often referred to as the foot tapping rate or the beat. Following
the terminology of [1], we use the wordbeatto refer to the in-
dividual elements that make up a pulse. A musical meter can
be illustrated as in Fig. 1, where the dots denote beats and each
sequence of dots corresponds to a particular pulse level. By the
period of a pulse we mean the time duration between succes-
sive beats and byphasethe time when a beat occurs with re-
spect to the beginning of the piece. Thetatumpulse has its name
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Fig. 1. Music signal with three metrical levels illustrated.

stemming from Òtemporal atomÓ [3]. The period of this pulse
corresponds to the shortest durational values in music that are
still more than incidentally encountered. The other durational
values, with few exceptions, are integer multiples of the tatum
period and the onsets of musical events occur approximately at
a tatum beat. Themusical measurepulse is typically related to
the harmonic change rate or to the length of a rhythmic pattern.
Although sometimes ambiguous, these three metrical levels are
relatively well-deÞned and span the metrical hierarchy at the au-
rally most important levels. Thetempoof a piece is deÞned as
the rate of the tactus pulse. In order that a meter would make
sense musically, the pulse periods must be slowly varying and,
moreover, each beat at the larger levels must coincide with a
beat at all the smaller levels.

The conceptphenomenal accentis important for meter anal-
ysis. Phenomenal accents are events that give emphasis to a
moment in music. Among these are the beginnings of all dis-
crete sound events, especially the onsets of long pitched events,
sudden changes in loudness or timbre, and harmonic changes.
Lerdahl and Jackendoff deÞne the role of phenomenal accents
in meter perception compactly by saying that Òthe moments of
musical stress in the raw signal serve as cues from which the
listener attempts to extrapolate a regular patternÓ [1, p. 17].

Automatic rhythmic parsing has several applications. A met-
rical structure facilitates cut-and-paste operations and editing
of music signals. It enables synchronization with light effects,
video, or electronic instruments, such as a drum machine. In
a disc jockey application, metrical information can be used
to mark the boundaries of a rhythmic loop or to synchronize
two audio tracks. Provided that a time-stretching algorithm is
available, rhythmic modiÞcations can be made to audio signals
[4]. Rhythmic parsing for musical instrument digital interface
(MIDI) 1 data is required fortime quantization, an indispensable
subtask of score typesetting from keyboard input [5]. The
particular motivation for the present work is to utilize metrical
information in further signal analysis and in music transcription
[6]Ð[8].

1A standard interface for exchanging performance data and parameters be-
tween electronic musical devices.

1558-7916/$20.00 © 2006 IEEE
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A. Previous Work

The work on automatic meter analysis originated from algo-
rithmic models that attempted to explain how a human listener
arrives at a particular metrical interpretation of a piece. An ex-
tensive analysis of the early models has been given by Lee in [9]
and later augmented by Desain and Honing in [10]. In brief, the
early models performed meter analysis for symbolic data (im-
pulse patterns) and can be seen as being based on aset of rules
that were used to deÞne what makes a musical accent and to
infer the most natural meter.

More recently, Rosenthal proposed a system to emulate the
human rhythm perception for piano performances, presented
as MIDI Þles [11]. Parncutt developed a detailed algorithmic
model of meter perception based on systematic listening tests
[12]. Brown analyzed the meter of musical scores by processing
the onset times and durations of note events using the autocorre-
lation function [13]. Large and Kolen used adaptive oscillators
which adjust their period and phase to an incoming pattern of
impulses, located at the onsets of musical events [14].

Temperley and Sleator [15] proposed a meter analysis algo-
rithm for arbitrary MIDI Þles by implementing the preference
rules that were described in verbal terms by Lerdahl and Jack-
endoff in [1]. Dixon proposed a rule-based system to track the
tactus pulse of expressive MIDI performances and introduced a
simple onset detector to make the system applicable for audio
signals [16]. The source codes of both TemperleyÕs and DixonÕs
systems are publicly available for testing.

Cemgil and Kappen developed a probabilistic generative
model for the timing deviations in expressive musical perfor-
mances [5]. Then, the authors used Monte Carlo methods to
infer a hidden continuous tempo variable and quantized ideal
note onset times from observed noisy onset times in a MIDI
Þle. A similar Bayesian model was independently proposed by
Raphael [17].

Goto and Muraoka were theÞrst to achieve a reasonable
meter analysis accuracy for audio signals [18], [19]. Their
system operated in real time and was based on an architecture
where multiple agents tracked competing meter hypotheses.
Beat positions at the larger levels were inferred by detecting
certain drum sounds [18] or chord changes [19].

Scheirer proposed an approach to tactus tracking where no
discrete onsets or sound events are detected as a middle-step, but
periodicity analysis is performed directly on the half-wave recti-
Þed (HWR) differentials of subband power envelopes [20]. The
source code of ScheirerÕs system is publicly available. Sethares
and Staley took a similar approach, but used a periodicity trans-
form for periodicity analysis instead of a bank of combÞlters
[21]. Laroche proposed a noncausal algorithm where spectral
change was measured as a function of time, the resulting signal
was correlated with impulse trains of different periods, and dy-
namic programming was used toÞnd a continuous time-varying
tactus pulse [22].

Hainsworth and Macleod [23] developed a method which is
loosely related to that of Cemgilet al. [5]. They extracted dis-
crete onsets from an audio signal and then used particleÞlters to
associate the onsets to a time-varying tempo process and toÞnd
the locations of the beats. Gouyonet al.proposed a system for

Fig. 2. Overview of the meter estimation method. The two intermediate data
representations are bandwise accent signalsv (n) and metrical pulse saliences
(weights)s(�; n ) .

detecting the tatum pulse in percussive audio tracks of constant
tempo [24].

In summary, most of the earlier work on meter analysis has
concentrated on symbolic (MIDI) data and typically analyzed
the tactus pulse only. Some of the systems [5], [14], [16], [17]
can be immediately extended to process audio signals by em-
ploying an onset detector which extracts the beginnings of dis-
crete acoustic events from an audio signal. Indeed, the authors
of [16] and [17] have introduced an onset detector themselves.
Elsewhere, onset detection methods have been proposed that are
based on using subband energies [25], an auditory model [26],
support vector machines [27], independent component analysis
[28], or a complex-domain distance measure [29]. However,
if a rhythmic parser has been originally developed for sym-
bolic data, the extended system is usually not robust to diverse
acoustic material (e.g., classical versus rock music) and cannot
fully utilize the acoustic cues that indicate phenomenal accents
in music signals.

There are a few basic problems that need to be addressed in
a successful meter analysis system. First, the degree of musical
accentuation as a function of time has to be measured. Some sys-
tems do this in a continuous manner [20], [21] whereas others
extract discrete onsets from an audio signal [18], [22], [24].
Second, the periods and phases of the underlying metrical pulses
have to be estimated. The methods which detect discrete events
as a middle-step have often used inter-onset-interval histograms
for estimating the periods [16], [18], [19], [24]. Third, a system
has to choose the metrical level which corresponds to the tactus
or some other specially designated pulse level. This may take
place implicitly, or by using a prior distribution for pulse pe-
riods [12] or by rhythmic pattern matching [18].

B. Proposed Method

The aim of this paper is to describe a method which analyzes
the meter of acoustic musical signals at the tactus, tatum, and
measure pulse levels. The target signals are not limited to any
particular music type but all the main Western genres, including
classical music, are represented in the validation database.

An overview of the method is shown in Fig. 2. For the
time-frequency analysis part, a technique is proposed which
aims at measuring the degree of accentuation in a music signal.
The technique is robust to diverse acoustic material and can be
loosely seen as a synthesis and generalization of two earlier
state-of-the-art methods [18] and [20]. Feature extraction for
estimating the pulse periods and phases is performed using
combÞlter resonators very similar to those used by Scheirer in
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[20]. This is followed by a probabilistic model where the pe-
riod-lengths of the tactus, tatum, and measure pulses are jointly
estimated and temporal continuity of the estimates is modeled.
At each time instant, the periods of the pulses are estimated
Þrst and act as inputs to the phase model. The probabilistic
models encode prior musical knowledge and lead to a more
reliable and temporally stable meter tracking. Both causal and
noncausal algorithms are presented.

This paper is organized as follows. Section II will describe the
different elements of the system shown in Fig. 2. Section III will
present experimental results and compare the proposed method
with two reference methods. The main conclusions will be sum-
marized in Section IV.

II. M ETER ANALYSIS MODEL

This section will describe the different parts of the meter anal-
ysis method illustrated in Fig. 2. Section II-A will describe the
time-frequency analysis part. In Section II-B, the combÞlter
resonators will be introduced. Sections II-C and II-D will de-
scribe the probabilistic models which are used to estimate the
periods and phases of the three pulse levels.

A. Calculation of Bandwise Accent Signals

All the phenomenal accent types mentioned in the introduc-
tion can be observed in the time-frequency representation of a
signal. Although an analysis using a model of the human audi-
tory system might seem theoretically advantageous (since meter
is basically a cognitive phenomenon), we did not manage to ob-
tain a performance advantage using a model similar to [26] and
[30]. Also, the computational complexity of such models makes
them rather impractical.

In a time-frequency plane representation, some data reduc-
tion must take place to discard information which is irrelevant
for meter analysis. A big step forward in this respect was taken
by Scheirer who demonstrated that the perceived rhythmic con-
tent of many music types remains the same if only the power en-
velopes of a few subbands are preserved and then used to mod-
ulate a white noise signal [20]. ApproximatelyÞve subbands
were reported to sufÞce. Scheirer proposed a method where pe-
riodicity analysis was carried out within the subbands and the
results were then combined across bands.

Although ScheirerÕs method was indeed very successful,
a problem with it is that it applies primarily to music with a
Òstrong beat.ÓHarmonic changes for example in classical or
vocal music go easily unnoticed using only a few subbands.
In order to detect harmonic changes and note beginnings in
legato2 passages, approximately 40 logarithmically-distributed
subbands would be needed.3 However, this leads to a dilemma:
the resolution is sufÞcient to distinguish harmonic changes
but measuring periodicity at each narrow band separately is
no longer appropriate. The power envelopes of individual
narrow bands are not guaranteed to reveal the correct metrical

2A smooth and connected style of playing in which no perceptible gaps are
left between notes.

3In this case, the center frequencies are approximately onewhole toneapart,
which is the distance between, e.g., the notesc andd.

periodsÑ or even to show periodicity at all, because individual
events may occupy different frequency bands.

To overcome the previous problem, consider another state-of-
the-art system, that of Goto and Muraoka [18]. They detect
narrow-band frequency components and sum their power dif-
ferentials across predeÞned frequency rangesbeforeonset de-
tection and periodicity analysis takes place. This has the advan-
tage that harmonic changes are detected, yet periodicity analysis
takes place at wider bands.

There is a continuum between the previous two approaches.
The tradeoff is: how many adjacent subbands are combined be-
fore the periodicity analysis and how many at the later stage
when the bandwise periodicity analysis results are combined.
In the following, we propose a method which can be seen as a
synthesis of the approaches of Scheirer and Gotoet al..

Acoustic input signals are sampled at 44.1-kHz rate and 16-b
resolution and then normalized to have zero mean and unity
variance. Discrete Fourier transforms (DFTs) are calculated in
successive 23-ms time frames which are Hanning-windowed
and overlap 50%. In each frame, 36 triangular-response band-
passÞlters are simulated that are uniformly distributed on a crit-
ical-band scale between 50 Hz and 20 kHz [31, p. 176]. The
power at each band is calculated and stored to , where
is the frame index and is the band index, with

36. The exact number of subbands is not critical.
There are many potential ways of measuring the degree of

change in the power envelopes at critical bands. For humans,
the smallest detectable change in intensityis approximately
proportional to the intensity of the signal, the same amount of
increase being more prominent in a quiet signal. That is, ,
the Weber fraction, is approximately constant perceptually
[31, p. 134]. This relationship holds for intensities from about
20 dB to about 100 dB above the absolute hearing threshold.
Thus, it is reasonable to normalize the differential of power
with power, leading to which is equal to

. This measures spectral change and can be
seen to approximate the differential ofloudness, since the
perception of loudness for steady sounds is rougly proportional
to the sum of log-powers at critical bands.

The logarithm and differentiation operations are both repre-
sented in a moreßexible form. A numerically robust way of
calculating the logarithm is the-law compression

(1)

which performs a logarithmic-like transformation for as
motivated above but behaves linearly near zero. The constant
determines the degree of compression and can be used to adjust
between a close-to-linear ( 0.1) and a close-to-logarithmic
( ) transformation. The value 100 is employed, but
all values in the range [10, ] were found to perform almost
equally well.

To achieve a better time resolution, the compressed power en-
velopes are interpolated by factor two by adding zeros be-
tween the samples. This leads to the sampling rate 172 Hz.
A sixth-order Butterworth low-passÞlter with 10 Hz
cutoff frequency is then applied to smooth the compressed and
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Fig. 3. Illustration of the dynamic compression and weighted differentiation
steps for an artiÞcial signal. Upper panel showsx (k) and the lower panel shows
u (n).

interpolated power envelopes. The resulting smoothed signal is
denoted by .

Differentiation of is performed as follows. First, an
HWR differential of is calculated as

HWR (2)

where the function HWR sets negative values
to zero and is essential to make the differentiation useful. Then
a weighted average of and its differential is formed
as

(3)

where determines the balance between and
, and the factor compensates for the fact that the

differential of a low-pass-Þltered signal is small in amplitude. A
prototypical meter analysis system and a subset of our acoustic
database (see Section III) were used to thoroughly investigate
the effect of . Values between 0.6 and 1.0 performed well and

0.8 was taken into use. Using this value instead of 1.0
makes a slight but consistent improvement in the analysis accu-
racy.

Fig. 3 illustrates the described dynamic compression and
weighted differentiation steps for an artiÞcial subband-power
signal . Although the present work is motivated purely
from a practical application point of view, it is interesting to
note that the graphs in Fig. 3 bear considerable resemblance
to the response of MeddisÕs auditory-nerve model to acoustic
stimulation [32].

Finally, each adjacent bands are linearly summed to get
accent signals at different frequency ranges

(4)

The accent signals serve as an intermediate data repre-
sentation for musical meter analysis. They represent the degree
of musical accent as a function of time at the wider frequency

bands (channels). We use 36 and 9, leading to
4.

It should be noted that combining each adjacent bands at
this stage is not primarily an issue of computational complexity,
but improves the analysis accuracy. Again, a prototypical meter
analysis system was used to investigate the effect of different
values of . It turned out that neither of the extreme values

or 1 is optimal, but using a large number of ini-
tial bands 20 and three or fourÒaccent bandsÓ(channels)

leads to the most reliable meter analysis. Other parameters
were re-estimated in each case to ensure that this was not merely
a symptom of parameter couplings. Elsewhere, at least Scheirer
[20] and Laroche [22] have noted that a single accent signal (the
case ) appears not to be sufÞcient as an intermediate
representation for rhythmic parsing.

The presented form of calculating the bandwise accent sig-
nals is veryßexible when varying , , , and . A repre-
sentation similar to that used by Scheirer in [20] is obtained by
setting 0.1, 1, 6, 1. A representation
roughly similar to that used by Goto in [18] is obtained by set-
ting 0.1, 1, 36, 6. In the following, the
Þxed values 100, 0.8, 36, 9 are used.

B. Bank of Comb Filter Resonators

Periodicity of the bandwise accent signals is analyzed
to estimate thesalience(weight) of different pulse period can-
didates. Four different period estimation algorithms were eval-
uated: a method based on autocorrelation, another based on the
method of de CheveignŽ and Kawahara [33], different types
of comb-Þlter resonators [20], and banks of phase-locking res-
onators [14].

As an important observation, three of the four period estima-
tion methods performed equally well after a thorough optimiza-
tion. This suggests that the key problems in meter analysis are in
measuring the degree of musical accentuation and in modeling
higher level musical knowledge, not inÞnding exactly the cor-
rect period estimator. The period estimation method presented in
the following was selected because it is by far the least complex
among the three best-performing algorithms, requiring only few
parameters and no additional postprocessing steps.

Using a bank of comb-Þlter resonators with a constant
half-time was originally proposed for tactus tracking by
Scheirer [20]. The combÞlters that we use have an exponen-
tially-decaying impulse response where thehalf-time refers
to the delay during which the response decays to a half of its
initial value. The output of a combÞlter with delay for input

is given by

(5)

where the feedback gain is calculated based on a
selected half-time in samples. We used a half-time equivalent
to 3 s, i.e., 3.0 s , which is short enough to react to tempo
changes but long enough to reliably estimate pulse-periods of up
to 4 s in length.

The combÞlters implement a frequency response where the
frequencies , have a unity response and
the maximum attenuation between the peaks is
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Fig. 4. Resonator energies for an impulse train with a period-length of 24
samples (left) and for white noise (right). Upper panels show the energies
r̂ (�; n ) and the lower panels normalized energiess (�; n ) .

. The overall power of a combÞlter with feedback
gain can be calculated by integrating over the squared im-
pulse response, which yields

(6)

A bank of such resonators was applied, withgetting values
from 1 to , where 688 corresponds to 4 s. The
computational complexity of one resonator is per input
sample, and the overall resonatorÞlterbank requires of the order

operations per second, which is not too demanding for
real-time applications.

Instantaneous energies of each combÞlter in channel
at time are calculated as

(7)

These are then normalized to obtain

(8)

where is the energy of the accent signal , calculated
by squaring and by applying a leaky integrator, i.e., a res-
onator which has 1 and the same three-second half-time
as the other resonators. Normalization with compensates
for the differences in the overall power responses for different

. The proposed normalization is advantageous because it pre-
serves a unity response at the peak frequencies and at the same
time removes a -dependent trend for a white-noise input.

Fig. 4 shows the resonator energies and the
normalized energies for two types of artiÞcial input

: an impulse train and a white-noise signal. It is important
to notice that all resonators that are in rational-number relations
to the period of the impulse train (24 samples) show response
to it. In the case of the autocorrelation function, for example,
only integer multiples of 24 come up and an explicit postpro-
cessing step was necessary to generate responses to the subhar-
monic lags and to achieve the same meter analysis performance.

This step is not needed for combÞlter resonators where the con-
ceptual complexity and the number of free parameters, thus, re-
mains smaller.

Finally, a function which represents the overall
saliences of different metrical pulses at timeis obtained as

(9)

This function acts as theobservationfor the probabilistic
model that estimates the pulse periods.

For tatum period estimation, the discrete power spectrum
of is calculated as

(10)
where the emphasis withcompensates for a spectral trend and
the window function is half-Hanning

(11)

The rationale behind calculating the DFT in (10) is that, by
deÞnition, other pulse periods are integer multiples of the tatum
period. Thus, the overall function contains information
about the tatum and this is conveniently gathered for each
tatum-frequency candidate using the DFT as in (10). For
comparison, Gouyonet al. [24] used an inter-onset-interval
histogram and MaherÕs two-way mismatch procedure [34]
served the same purpose. Their idea was toÞnd a tatum period
which best explained the multiple harmonically related peaks in
the histogram. Frequencies above 20 Hz can be discarded from

, since tatum frequencies faster than this are very rare.
It should be noted that the observation and its spec-

trum are zero-phase, meaning that the phases of the
pulses at different metrical levels have to be estimated using
some other source of information. As will be discussed in Sec-
tion II-D, the phases are estimated based on the states of the
combÞlters, after the periods have been decidedÞrst.

C. Probabilistic Model for Pulse Periods

Period-lengths of the metrical pulses can be estimated inde-
pendently of their phases and it is reasonable to compute the
phase only for the few winning periods.4 Thus, the proposed
methodÞnds periodsÞrst and then the phases (see Fig. 2). Al-
though estimating the phases is not trivial, the search problem
is largely completed when the period-lengths have been found.

Musical meter cannot be assumed to remain static over the
whole duration of a piece. It has to be estimated causally at suc-
cessive time instants and there must be some tying between the
successive estimates. Also, the dependencies between different
metrical pulse levels have to be taken into account. These re-
quire prior musical knowledge which is encoded in the proba-
bilistic model to be presented.

4For comparison, Laroche [22] estimates periods and phases simultaneously,
at the expense of a larger search space. Here three pulse levels are being esti-
mated jointly and estimating periods and phases separately serves the purpose
of retaining a moderately-sized search space.
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For period estimation, a hidden Markov model that describes
the simultaneous evolution of four processes is constructed. The
observable variable is the vector of instantaneous energies of the
resonators, , denoted in the following. The unobserv-
able processes and the corresponding hidden variables are the
tatum period , tactus period , and measure period . As
a mnemonic for this notation, recall that the tatum is the tem-
porally atomic (A) pulse level, the tactus pulse is often called
ÒbeatÓ(B), and the musical measure pulse is related to the har-
monic (i.e., chord) change rate (C). For convenience, we use

to denote aÒmeter state,Óequivalent to ,
, and l. The hidden state process is a time-homoge-

nousÞrst-order Markov model which has an initial state distri-
bution and transition probabilities . The
observable variable is conditioned only on the current state, i.e.,
we have the state-conditional observation densities .

The joint probability density of a state sequence
and observation sequence can

be written as

(12)
where the term can be decomposed as

(13)

It is musically meaningful to assume that

(14)

i.e., given the tactus period, the tatum period does not give ad-
ditional information regarding the measure period. We further
assume that given , the other two hidden variables at time

give no additional information regarding . For the tatum
and measure periods, , we assume that given
and , the other two hidden variables at time give no
additional information regarding . It follows that (13) can be
written as

(15)

Using the same assumptions, is decomposed and simpli-
Þed as

(16)

The described modeling assumptions lead to a structure
which is represented as a directed acyclic graph in Fig. 5.
The arrows in the graph represent conditional dependencies
between the variables. The circles denote hidden variables and
the observed variable is marked with boxes. The tactus pulse
has a central role in meter perception and it is not by chance
that the other two variables are drawn to depend on it [1, pp.

Fig. 5. Hidden Markov model for the temporal evolution of the tatum, beat,
and measure pulse periods.

73Ð74]. The assumption in (14) is not valid if the variables are
permuted.

1) Estimation of the State-Conditional Observation Likeli-
hoods: The remaining problem is toÞnd reasonable estimates
for the model parameters, i.e., for the probabilities that appear
in (12)Ð(16). In the following, we ignore the time indexes for
a while for simplicity. The state-conditional observation likeli-
hoods are estimated from a database of musical record-
ings where the musical meter has been hand-labeled (see Sec-
tion III). However, the data is very limited in size compared to
the number of parameters to be estimated. Estimation of the state
densities for each different is impossible since each
of the three discrete hidden variables can take on several hun-
dreds of different values. By making a series of assumptions we
arrive at the following approximation for :

(17)

where and are as deÞned in (9)Ð(10), omitting the
time indexes. The Appendix presents the derivation of (17) and
the underlying assumptions in detail. An intuitive rationale of
(17) is that a truly existing tactus or measure pulse appears as a
peak in at the lag that corresponds to the pulse period. Anal-
ogously, the tatum period appears as a peak in at the fre-
quency that corresponds to the inverse of the period. The product
of these three values correlates approximately linearly with the
likelihood of the observation given the meter.

2) Estimation of the Transition and Initial Probabilities:In
(15), the term can be decomposed as

(18)
where theÞrst factor represents transition probabilities between
successive period estimates and the second term represents the
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Fig. 6. Likelihood functionf (� =� ) which describes the tendency that
the periods are slowly-varying.

relation dependencies of simultaneous periods,and , in-
dependent of their actual frequencies of occurrence (in practice

tends to be integer multiple of ). Similarly

(19)
The transition probabilities ,

between successive period estimates are obtained as follows.
Again, the number of possible transitions is too large for any rea-
sonable estimates to be obtained by counting occurrences. The
transition probability is modeled as a product of the prior proba-
bility for a certain period, , and a term which
describes the tendency that the periods are slowly-varying

(20)
where . The function

(21)

implements a normal distribution as a function of the logarithm
of the ratio of successive period values. It follows that the like-
lihood of large changes in period is higher for long periods, and
that period doubling and halving are equally probable. The pa-
rameter 0.2 was found by monitoring the performance of
the system in simulations. The distribution (21) is illustrated in
Fig. 6.5

Prior probabilities for tactus period lengths, , have
been measured from actual data by several authors [12], [35],
[36]. As suggested by Parncutt [12], we apply the two-param-
eter lognormal distribution

(22)

where and are the scale and shape parameters, respec-
tively. For the tactus period, the values 0.55 and
0.28 were estimated by counting the occurrences of different
period lengths in our hand-labeled database (see Section III)
and byÞtting the lognormal distribution to the histogram data.
The parameters depend somewhat on genre [35], [36] but since
the genre is generally not known, common parameter values are
used here. Fig. 7 shows the period-length histograms and the
corresponding lognormal distributions for the tactus, measure,

5For comparison, Laroche uses a cost function where tempo changes ex-
ceeding a certain threshold are assigned aÞxed cost and smaller tempo changes
cause no cost at all [22].

Fig. 7. Period-length histograms and the corresponding lognormal
distributions for tatum, tactus, and measure pulses.

Fig. 8. Distribution g(x) which models the relation dependencies of
simultaneous periods [see (25)].

and tatum periods. The scale and shape parameters for the tatum
and measure periods are 0.18, 0.39, 2.1,
and 0.26, respectively. These were estimated from the
hand-labeled data in the same way.

The relation dependencies of simultaneous periods are mod-
eled as follows. We model the latter terms in (18)Ð(19) as

(23)

(24)

where is a Gaussian mixture density of the form

(25)

where are the component weights and sum to unity,are
the component means, and 0.3 is the common variance.
The function models the relation dependencies of simultaneous
periods, independent of their actual frequencies of occurrence.
The exact weight values are not critical, but are designed to re-
alize a tendency toward binary or ternary integer relationships
between concurrent pulses. For example, it happens quite often
that one tactus period consists of two, four, or six tatum periods,
but multiplesÞve and seven are much less likely in music and,
thus, have lower weights. The distribution is shown in Fig. 8.
The Gaussian mixture model was employed to allow some de-
viation from strictly integral ratios. In theory, the period-lengths
should be precisely in integral ratios but, in practice, there are in-
accuracies since the period candidates are chosen from discrete
vectors and . These inaccuracies are conveniently handled
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by choosing an appropriate value for in the previous model.
The weights were obtained byÞrst assigning them values
according to a musical intuition. Then the dynamic range of the
weights was found by raising them to a common power which
was varied between 0.1 and 10. The value which performed best
in small-scale simulations was selected. Finally, small adjust-
ments to the values were made.

It should be noted that here the model parameters were spec-
iÞed in part by hand, considering one probability distribution at
a time. It seems possible to devise an algorithm that would learn
the model parameters jointly by Bayesian optimization, that is,
by maximizing the posterior probability of training data given
the prior distributions. However, even after all the described
modeling assumptions and simpliÞcations, deriving an expecta-
tion-maximization algorithm [37] for the described model, for
example, is not easy and such an algorithm does not exist at the
present time.

3) Finding the Optimal Sequence of Period Estimates:Now
we must obtain an estimate for the unobserved state variables
given the observed resonator energies and the model parameters.
We do this byÞnding the most likely sequence of state variables

given the observed data .
This can be straighforwardly computed using the Viterbi algo-
rithm widely applied in speech recognition [38]. Thus, we seek
the sequence of period estimates

(26)

where denotes the joint probability density of the
hidden and observed variables (see (12)).

In a causal model, the meter estimateat time is deter-
mined according to the end-state of the best partial path at that
point in time. A noncausal estimate after seeing a complete se-
quence of observations can be computed using backward de-
coding.

Evaluating all the possible path candidates would be compu-
tationally very demanding. Therefore, we apply a suboptimal
beam-search strategy and evaluate only a predeÞned number of
the most promising path candidates at each time instant. The se-
lection of the most promising candidates is made using a greedy
selection strategy. Once in a second, we selectbest can-
didates independently for the tatum, tactus, and measure pe-
riods. The number of candidates 5 was found to be safe
and was used in simulations. The selection is made by maxi-
mizing for . The probabilities
in (23)Ð(24) could be included to ensure that the selected can-
didates are consistent with each other, but in practice this is
unnecessary. After selecting the best candidates for each, we
need only to compute the observation likelihoods for
125 meter candidates, i.e., for the different combinations of the
tatum, tactus, and measure periods. This is done according to
(17) and the results are stored into a data vector. The transi-
tion probabilities are computed using (15) and stored into a
125-by-125 matrix. These data structures are then used in the
Viterbi algorithm.

Fig. 9. Rectangle indicates the observation matrixR for tactus phase
estimation at timen (here period� is 0.51 s.). Dashed line shows the correct
phase in this case.

D. Phase Estimation

The phases of the three pulses are estimated at successive time
instants, after the periods have been decided at these points. We
use , to refer to the estimated periods of the
tatum, tactus, and measure pulses at time, respectively. The
corresponding phases of the three pulses,, are expressed as
Òtemporal anchors,Ói.e., time values when the nearest beat unit
occurs with respect to the beginning of a piece. The periods and
phases and completely deÞne the meter at time.

In principle, the phase of the measure pulse,, determines
the phases of all the three levels. This is because in a well-
formed meter each measure-level beat must coincide with a
beat at all the lower metrical levels. However, determining the
phase of the measure pulse is difÞcult and turned out to require
rhythmic pattern matching techniques, whereas tactus phase es-
timation is more straightforward and robust. We therefore pro-
pose a model where the tactus and measure phases are estimated
separately using two parallel models. For the tatum pulse, phase
estimation is not needed but the tactus phase can be used.

Scheirer proposed using the state vectors of combÞlters to
determine the phase of the tactus pulse [20]. This is equivalent
to using the latest outputs of a resonator with delay. We have
resonators at several channelsand, consequently, an output
matrix where is the channel index and
the phase indextakes on values between and when
estimation is taking place at time. For convenience, we use
to denote the output matrix of a found pulse period
and the notation to refer to the individual elements of

. The matrix acts as the observation for phase estimation
at time .

Fig. 9 shows an example of the observation matrixwhen
tactus phase estimation is taking place 20 s after the beginning of
a piece. The four signals at different channels are the outputs of
the combÞlter which corresponds to the estimated tactus period

0.51 s. The output matrix contains the latest 0.51 s of
the output signals, as indicated with the rectangle. The correct
phase is marked with a dashed line.

Two separate hidden Markov models are evaluated in parallel,
one for the tactus phase and another for the measure phase. No
joint estimation is attempted. The two models are very similar
and differ only in how the state-conditional observation densi-
ties are deÞned. In both models, the observable variable is the
output matrix of the resonator which corresponds to the
found pulse period. The hidden variable is the phase of the pulse,

, taking on values between and . The hidden state
process is a time-homogenousÞrst-order Markov model which
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has an initial state distribution and transition probabili-
ties . The observable variable is conditional only
on the current state, thus, we have the state-conditional obser-
vation densities .

Again, the remaining problem is toÞnd reasonable estimates
for the model parameters. State-conditional observation likeli-
hoods for the tactus pulse are approximated as

(27)

where 1 corresponds to the lowest frequency channel. That
is, the likelihood is proportional to a weighted sum of the res-
onator outputs across the channels. Across-band summing is in-
tuitively meaningful and earlier used in [20] and [30]. Empha-
sizing the low frequencies is motivated by theÒstable bassÓrule
as stated in [1], and improved the robustness of phase estimation
in simulations. The exact weight values are not critical.

For the purpose of estimating the phase of the measure pulse,
a formula for the state-conditional observation likelihoods anal-
ogous to that in (27) is derived, but so that different channels are
weighted and delayed in a more complex manner. It turned out
that rhythmic pattern matching of some kind is necessary to an-
alyze music at this time scale and to estimate the measure phase

based on the output matrix . That is, no simple formula
such as (27) exists. The drawback of this is that rhythmic pat-
tern matching is more genre-speciÞc than for example the stable
bass rule which appears to be quite universal. In the case that the
system would have access to the pitch content of an incoming
piece, the points of harmonic change might serve as cues for es-
timating the measure phase in a more straightforward manner.
However, this remains to be proved. Estimation of the higher
level metrical pulses in audio data has been earlier attempted by
Goto and Muraoka who resorted to pattern matching [18] or to
straightforward chord change detection [19]. The method pre-
sented in the following is the most reliable that we found.

First, a vector is constructed as

(28)

where

(29)

(30)

and denotes modulus after division. The scalars
are weights for the resonator outputs at channelsand with de-
lays . The weights are used to encode a typical pattern
of energyßuctuations within one measure period, so that the
maximum of indicates the measure phase. The delayis
expressed in quarter-measure units so thatcorresponds to the
delay . For example, a simple pattern consisting of two
events, a low-frequency event (at channel 1) in the begin-
ning of a measure ( 0) and a loud event in the middle of the
measure ( 2), could be represented by deÞning the weights

3 (low), 1 for all (loud), and 0 otherwise.

Two rhythmic patterns were found that generalized quite well
over our database. The weight matrices and of these
patterns are given in the Appendix and lead to the corresponding

and . The patterns were found by trial and error,
trying out various arrangements of simple atomic events and
monitoring the behavior of against manually annotated
phase values. Both of the two patterns can be characterized as a
pendulous motion between a low-frequency event and a high-in-
tensity event. TheÞrst pattern can be summarized asÒlow, loud,
Ð, loud,Óand the second asÒlow, Ð, loud,Ð.ÓThe two patterns
are combined into a single vector to perform phase estimation
according to whichever pattern matches better to the data

(31)

The state-conditional observation likelihoods are then deÞned
as

(32)

Obviously, the two patterns imply abinary time signature: they
assume that one measure period consists of two or four tactus
periods. Analysis results for ternary meters will be separately
discussed in Section III-C.

Other pattern-matching approaches were evaluated, too. In
particular, we attempted to sample at the times of the tactus
beats and to train a statistical classiÞer to choose the beat which
corresponds to the measure beat (see [36] for further elaboration
on this idea). However, the methods were basically equivalent to
that described previously, yet less straightforward to implement
and performed slightly worse.

Transition probabilities between successive
phase estimates are modeled as follows. Given two phase esti-
mates (i.e., beat occurrence times), the conditional probability
which ties the successive estimates is assumed to be normally
distributed as a function of aprediction error which measures
the deviation of from the predicted next beat occurence time
given the previous beat time and the period

(33)

where

(34)

and 0.1 is common for . In (34), it should be
noted that any integer number of periodsmay elapse between

and . Since estimates are produced quite frequently
compared to the pulse rates, in many cases . The
initial state distributions are assumed to be uniform.

Using (27), (32), and (33), causal and noncausal computation
of phase is performed using the Viterbi algorithm as described
in Section II-C. Fifteen phase candidates for both the winning
tactus and the winning measure period are generated once in
a second. The candidates are selected in a greedy manner by
picking local maxima in . The corresponding
probability values are stored into a vector and transition proba-
bilities between successive estimates are computed using (33).
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E. Sound Onset Detection and Extrametrical Events

Detecting the beginnings of discrete acoustic events
one-by-one has many uses. It is often of interest whether
an event occurs at a metrical beat or not, and what is the exact
timing of an event with respect to its ideal metrical position.
Also, in some musical pieces there are extrametrical events,
such astriplets, where an entity of, e.g., four tatum periods is
exceptionally divided into three parts, orgrace noteswhich
are pitched events that occur shortly before a metrically stable
event.

In this paper, we used an onset detector as a front-end to one
of the reference systems (designed for MIDI input) to enable
it to process acoustic signals. Rather robust onset detection is
achieved by using anoverall accent signal which is com-
puted by setting in (4). Local maxima in represent
onset candidates and the value of at these points reßects the
likelihood that a discrete event occurred. A simple peak-picking
algorithm with aÞxed threshold level can then be used to dis-
tinguish genuine onsets from the changes and modulations that
take place during the ringing of a sound. Automatic adaptation
of the threshold would presumably further improve the detec-
tion accuracy.

III. RESULTS

This section looks at the performance of the proposed method
in simulations and compares the results with two reference sys-
tems. Also, the importance of different processing elements will
be validated.

A. Experimental Setup

Table I shows the statistics of the database6 that was used to
evaluate the accuracy of the proposed meter analysis method
and the two reference methods. Musical pieces were collected
from CD recordings, downsampled to a single channel, and
stored to a hard disc using 44.1-kHz sampling rate and 16-b
resolution. The database was created for the purpose of musical
signal classiÞcation in general and the balance between genres
is according to an informal estimate of what people listen to.

The metrical pulses were manually annotated for approxi-
mately one-minute long excerpts which were selected to rep-
resent each piece. Tactus and measure-pulse annotations were
made by a musician who tapped along with the pieces. The tap-
ping signal was recorded and the tapped beat times were then
detected semiautomatically using signal level thresholding. The
tactus pulse could be annotated for 474 of a total of 505 pieces.
The measure pulse could be reliably marked by listening for 320
pieces. In particular, annotation of the measure pulse was not at-
tempted for classical music without the musical scores. Tatum
pulse was annotated by theÞrst author by listening to the pieces
together with the annotated tactus pulse and by determining the
integer ratio between the tactus and the tatum period lengths.
The integer ratio was then used to interpolate the tatum beats
between the tapped tactus beats.

Evaluating a meter analysis system is not trivial. The issue
has been addressed in depth by Goto and Muraoka in [39]. As

6Details of the database can be found online at URL
http://www.cs.tut.Þ/~klap/iiro/meter.

TABLE I
STATISTICS OF THEEVALUATION DATABASE

suggested by them, we use the longestcontinuouscorrectly an-
alyzed segment as a basis for measuring the performance. This
means that one inaccuracy in the middle of a piece leads to
50% performance. The longest continuous sequence of correct
pulse estimates in each piece is sought and compared to the
length of the segment which was given to be analyzed. The
ratio of these two lengths determines the performance rate for
one piece and these are then averaged over all pieces. However,
prior to the meter analysis, all the algorithms under considera-
tion were given a 4-sÒbuild-up periodÓin order to make it the-
oretically possible to estimate the correct period already from
the beginning of the evaluation segment. Also, it was taken care
that none of the input material involved tempo discontinuities.
More speciÞcally, the interval between two tapped reference
beat times (pulse period) does not change more than 40% at a
time, between two successive beats. Other tempoßuctuations
were naturally allowed.

A correct period estimate is deÞned to deviate less than 17.5%
from the annotated reference and a correct phase to deviate from
an annotated beat time less than 0.175 times the annotated pe-
riod length. This precision requirement has been suggested in
[39] and was found perfectly appropriate here since inaccuracies
in the manually tapped beat times allow meaningful comparison
of only up to that precision. However, for the measure pulse, the
period and phase requirements were tightened to 10% and 0.1,
respectively, because the measure-period lengths are large and
allow the creation of a more accurate reference signal. For the
tatum pulse, tactus phase is used and, thus, the phase is correct
always when the tactus phase is correct, and only the period has
to be considered separately.

Performance rates are given for three different criteria [39].
¥ Correct: A pulse estimate at timeis accepted if both its

period and phase are correct.
¥ Accept d/h: Consistent period doubling or halving is

accepted. More exactly, a pulse estimate is accepted if
its phase is correct, the period matches either 0.5, 1.0, or
2.0 times the annotated reference, and the factor does not
change within the continuous sequence. Correct meter
analysis is taking place but a wrong metrical level is
chosen to be, e.g., the tactus pulse.

¥ Period correct: A pulse estimate is accepted if its period
is correct. Phase is ignored. For the tactus pulse, this can
be interpreted as thetempo estimationaccuracy.

Which is the single best number to characterize the perfor-
mance of a pulse estimator? This was investigated by auralizing
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TABLE II
TACTUS ANALYSIS PERFORMANCE(%) OF DIFFERENTMETHODS

meter analysis results.7 It was observed that temporal continuity
of correct meter estimates is indeed very important aurally [1,
pp. 74,104]. Second, phase errors are very disturbing. Third, pe-
riod doubling or halving is not very disturbing; tappingconsis-
tentlytwice too fast or slow does not matter much and selecting
the correct metrical level is in some cases ambiguous even for
a human listener [12]. In summary, it appears that theÒaccept
d/hÓcriterion gives a single best number to characterize the per-
formance of a system.

B. Reference Systems

To put the results in perspective, two reference methods are
used as a baseline in simulations. This is essential because the
principle of using a continuous sequence of correct estimates for
evaluation gives a somewhat pessimistic picture of the absolute
performance.

The methods of Scheirer [20] and Dixon [16] are very dif-
ferent, but both systems represent the state-of-the-art in tactus
pulse estimation and their source codes are publicly available.
Here, the used implementations and parameter values were
those of the original authors. However, for ScheirerÕs method,
some parameter tuning was made which slightly improved the
results. Dixon developed his system primarily for MIDI-input,
and provided only a simple front-end for analyzing acoustic
signals. Therefore, a third system denotedÒO+DixonÓ was
developed where an independent onset detector (described
in Section II-E) was used prior to DixonÕs tactus analysis.
Systematic phase errors were compensated for.

C. Experimental Results

In Table II, the tactus tracking performance of the proposed
causal and noncausal algorithms is compared with those of the
two reference methods. As theÞrst observation, it was noticed
that the reference methods did not maintain the temporal conti-
nuity of acceptable estimates. For this reason, the performance
rates are also given as percentages of individual acceptable esti-
mates (right half of Table II). DixonÕs method has difÞculties in
choosing the correct metrical level for tactus, but performs well
according to theÒaccept d/hÓcriterion when equipped with the
new onset detector. The proposed method outperforms the pre-
vious systems in both accuracy and temporal stability.

Table III shows the meter analysis performance of the pro-
posed causal and noncausal algorithms. As for human listeners,
meter analysis seems to be easiest at the tactus pulse level. For
the measure pulse, period estimation can be done robustly but

7Samples are available at URL http://www.cs.tut.Þ/~klap/iiro/meter.

TABLE III
METER ANALYSIS PERFORMANCE OF THEPROPOSEDMETHOD

estimating the phase is difÞcult. A reason for this is that in a
large part of the material, a drum pattern recurs twice within
one measure period and the system has difÞculties in choosing
which one is theÞrst. In the case that-phase errors (each beat is
displaced by a half-period) would be accepted, the performance
rate would be essentially the same as for the tactus pulse. How-
ever, -phase errorsaredisturbing and should not be accepted.

For the tatum pulse, in turn, deciding the period is difÞcult.
This is because the temporally atomic pulse rate typically comes
up only occasionally, making temporally stable analysis hard
to attain. The method often has to halve its period hypothesis
when theÞrst rapid event sequence occurs. This appears in the
performance rates so that the method is not able to produce a
consistent tatum period over time but alternates between, e.g.,
the reference and double the reference. This degrades the tem-
porally continuous rate, although theÒaccept d/hÓrate is very
good for individual estimates. The produced errors are not very
disturbing when listening to the results.

As mentioned in Section II-D, the phase analysis of the mea-
sure pulse using rhythmic patterns assumes a binary time signa-
ture. Nine percent of the pieces in our database have a ternary
(3/4) meter but, unfortunately, most of these represent the clas-
sical genre where the measure pulse was not annotated. Among
the other genres, there wereonly Þvepieces with ternary meter.
For these, the measure-level analysis was approximately twice
less accurate than for the rest of the database. For the tactus and
tatum, there were 41 and 30 annotated ternary pieces, respec-
tively, and no signiÞcant degradation in performance was ob-
served. On the contrary, the ternary pieces were rhythmically
easier than the others within the same genre.

Fig. 10 shows theÒaccept d/hÓ(continuity required) perfor-
mance rates for the proposed causal system within different
musical genres. For classical music, the proposed method is
only moderately successful, although, e.g., the tactus estima-
tion error rate still outperforms the performance of the reference
methods for the whole material (31% and 26% for ScheirerÕs
and DixonÕs methods, respectively). However, this may suggest
that pitch analysis would be needed to analyze the meter of clas-
sical music. In jazz music, the complexity of musical rhythms
is higher on the average and the task, thus, harder.

D. Importance of the Different Parts of the Probability Model

Table IV shows the performance rates for different system
conÞgurations. Different elements of the proposed model were
disabled in order to evaluate their importance. In each case, the
system was kept otherwiseÞxed. The baseline method is the
noncausal system.
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Fig. 10. Performance of the proposed causal system within different musical
genres. TheÒaccept d/hÓ(continuity required) percentages are shown for the
tatum (white), tactus (gray), and measure pulses (black).

TABLE IV
METER ANALYSIS PERFORMANCE (%) FOR DIFFERENT

SYSTEM CONFIGURATIONS

In theÞrst test, the dependencies between the different pulse
levels were broken by using a noninformative (ßat) distribution
for in (25). This slightly degrades the performance in all
cases. In the second test, the dependencies between temporally
successive estimates were broken by using a noninformative dis-
tribution for the transition probabilities between successive pe-
riod and phase estimates, and , re-
spectively. This degrades the temporal stability of the estimates
considerably and, hence, collapses the performance rates which
use the longest continuous correct segment for evaluation. In
the third case, the both types of dependencies were broken.
The system still performs moderately, indicating that the initial
time-frequency analysis method and the comb-Þlter resonators
provide a high level of robustness.

IV. CONCLUSION

A method has been described which can successfully analyze
the meter of acoustic musical signals. Musical genres of very di-
verse types can be processed with a common system conÞgura-
tion and parameter values. For most musical material, relatively
low-level acoustic information can be used, without the need to
model the higher level auditory functions such as sound source
separation or multipitch analysis.

Similarly to human listeners, computational meter analysis
is easiest at the tactus pulse level. For the measure pulse, pe-
riod estimation can be done equally robustly but estimating the
phase is less straightforward. Either rhythmic pattern matching

or pitch analysis seems to be needed to analyze music at this
time scale. For the tatum pulse, in turn, phase estimation is not
difÞcult at all, but deciding the period is very difÞcult for both
humans and a computational algorithm. This is because the tem-
porally atomic pulse rate typically comes up only occasionally.
Thus, causal processing is difÞcult and it is often necessary to
halve the tatum hypothesis when theÞrst rapid event sequence
occurs.

The critical elements of a meter analysis system appear to
be the initial time-frequency analysis part which measures mu-
sical accentuation as a function of time and the (often implicit)
internal model which represents primitive musical knowledge.
The former is needed to provide robustness for diverse instru-
mentations in classical, rock, or electronic music, for example.
The latter is needed to achieve temporally stable meter tracking
and toÞll in parts where the meter is only faintly implied by the
musical surface. A challenge in this part is to develop a model
which is generic for jazz and classical music, for example. The
proposed model describes sufÞciently low-level musical knowl-
edge to generalize over different genres.

APPENDIX

This appendix presents the derivation and underlying as-
sumptions in the estimation of the state-conditional observation
likelihoods . We Þrst assume that the realizations of

are independent of the realizations of and , that is,
. This violates

the dependencies of our model but signiÞcantly simpliÞes
the computations and makes it possible to obtain reasonable
estimates. Using the assumption, we can write

(35)

Furthermore, tatum information is most clearly visible in the
spectrum of the resonator outputs. Thus, we use

(36)

where is the spectrum of, according to (10). We further as-
sume the components ofand to be conditionally independent
of each other given the state, and write the nominator of (35) as

(37)

We make two more simplifying assumptions. First, we as-
sume that the value of and at the lags corresponding to a
period actually present in the signal depends only on the par-
ticular period, not on other periods. Second, the value at lags
where there is no period present in the signal is independent of
the true periods , , and , and is dominated by the fact
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that no period corresponds to that particular lag. Hence, (35) can
be written as

(38)

where denotes the probability of value
given that is a tactus pulse period and de-
notes the probability of value given that is not a tactus
pulse period. These conditional probability distributions (tactus,
measure, and tatum each have two distributions) were approxi-
mated by discretizing the value range of , , and
by calculating a histogram of values in the cases thatis
or is not an annotated metrical pulse period.

Then, by deÞning

(39)

Equation (38) can be written as

(40)

where the scalar is a function of but does not depend on
.
By using the two approximated histograms for the tactus,

measure, and tatum pulses, each of the three terms of the form
in (40) can be repre-

sented by a single discrete histogram. These were modeled with
Þrst-order polynomials. TheÞrst two terms depend linearly on
the value and the last term depends linearly on the value

. Thus, we can write

(41)

The histograms could be more accurately modeled with third-
order polynomials, but this did not bring performance advantage
over the simple linear model in (41).

Numerical values of the matrices used in Section II-D

Here channel determines the row and delaythe column. The
Þrst row corresponds to the lowest-frequency channel.
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Abstract
This paper presents a method for extracting two key met-
rical properties, the beat and the tatum, from acoustic sig-
nals of popular music. The method is computationally very
ef�cient while performing comparably to earlier methods.
High ef�ciency is achieved through multirate accent analy-
sis, discrete cosine transform periodicity analysis, and phase
estimation by adaptive comb �ltering. During analysis, the
music signals are �rst represented in terms of accentuation
on four frequency subbands, and then the accent signals are
transformed into periodicity domain. Beat and tatum peri-
ods and phases are estimated in a probabilistic setting, incor-
porating primitive musicological knowledge of beat–tatum
relations, the prior distributions, and the temporal continu-
ities of beats and tatums. In an evaluation with 192 songs,
the beat tracking accuracy of the proposed method was found
comparable to the state of the art. Complexity evaluation
showed that the computational cost is less than 1% of earlier
methods. The authors have written a real-time implementa-
tion of the method for the S60 smartphone platform.

Keywords: Beat tracking, music meter estimation, rhythm
analysis.

1. Introduction
Recent years have brought signi�cant advances in the �eld
of automatic music signal analysis, and music meter estima-
tion is no exception. In general, the music meter contains
a nested grouping of pulses calledmetrical levels, where
pulses on higher levels are subsets of the lower level pulses;
the most salient level is known as thebeat, and the lowest
level is termed thetatum[1, p. 21].

Metrical analysis of music signals has many applications
ranging from browsing and visualization to classi�cation
and recommendation of music. The state of the art has ad-
vanced high in performance, but the computational require-
ments have also remained restrictively high. The proposed
method signi�cantly improves computational ef�ciency while
maintaining satisfactory performance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page.
c
 2006 University of Victoria

The technical approaches for meter estimation are vari-
ous, includinge.g.autocorrelation based methods [6], inter-
onset interval histogramming [5], or banks of comb �lter
resonators [4], possibly followed by a probabilistic model [3].
See [2] for a review on rhythm analysis systems.

2. Algorithm Description
The algorithm overview is presented in Fig. 1: the input is
audio signals of polyphonic music, and the output consists
of the times of beats and tatums. The implementation of the
beat and tatum tracker has been done in C++ programming
language in the S60 smartphone platform. The algorithm
design is causal and the implementation works in real time.

The operation of the system can be described in six stages
(see Fig. 1):

1. Resampling stage,

2. Accent �lter bank stage,

3. Buffering stage,

4. Periodicity estimation stage,

5. Period estimation stage, and

6. Phase estimation stage.

First, the signal is resampled to a �xed sample rate, to
support arbitrary input sample rates. Second, the accent
�lter bank transforms the acoustic signal of music into a
form that is suitable for beat and tatum analysis. In this
stage, subband accent signals are generated, which consti-
tute an estimate of the perceived accentuation on each sub-
band. The accent �lter bank stage signi�cantly reduces the
amount of data.

Then, the accent signals are accumulated into four-second
frames. Periodicity estimation looks for repeating accents
on each subband. The subband periodicities are then com-
bined, and summary periodicity is computed.

Next, the most likely beat and tatum periods are esti-
mated from each periodicity frame. This uses a probabilistic
formulation of primitive musicological knowledge, includ-
ing the relation, the prior distribution, and the temporal con-
tinuity of beats and tatums. Finally, the beat phase is found
and beat and tatum times are positioned. The accent signal
is �ltered with a pair of comb �lters, which adapt to different
beat period estimates.



Figure 1. Beat and tatum analyzer.

Figure 2. Accent �lter bank overview. (a) The audio signal is �rst divided into subbands, then (b) power estimates on each subband
are calculated, and (c) accent computation is performed on the subband power signals.

2.1. Resampling

Before any audio analysis takes place, the signal is con-
verted to a 24 kHz sample rate. This is required because
the �lter bank uses �xed frequency regions. The resampling
can be done with a relatively low-quality algorithm, linear
interpolation, because high �delity is not required for suc-
cessful beat and tatum analysis.

2.2. Accent Filter Bank

Figure 2 presents an overview of the accent �lter bank. The in-
coming audio signalx[n] is (a) �rst divided into subband au-
dio signals, and (b) a power estimate signal is calculated for
each band separately. Last, (c) an accent signal is computed
for each subband.

The �lter bank divides the acoustic signal into seven fre-
quency bands by means of six cascaded decimating quadra-
ture mirror �lters (QMF). The QMF subband signals are
combined pairwise into three two-octave subband signals,
as shown in Fig. 2(a). When combining two consecutive
branches, the signal from the higher branch is decimated
without �ltering. However, the error caused by the alias-
ing produced in this operation is negligible for the proposed
method. The sampling rate decreases by four between suc-
cessive bands due to the two QMF analysis stages and the
extra decimation step. As a result, the frequency bands are
located at 0–190 Hz, 190–750 Hz, 750–3000 Hz, and 3–
12 kHz, when the �lter bank input is at 24 kHz.

There is a very ef�cient structure that can be used to im-

plement the downsampling QMF analysis with just two all-
pass �lters, an addition, and a subtraction. This structure is
depicted in Fig. 5.2-5 in [7, p. 203]. The allpass �lters for
this application can be �rst-order �lters, because only mod-
est separation is required between bands.

The subband power computation is shown Fig. 2(b). The
audio signal is squared, low-pass �ltered (LPF), and dec-
imated by subband speci�c factorM i to get the subband
power signal. The low-pass �lter is a digital �lter having
10 Hz cutoff frequency. The subband decimation ratiosM i =
f 48; 12; 3; 3ghave been chosen so that the power signal sam-
ple rate is 125 Hz on all subbands.

The subband accent signal computation in Fig. 2(c) is
modelled according to Klapuriet al. [3, p. 344–345]. In the
process, the power signal �rst is mapped with a nonlinear
level compression function labeledCompin Fig. 2(c),

f (x) =
�

5:213 ln(1 + 10
p

x); x > 0:0001
5:213 ln 1:1 otherwise.

(1)

Following compression, the �rst-order difference signal is
computed (Diff ) and half-wave recti�ed (Rect). In accor-
dance with Eq. (3) in [3], the recti�ed signal is summed to
the power signal after constant weighting, see Fig. 2(c). The
high computational ef�ciency of the proposed method lies
mostly in the accent �lter bank design. In addition to ef�-
ciency, the resulting accent signals are comparable to those
of Klapuri et al., seee.g.Fig. 3 in [3].



Figure 3. (a) Normalized autocorrelation and (b) summary pe-
riodicity, with beat (B) and tatum (T) periods shown.

2.3. Buffering
The buffering stage implements a ring buffer which accu-
mulates the signal into �xed-length frames. The incoming
signal is split into consecutive accent signal frames of a �xed
lengthN = 512 (4.1 seconds). The value ofN can be mod-
i�ed to choose a different performance–latency tradeoff.

2.4. Accent Periodicity Estimation
The accent signals are analyzed for intrinsic repetitions. Here,
periodicity is de�ned as the combined strength of accents
that repeat with a given period. For all subband accent sig-
nals, a joint summary periodicity vector is computed.

Autocorrelation� [`] =
P N � 1

n =0 a[n]a[n � `], 0 � ` �
N � 1, is �rst computed from eachN -length subband accent
framea[n]. The accent signal reaches peak values whenever
there are high accents in the music and remains low other-
wise. Computing autocorrelation from an impulsive accent
signal is comparable to computing the inter-onset interval
(IOI) histogram as described by Seppänen [5], with addi-
tional robustness due to not having to discretize the accent
signal into onsets.

The accent frame power� [0] is stored for later weight-
ing of subband periodicities. Offset and scale variations are
eliminated from autocorrelation frames by normalization,

�� [`] =
� [`] � minn � [n]

P N � 1
n =0 � [n] � N minn � [n]

: (2)

See Fig. 3(a) for an example normalized autocorrelation frame.
The �gure shows also the correct beat period B, 0.5 seconds,
and tatum period T, 0.25 seconds, as vertical lines.

Next, accent periodicity is estimated by means of theN -
point discrete cosine transform (DCT)

R[k] = ck

N � 1X

n =0

�� [n] cos
� (2n + 1) k

2N
(3)

c0 =
p

1=N (4)

ck =
p

2=N; 1 � k � N � 1: (5)

Figure 4. The period estimator.

Similarly to an IOI histogram [5], accent peaks with a period
p cause high responses in the autocorrelation function at lags
` = 0 , ` = p (nearest peaks),` = 2p (second-nearest peaks),
` = 3p (third-nearest peaks), and so on. Such response is ex-
ploited in DCT-based periodicity estimation, which matches
the autocorrelation response with zero-phase cosine func-
tions; see dashed lines in Fig. 3(a).

Only a speci�c periodicity window,0:1 s � p � 2 s, is
utilized from the DCT vectorR[k]. This window speci�es
the range of beat and tatum periods for estimation. The sub-
band periodicitiesRi [k] are combined into anM -point sum-
mary periodicity vector,M = 128,

S[k] =
4X

i =1

� i [0]
 eRi [k] 0 � k � M � 1; (6)

where eRi [k] has interpolated values ofRi [k] from 0:5 Hz
to 10 Hz, and the parameter
 = 1 :2 controls weighting.
Figure 3(b) shows an example summary periodicity vector.

2.5. Beat and Tatum Period Estimation
The period estimation stage �nds the most likely beat pe-
riod �̂ B

n and tatum period̂� A
n for the current frame at timen

based on the observed periodicityS[k] and primitive mu-
sicological knowledge. Likelihood functions are used for
modeling primitive musicological knowledge as proposed
by Klapuri et al. in [3, p. 344–345], although the actual
calculations of the model are different. An overview of the
period estimator are depicted in Fig. 4.

First, weightsf i (� i
n ) for the different beat and tatum pe-

riod candidates are calculated as a product of prior distribu-
tionspi (� i ) and “continuity functions”:

f i
C

�
� i

n

� i
n � 1

�
=

1

� 1
p

2�
exp

"

�
1

2� 2
1

�
ln

� i
n

� i
n � 1

� 2
#

; (7)

as de�ned in Eq. (21) in [3, p. 348]. Here,i = A denotes
the tatum andi = B denotes the beat. The value� 1 = 0 :63
is used. The continuity function describes the tendency that
the periods are slowly varying, thus taking care of “tying”
the successive period estimates together.� i

n � 1 is de�ned as
the median of three previous period estimates. This is found
to be slightly more robust than just using the estimate from



Figure 5. Likelihood of different beat and tatum periods to
occur jointly.

the previous frame. The priors are lognormal distributions
as described in Eq. (22) in [3, p. 348].

The output of theUpdate beat and tatum weightsstep in
Fig. 4 are two weighting vectors containing the evaluated
values of the functionsf B (� B

n ) and f A (� A
n ). The values

are obtained by evaluating the continuity functions for the
set of possible periods given the previous beat and tatum
estimates, and multiplying with the priors.

The next step,Calculate �nal weight matrix, adds in the
modelling of the most likely relations between simultaneous
beat and tatum periods. For example, the beat and tatum are
more likely to occur at ratios of 2, 4, 6, and 8 than in ratios
of 1, 3, 5, and 7. The likelihood of possible beat and tatum
period combinations� B , � A is modelled with a Gaussian
mixture density, as described in Eq. (25) in [3, p. 348]:

g(� B ; � A ) =
9X

l =1

wl N (
� B

� A ; l; � 2) (8)

wherel are the component means and� 2 is the common
variance. Eq. (8) is evaluated for the set ofM � M period
combinations. The weightswl were hand adjusted to give
good performance on a small set of test data. Fig. 5 de-
picts the resulting likelihood surfaceg(� B ; � A ). The �nal
weighting function is

h(� B
n ; � A

n ) =

r

f B (� B
n )

q
g(� B

n ; � A
n )f A (� A

n ): (9)

Taking the square root spreads the function such that the
peaks do not become too narrow. The result is a �nalM � M
likelihood weighting matrixH with values ofh(� B

n ; � A
n ) for

all beat and tatum period combinations.
TheCalculate weighted periodicitystep weights the sum-

mary periodicity observation with the obtained likelihood
weighting matrixH . We assume that the likelihood of ob-
serving a certain beat and tatum combination is proportional
to a sum of the corresponding values of the summary peri-
odicity, and de�ne the observationO(� B

n ; � A
n ) = ( S[kB ] +

Figure 6. The phase estimation stage �nds the phase of the beat
and tatum pulses, and may also re�ne the beat period estimate.

S[kA ])=2, where the indiceskB andkA correspond to the
periods� B

n and� A
n , respectively. This gives an observation

matrix of the same size as our weighting matrix. The ob-
servation matrix is multiplied pointwise with the weighting
matrix, giving the weightedM � M periodicity matrixP
with valuesP(� B

n ; � A
n ) = h(� B

n ; � A
n )O(� B

n ; � A
n ). The �-

nal step is toFind the maximumfrom P. The indices of
the maximum correspond to the beat and tatum period es-
timates�̂ B

n , �̂ A
n . The period estimates are passed on to the

phase estimator stage.

2.6. Beat Phase Estimation

The phase estimation stage is depicted in Fig. 6. The tatum
phase is the same as the beat phase and, thus, only the beat
phase is estimated. Phase estimation is based on a weighted
sumv[n] =

P 4
i =1 (6 � i )ai [n] of the observed subband ac-

cent signalsai [n], 0 � n � N � 1. Compared to Eq. (27) in
[3, p. 350], the summation is done directly across the accent
subbands, instead of resonator outputs.

A bank of comb �lters with constant half timeT0 and de-
lays corresponding to different period candidates have been
found to be a robust way of measuring the periodicity in ac-
centuation signals [3] [4]. Another bene�t of comb �lters
is that an estimate of the phase of the beat pulse is read-
ily obtained by examining the comb �lter states [4, p. 593].
However, implementing a bank of comb �lters across the
range of possible beat and tatum periods is computationally
very expensive. The proposed method utilizes the bene�ts
of comb �lters with a fraction of the computational cost of
the earlier methods. The phase estimator implements two
comb �lters. The output of a comb �lter with delay� and



gain� � for the inputv[n] is given by

r [n] = � � r [n � � ] + (1 � � � )v[n]: (10)

The parameter� of the two comb �lters is continuously
adapted to match the current (�̂ B

n ) and the previous (̂� B
n � 1)

period estimates. The feedback gain� � = 0 :5�=T 0 , where
the half timeT0 corresponds to three seconds in samples.

The phase estimation starts by �nding a prediction�̂ n for
the beat phase� n in this frame, the stepPhase predictionin
Fig. 6. The prediction is calculated by adding the current
beat period estimate to the time of the last beat in the previ-
ous frame. Another source of phase prediction is the comb
�lter state, however, this is not always available since the
�lter states may be reset between frames.

The accent signal is passed through the Comb �lter 1,
giving the outputr 1[n]. If there are peaks in the accent sig-
nal corresponding to the comb �lter delay, the output level
of the comb �lter will be large due to a resonance.

We then calculate a score for the different phase candi-
datesl = 0 ; : : : ; �̂ B � 1 in this frame. The score is

p[l ] =
1

jI l j

X

j 2 I l

r 1[j ] (11)

whereI l is the set of indicesf l; l + �̂ B ; l + 2 �̂ B ; : : :g be-
longing to the current frame,8i 2 I l : 0 � i � N � 1.
The scores are weighted by a function which depends on the
deviation of the phase candidate from the predicted phase
value. More precisely, the weight is calculated according to
Eq. (33) in [3, p. 350]:

w[l ] =
1

� 3
p

2�
exp

�
�

d[l ]2

2� 2
3

�
; (12)

but the distance is calculated in a simpler way:d[l ] = ( l �
�̂ n )=�̂ B . The phase estimate is the value ofl maximizing
p[l ]w[l ].

If there are at least three beat period predictions avail-
able and the beat period estimate has changed since the last
frame, the above steps are mirrored using the previous beat
period as the delay of comb �lter 2. This is depicted by the
right hand side branch in Fig. 6. The motivation for this is
that if the prediction for the beat period in the current frame
is erroneous, the comb �lter tuned to the previous beat pe-
riod may indicate this by remaining locked to the previous
beat period and phase, and producing a more energetic out-
put and thus larger score than the �lter tuned to the erro-
neous current period.

In the �nal step, the best scores delivered by both branches
are compared, and the one giving the largest score deter-
mines the �nal beat period and phase. Thus, if the comb
�lter branch tuned to the previous beat period gives a larger
score, the beat period estimate is adjusted equal to the pre-
vious beat period. The state of the winning comb �lter is
stored to be used in the next frame as comb �lter 2.

After the beat period and phase are obtained, the beat
and tatum locations for the current audio frame are inter-
polated. Although this reduces the ability of the system to
follow rapid tempo changes, it reduces the computational
load since the back end processing is done only once for
each audio frame.

3. Implementation
The authors have written a real-time implementation of the
proposed method for the S60 smartphone platform. The im-
plementation uses �xed-point arithmetic, where all signals
are represented as 32-bit integers and coef�cients as 16-
bit integers. The power estimation low-pass �lter is imple-
mented simply as a �rst-order IIR due to the arithmetic used.
Increasing the �lter order would have a positive impact on
performance, but the given �lter design causes that the co-
ef�cients exceed 16-bit dynamic scale. Naturally, the accent
power compression is realized by a 200-point lookup table.
Tables are used also in the period and phase estimation for
ef�ciently computing weight function values. The continu-
ity function, the priors, and the likelihood surface shown in
Fig. 5 are stored into lookup tables. Lookup tables are also
utilized for storing precalculated feedback gain values for
the comb �lters. For ef�ciency, both the autocorrelation and
discrete cosine transform processes are implemented on top
of a fast Fourier transform (FFT).

For low-latency real-time implementation, the algorithm
is split into two execution threads. Referring to Fig. 1, a
high-priority “front-end” thread runs theresamplingandac-
cent �lter bankstages, feeding their results into a memory
buffer. The front-end runs synchronously with other au-
dio signal processing.Periodicity estimationand following
stages are run in a low-priority “back-end” thread, which is
signaled when a new accent frame is available frombuffer-
ing stage. The lower priority allows the back-end processing
to take a longer time without interrupting the audio process-
ing, unlinking audio frame length and accent frame length.

4. Evaluation
The proposed algorithm is evaluated in two aspects, beat
tracking performance and computational complexity. The
methods of Klapuriet al. [3] and Scheirer [4] are used as a
comparison, using the original authors' implementations.1

4.1. Performance

The performance was evaluated by analyzing 192 songs in
CD audio quality. Songs with a steady beat were selected
from various genres. The majority of songs were rock/pop
(43%), soul/R&B/funk (18%), jazz/blues (16%), and elec-
tronic/dance (11%) music, and all except two songs were in
4/4 meter. The beats of approximately one minute long song

1 We wish to thank Anssi Klapuri and Eric Scheirer for making
their algorithm implementations available for the comparison.



Table 1. Beat tracking accuracy scores.

Continuity required Individual estimates
Method Correct Accept d/h Period Correct Accept d/h Period

Proposed 60% 70% 76% 64% 76% 79%
Klapuri 66% 76% 73% 72% 85% 81%
Scheirer 29% 34% 30% 53% 65% 59%

excerpts were annotated by tapping along with the song play-
ing. The evaluation methodology followed the one proposed
in [3], assessing both the period and phase estimation accu-
racy of the proposed method. A correct period estimate is
de�ned to deviate less than 17.5% from the annotated refer-
ence, and the correct phase to deviate less than 0.175 times
the annotated beat time. The following scores were calcu-
lated and averaged over the duration of the excerpts and over
all 192 songs:

� Correct: Beat estimate with correct period and phase.

� Accept d/h: Beat estimate with period matching either
0.5, 1.0, or 2.0 times the correct value, and correct
phase.

� Period: Beat estimate with correct period, phase is
ignored.

We calculated the scores for both the longest continuous
correctly analyzed segment and individual estimates without
continuity requirement. For comparison, the methods pro-
posed in [3] and [4] were run on the same data. The results
are shown in Table 1. In summary, the proposed method ap-
proaches the Klapuriet al. method performance in all of the
cases. The biggest deviations are in the Scheirer method
scores with continuity requirement, re�ecting the lack of
beat period smoothing in the Scheirer method.

4.2. Complexity

We compared the computational complexity of the three al-
gorithms on a PC having 1.86 GHz Pentium M processor
and 1 GB of memory. The proposed and Scheirer methods
were implemented in C++ in �oating point and compiled
with the same compiler settings; function inlining intrinsics
were added into Scheirer's original algorithm. The Klapuri
method is a combination of MATLAB and C++ code.

A 300-second audio clip was processed �ve times with
each of the three methods and the algorithm CPU time was
measured (excluding �le access and decoding). The median
CPU cycles of the �ve runs are shown in Table 2, divided by
106 (Mcycles), and normalized with audio clip length (Mcy-
cles/s). The Klapuri method is not strictly comparable to the
others because it is mostly MATLAB processing: 61% of
the CPU is used in MATLAB code. The Scheirer method
cycles break down into 82% for comb �ltering and 13% for

Table 2. Processor usage pro�les.

Method Mcycles Mcycles/s

Proposed 678 2.3
Klapuri (MATLAB) 125000 420
Scheirer 136000 450
Scheirer withoutmalloc etc. 119000 390

runtime functions (e.g.malloc ). A second Scheirer pro-
�le in Table 2 has the runtime functions subtracted. The
proposed algorithm is found over 170 times more ef�cient.

We also evaluated the computational complexity of the
proposed method on a Nokia 6630 smartphone having a
220 MHz ARM9 processor. An instruction pro�ler was
con�gured to sample the processor program counter on a
1 kHz rate, yielding 302500 data points in total. During
playback, 13% of processor time was spent in the beat and
tatum tracker implementation and 8% in MP3 format de-
coding. The pro�le shows the algorithm to perform very ef-
�ciently, comparable to the complexity of the MP3 decoder.

5. Conclusion
A beat and tatum tracker algorithm can be made computa-
tionally very ef�cient without compromising beat tracking
performance. We introduced a novel beat and tatum tracker
for music signals, consisting of multirate accent analysis,
discrete cosine transform periodicity analysis, and phase es-
timation by adaptive comb �ltering. The complexity of the
proposed method is less than 1% of Scheirer's method, and
its beat tracking accuracy approaches Klapuri's method. The
authors have created a real-time implementation of the pro-
posed method for the S60 smartphone platform.
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Music Tempo Estimation with k-NN Regression

*Antti Eronen and Anssi Klapuri

Abstract—An approach for tempo estimation from musical pieces
with near-constant tempo is proposed. The method consists of three
main steps: measuring the degree of musical accent as a function of
time, periodicity analysis, and tempo estimation. Novel accent features
based on the chroma representation are proposed. The periodicity of the
accent signal is measured using the generalized autocorrelation function,
followed by tempo estimation usingk-Nearest Neighbor regression. We
propose a resampling step applied to an unknown periodicity vector
before �nding the nearest neighbors. This step improves the performance
of the method signi�cantly. The tempo estimate is computed as a distance-
weighted median of the nearest neighbor tempi. Experimental results
show that the proposed method provides signi�cantly better tempo
estimation accuracies than three reference methods.

Index Terms—Music tempo estimation, chroma features,k-Nearest
Neighbor regression.

I. I NTRODUCTION

Musical meter is a hierarchical structure, which consists of pulse
sensations at different time scales. The most prominent level is the
tactus, often referred as the foot tapping rate or beat. Thetempo
of a piece is de�ned as the rate of the tactus pulse. It is typically
represented in units of beats per minute (BPM), with a typical tempo
being of the order of 100 BPM.

Human perception of musical meter involves inferring a regular
pattern of pulses from moments of musical stress, a.k.a.accents[1,
p.17]. Accents are caused by various events in the musical surface,
including the beginnings of all discrete sound events, especially the
onsets of long pitched sounds, sudden changes in loudness or timbre,
and harmonic changes. Many automatic tempo estimators try to
imitate this process to some extent: measuring musical accentuation,
estimating the periods and phases of the underlying pulses, and
choosing the level corresponding to the tempo or some other metrical
level of interest [2].

Tempo estimation has many applications, such as making seamless
”beatmixes” of consecutive music tracks with the help of beat
alignment and time stretching. In disc jockey applications metrical
information can be used to automatically locate suitable looping
points. Visual appeal can be added to music players with beat
synchronous visual effects such as virtual dancing characters. Other
applications include �nding music with certain tempo from digital
music libraries in order to match the mood of the listener or to
provide suitable motivation for the different phases of a sports
exercise. In addition, automatically extracted beats can be used to
enable musically-synchronized feature extraction for the purposes of
structure analysis [3] or cover song identi�cation [4], for example.

A. Previous work

Tempo estimation methods can be divided into two main categories
according to the type of input they process. The earliest ones
processed symbolic (MIDI) input or lists of onset times and durations,
whereas others take acoustic signals as input. Examples of systems
processing symbolic input include the ones by Rosenthal [5] and
Dixon [6].

One approach to analyze acoustic signals is to perform discrete
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Fig. 1. Overview of the proposed method

onset detection and then use e.g. inter onset interval (IOI) histogram-
ming to �nd the most frequent periods, see e.g. [7], [8]. However,
it has been found better to measure musical accentuation in a
continuous manner instead of performing discrete onset detection [9].
A time-frequency representation such as energies at logarithmically
distributed subbands is usually used to compute features that relate
to the accents [2], [10]. This typically involves differentiation over
time within the bands. Alonsoet al. use a subspace analysis method
to perform harmonic+noise decomposition before accent feature
analysis [11]. Peeters proposes the use of a reassigned spectral
energy �ux [12], and Davies and Plumbley use the complex spectral
difference [3].

Accent feature extraction is typically followed by periodicity
analysis using e.g. the autocorrelation function (ACF) or a bank
of comb-�lter resonators. The actual tempo estimation is then done
by picking one or more peaks from the periodicity vector, possibly
weighted with the prior distribution of beat periods [2], [13], [10].
However, peak picking steps are error prone and one of the potential
performance bottlenecks in rhythm analysis systems.

An interesting alternative to peak picking from periodicity vectors
was proposed by Seyerlehneret al., who used thek-Nearest Neighbor
algorithm for tempo estimation [14]. Using thek-Nearest Neighbor
algorithm was motivated based on the observation that songs with
close tempi have similar periodicity functions. The authors searched
the nearest neighbors of a periodicity vector and predicted the tempo
according to the value that appeared most often within thek songs but
did not report signi�cant performance improvement over reference
methods.

It should be noted that in the tempo estimation task, the temporal
positions of the beats are irrelevant. In this sense, the present task dif-
fers from full meter analysis systems, where the positions of the beats
need to be produced for example with dynamic programming [2],
[10], [12], [15], [11] or Kalman �ltering [16]. A full review of meter
analysis systems is outside the scope of this article due to space
restrictions. See [17] and [18] for more complete reviews.

B. Proposed method

In this paper, we study the use of thek-Nearest Neighbor algorithm
for tempo estimation further. This is referred ask-NN regression as
the tempo to be predicted is continuous-valued. Several improvements
are proposed that signi�cantly improve the tempo estimation accuracy
using k-NN regression compared to the approach presented in [14].
First, if the training data does not have instances with very close tempi
to the test instance, the tempo estimation is likely to fail. This is a
quite common situation in tempo estimation because the periodicity
vectors tend to be sharply peaked at the beat period and its multiples
and because the tempo value to be predicted is continuous valued.
With distance measures such as the Euclidean distance even small
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Fig. 2. Overview of musical accent analysis. The numbers between blocks indicate the data dimensionality if larger than one.

differences in the locations of the peaks in the periodicity vectors
can lead to a large distance. We propose here a resampling step to
be applied to the unknown test vector to create a set of test vectors
with a range of possible tempi, increasing the likelihood of �nding a
good match from the training data. Second, to improve the quality of
the training data we propose to apply an outlier removal step. Third,
we observe that the use of locally weightedk-NN regression may
further improve the performance.

The proposedk-NN regression based tempo estimation is tested
using �ve different accent feature extractors to demonstrate the
effectiveness of the approach and applicability across a range of
features. Three of them are previously published and two are novel
ones and use pitch chroma information. Periodicity is estimated
using the generalized autocorrelation function which has previously
been used for pitch estimation [19], [20]. The experimental results
demonstrate that the chroma accent features perform better than
three of the four reference accent features. The proposed method
is compared to three reference methods and is shown to perform
signi�cantly better.

An overview of the proposed method is depicted in Figure 1. First,
chroma features are extracted from the input audio signal. Then,
accentuation is measured at different pitch classes, and averaged over
the pitch classes to get a single vector representing the accentuation
over time. Next, periodicity is analyzed from the accent signal. The
obtained periodicity vector is then either stored as training data
to be used in estimating tempo in the future (training phase), or
subjected for resampling and tempo estimation (estimation phase).
The following sections describe the various phases in detail.

II. M ETHOD

A. Musical accent analysis

1) Chroma feature extraction:The purpose of musical accent
analysis is to extract features that effectively describe song onset
information and discard information irrelevant for tempo estimation.
In our earlier work [2], we proposed an accent feature extractor
which utilizes 36 logarithmically distributed subbands for accent
measurement and then folds the results down to four bands before
periodicity analysis.

In this work, a novel accent analysis front end is described which
further emphasizes the onsets of pitched events and harmonic changes
in music and is based on the chroma representation used earlier for
music structure analysis in [21]. Figure 2 depicts an overview of the
proposed accent analysis. The chroma features are calculated using
a multiple fundamental frequency (F0) estimator [22]. The input
signal sampled at 44.1 kHz sampling rate and 16-bit resolution is
�rst divided into 93 ms frames with 50% overlap. In each frame, the
salience, or strength, of each F0 candidate is calculated as a weighted
sum of the amplitudes of its harmonic partials in a spectrally whitened
signal frame. The range of fundamental frequencies used here is
80 – 640 Hz. Next, a transform is made into a musical frequency
scale having a resolution of 1/3rd-semitone (36 bins per octave).
This transform is done by retaining only the maximum-salience
fundamental frequency component for each 1/3rd of a semitone range.

Finally the octave equivalence classes are summed over the whole
pitch range using a resolution of three bins per semitone to produce
a 36 dimensional chroma vectorxb(k), wherek is the frame index
and b = 1 ; 2; :::; b0 is the pitch class index, withb0 = 36 . The
matrix xb(k) is normalized by removing the mean and normalizing
the standard deviation of each chroma coef�cient over time, leading
to a normalized matrixbxb(k).

2) Musical accent calculation:Next, musical accent is estimated
based on the normalized chroma matrixbxb(k), k = 1 ; :::; K ,
b = 1 ; 2; :::; b0 , much in a similar manner as proposed in [2], the
main difference being that frequency bands are replaced with pitch
classes. First, to improve the time resolution, the chroma coef�cient
envelopes are interpolated by a factor eight by adding zeros between
the samples. This leads to the sampling ratef r = 172 Hz. The
interpolated envelopes are then smoothed by applying a sixth-order
Butterworth low-pass �lter (LPF) withf LP = 10 Hz cutoff. The
resulting smoothed signal is denoted byzb(n). This is followed by
half wave recti�cation and weighted differentiation steps. A half-wave
recti�ed (HWR) differential of zb(n) is �rst calculated as

z0
b(n) = HWR(zb(n) ¡ zb(n ¡ 1)); (1)

where the function HWR(x) = max( x; 0) sets negative values to
zero and is essential to make the differentiation useful. Next we form
a weighted average ofzb(n) and its differentialz0

b(n):

ub(n) = (1 ¡ ¸ )zb(n) + ¸
f r

f LP
z0

b(n); (2)

where0 · ¸ · 1 determines the balance betweenzb(n) andz0
b(n),

and the factorf r =f LP compensates for the small amplitude of the
differential of a low-pass-�ltered signal [2].

Finally, bands are linearly averaged to get a single accent signal
a(n) to be used for periodicity estimation. It represents the degree
of musical accent as a function of time.

B. Periodicity analysis

Periodicity analysis is carried out on the accent signal. Several
periodicity estimators have been proposed in the literature, such as
the inter-onset interval histogramming [7], autocorrelation function
(ACF) [23], or comb �lter banks [24]. In this paper, we use
the generalized autocorrelation function (GACF) which is compu-
tationally ef�cient and has proven to be a robust technique in
multipitch analysis [20]. The GACF is calculated without windowing
in successive frames of lengthW and 16% overlap. The input vector
am at the mth frame has the length of2W after zero padding to
twice its length:

am = [ a((m ¡ 1)W ); :::; a(mW ¡ 1); 0; :::; 0]T; (3)

where T denotes transpose. The GACF is de�ned as ([19]):

½m (¿) = IDFT(jDFT(am )jp ); (4)

where DFT stands for Discrete Fourier Transform and IDFT its
inverse. The coef�cientp controls the frequency domain compression.
½m (¿) gives the strength of periodicity at period (lag)¿. The GACF



T-ASL-02258-2009.R1 3

Fig. 3. Upper panel: periodicity vectors of musical excerpts in our evaluation
dataset ordered in ascending tempo order. The shape of the periodicity vectors
is similar across pieces, with the position of the peaks changing with tempo.
Lower panel: corresponding annotated tempi of the pieces.

was selected because it is straightforward to implement as usually
the fast Fourier transform routines are available, and it suf�ces to
optimize the single parameterp to make the transform optimal for
different accent features. The conventional ACF is obtained with
p = 2 . We optimized the value ofp for different accent features
by testing a range of different values and performing the tempo
estimation on a subset of the data. The value that led to the best
performance was selected for each feature. For the proposed chroma
accent features, the value used wasp = 0 :65.

At this step we have a sequence of periodicity vectors computed
in adjacent frames. If the goal is to perform beat tracking where the
tempo can vary in time, we would consider each periodicity vector
separately and estimate the tempo as a function of time from each
vector separately. In this paper, we are interested in getting a single
representative tempo value for each musical excerpt. Therefore, we
obtain a single representative periodicity vector½med (¿) for each
musical excerpt by calculating point-wise median of the periodicity
vectors over time. This assumes that the excerpt has nearly constant
tempo and is suf�cient in applications where a single representative
tempo value is desired. The median periodicity vector is further
normalized to remove the trend due to the shrinking window for
larger lags

½̂med (¿) =
1

W ¡ ¿
½med (¿): (5)

The �nal periodicity vector is obtained by selecting the range of bins
corresponding to periods from 0.06 s to 2.2 s, and removing the mean
and normalizing the standard deviation to unity for each periodicity
vector.

The resulting vector is denoted bys(¿). Figure 3 presents the
periodicity vectors for the songs in our evaluation database, ordered
in ascending tempo order. Indeed, the shape of the periodicity vectors
is similar across music pieces, with the position of the peaks changing
with tempo.

C. Tempo estimation byk-NN regression

The tempo estimation is formulated here as a regression problem:
given the periodicity observations(¿), we estimate the continuous
valued tempoT . In this paper, we propose to use locally weighted
learning ([25]) to solve the problem. More speci�cally, we usek-
Nearest Neighbors regression and compute the tempo as a weighted

median of the nearest neighbor tempi. In conventionalk-NN regres-
sion, the property value of an object is assigned to be the average
of the values of itsk nearest neighbors. The distance to the nearest
neighbors is typically calculated using the Euclidean distance.

In this paper, several problem-speci�c modi�cations are proposed
to improve the performance of tempo estimation usingk-NN regres-
sion. First, a resampling step is proposed to alleviate problems caused
by mismatches of the exact tempo values in the testing and training
data. Distance measures such as the Euclidean distance or correlation
distance are sensitive to whether the peaks in the unknown periodicity
vector and the training vectors match exactly. With the resampling
step it is more likely that similarly shaped periodicity vector(s) with
a close tempi are found from the training set. Resampling is applied
to ”stretch” and ”shrink” the unknown test vectors to increase the
likelihood of a matching training vector to be found from the training
set. Since the tempo values are continuous, the resampling ensures
that we do not need to have a training instance with exactly the same
tempo as the test instance in order to �nd a good match.

Thus, given a periodicity vectors(¿) with unknown tempoT, we
generate a set of resampled test vectorssr (¿), where subscriptr indi-
cates the resampling ratio. A resampled test vector will correspond to
a tempo ofT=r. We tested various possible ranges for the resampling
ratio, and 15 linearly spaced ratios between0:87 and1:15 were taken
into use. Thus, for a piece having a tempo of 120 BPM the resampled
vectors correspond to a range of tempi from 104 to 138 BPM.

When receiving an unknown periodicity vector, we �rst create the
resampled test vectorssr (¿). The Euclidean distance between each
training vectortm (¿) and the resampled test vectors is calculated as

d(m; r ) =

s X

¿

(tm (¿) ¡ sr (¿)) 2 (6)

wherem = 1 ; :::; M is the index of the training vector. The minimum
distanced(m) = min r d(m; r ) is stored for each training instancem,
along with the resampling ratio that leads to the minimum distance
br (m) = argmin r d(m; r ). Thek nearest neighbors that lead to thek
lowest values ofd(m) are then used to estimate the unknown tempo.
The annotated tempoTann(i ) of the nearest neighbori is now an
estimate of the resampled test vector tempo. Multiplying the nearest
neighbor tempo with the ratio gives us an estimate of the original
test vector tempo:bT(i ) = Tann(i )br (i ).

The �nal tempo estimate is obtained as a weighted median of
the nearest neighbor tempo estimatesbT(i ), i = 1 ; :::; k . Due to the
weighting, training instances close to the test point have a larger
effect on the �nal tempo estimate. The weightswi for the k nearest
neighbors are calculated as

wi =
exp (¡ °d(i ))

P k
i =1 exp (¡ °d(i ))

; (7)

where the parameter° controls how steeply the weighting decreases
with increasing distanced, and i = 1 ; :::; k . The value° = 40 was
found by monitoring the performance of the system with a subset
of the data. The exponential function ful�ls the requirements for a
weighting function in locally weighted learning: the maximum value
is at zero distance, and the function decays smoothly as the distance
increases [25]. The tempo estimate is then calculated as a weighted
median of the tempo estimatesbT(i ) using the weightswi with the
procedure described in [26]. The weighted median gives signi�cantly
better results than a weighted mean. The difference between weighted
median and unweighted median is small but consistent in favor of
the weighted median when the parameter° is properly set.

In addition, the use of an outlier removal step is evaluated to
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improve the quality of the training data. We implemented leave-
one-out outlier removal as described in [27]. It works within the
training data by removing each sample in turn from the training data,
and classifying it by all the rest. Those training samples that are
misclassi�ed are removed from the training data.

III. R ESULTS

This section looks at the performance of the proposed method in
simulations and compares the results to three reference systems and
three accent feature extractors.

A. Experimental setup

A database of 355 musical pieces with CD quality audio was used
to evaluate the system and the three reference methods. The musical
pieces were a subset1 of the material used in [2]. The database
contains examples of various musical genres whose distribution
is the following: 82 classical pieces, 28 electronic/dance, 12 hip
hop/rap, 60 jazz/blues, 118 rock/pop, 42 soul/RnB/funk, and 13
world/folk. Full listing of the database is available at www.cs.tut.
�/ » eronen/taslp08-tempo-dataset.html. The beat was annotated from
approximately one-minute long representative excerpts by a musician
who tapped along with the pieces. The ground truth tempo for each
excerpt is calculated based on the median inter-beat-interval of the
tapped beats. The distribution of tempi is depicted in �gure 4.

We follow here the evaluation presented in [14]. Evaluation is done
using leave-one-out cross validation: the tempo of the unknown song
is estimated using all the other songs in the database. The tempo
estimate is de�ned to be correct if the predicted tempo estimate is
within 4% of the annotated tempo.

Along with the tempo estimation accuracy, we also report a
tempo category classi�cation accuracy. Three tempo categories were
de�ned: from 0 to 90 BPM, 90 to 130 BPM, and above 130 BPM.
Classi�cation of the tempo category is considered successful if the
predicted tempo falls within the same category as the annotated
tempo. This kind of ”rough” tempo estimate is useful in applications
that would only require e.g. classifying songs to slow, medium, and
fast categories.

The decision whether the differences in error rates is statistically
signi�cant is done using McNemar's test [28]. The test assumes
that the trials are independent, an assumption that holds in our case
since the tempo estimation trials are performed on different music
tracks. The null hypothesisH 0 is as follows: given that only one of
the two algorithms makes an error, it is equally likely to be either
one. Thus, this test considers those trials where two systems make
different predictions, since no information on their relative difference
is available from trials in which they report the same outcome. The
test is calculated as described in [28, Section 3], andH 0 is rejected
if the P-value is less than a selected signi�cance level®. We report
the results using the following signi�cance levels and wordings:
P ¸ 0:05, not signi�cant (NS);0:01 · P < 0:05, signi�cant (S);
0:0001· P < 0:01, very signi�cant (VS); andP < 0:0001, highly
signi�cant (HS).

B. Reference methods

To put the results in perspective, the results are presented in
comparison to three reference methods. The �rst was described by
Ellis [10], and is based on an accent feature extractor using the
mel-frequency �lterbank, autocorrelation periodicity estimation, and
dynamic programming to �nd the beat times. The implementation

1The subset consisted of all music tracks to which the �rst author had
access.

Fig. 4. Distribution of the annotated tempi in the evaluation database.

is also provided by Ellis [29]. The second reference method was
proposed by ourselves in [2] and was the best performing method
in the Music Information Retrieval Evaluation eXchange (MIREX
2006) evaluations [9]. The third has been described in [13] and is
based on a computationally ef�cient accent feature extraction based
on multirate analysis, discrete cosine transform periodicity analysis,
and period determination utilizing simpli�ed musicological weight
functions. The comparison against the Ellis method may not be
completely fair as it has not received any parameter optimization on
any subset of the data used. However, the two other methods have
been developed on the same data and are thus good references.

In addition to comparing the performance of the proposed method
to the complete reference systems, we also evaluate the proposed
musical accent measurement method against four other features. This
is done by using the proposedk-NN regression tempo estimation with
accent features proposed elsewhere. Comparisons are presented to
two auditory spectrogram based accent features: �rst using a critical
band scale as presented in [2] (KLAP) and the second using the Mel-
frequency scale (MEL). Another two accent features are based on the
quadrature mirror �lter bank of [13] (QMF), and a straightforward
chroma feature analysis (SIMPLE). The main difference between the
various methods is how the frequency decomposition is done, and
how many accent bands are used for periodicity analysis. In the
case of the MEL features, the chroma vectorxb[k] is replaced with
the output band powers of the corresponding auditory �lterbank. In
addition, logarithmic compression is applied to the band envelopes
before the interpolation step, and each nine adjacent accent bands
are combined into one resulting into four accent bands. Periodicity
analysis is done separately for four bands, and �nal periodicity vector
is obtained by summing across bands. See the details in [2]. In the
case of the QMF and KLAP front ends, the accent feature calculation
is as described in the original publications [13] and [2]. The method
SIMPLE differs from the method proposed in this paper in how the
chroma features are obtained: whereas the proposed method uses
saliences of F0 estimates mapped on a musical scale, the method
SIMPLE simply accumulates the energy of FFT bins to 12 semitone
bins. The accent feature parameters such as¸ were optimized for
both the chroma accent features and the MEL accent features using
a subset of the data. The parameters for the KLAP and QMF methods
are as presented in the original publications [13] and [2]. The frame
size and frame hop for the methods MEL and SIMPLE is �xed
at 92.9 ms and 46.4 ms, respectively. The KLAP feature extractor
utilizes a frame size of 23 ms with 50% overlap.

C. Experimental results

1) Comparison to reference methods:Table I shows the results of
the proposed method in comparison with the reference systems. The
statistical signi�cance is reported under each accuracy percentage
in comparison to the proposed method. All the reference systems
output both the period and timing of the beat time instants and the
output tempo is calculated based on the median inter beat interval. We
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TABLE I
RESULTS IN COMPARISON TO REFERENCE METHODS. THE STATISTICAL
TESTS ARE DONE IN COMPARISON TO THE PROPOSED METHOD IN THE

LEFTMOST COLUMN.

Proposed Ellis [10] Sepp̈anen Klapuri

et al. [13] et al. [2]

Tempo 79% 45% 64% 71%

Signi�cance - HS HS HS

Tempo category 77% 52% 64% 68%

Signi�cance - HS HS VS

TABLE II
RESULTS WITH DIFFERENT ACCENT FEATURE EXTRACTORS.

Proposed KLAP SIMPLE MEL QMF

Tempo 79% 76% 73% 75% 63%

Signi�cance - NS S HS HS

Tempo category 77% 75% 75% 74% 72%

Signi�cance - NS NS VS S

TABLE III
RESULTS WHEN DISABLING CERTAIN STEPS. COMPARE THE RESULTS TO

THE COLUMN ”PROPOSED” OF TABLES I AND II.

No resamp. No outlier rem. Plain median

Tempo 75% 78% 77%

Signi�cance S NS NS

Tempo category 72% 79% 76%

Signi�cance VS NS NS

observe a highly signi�cant or very signi�cant performance difference
in comparison to all the reference methods in both tasks.

2) Importance of different elements of the proposed method:The
following experiments study the importance of different elements of
the proposed method in detail. Table II presents the results obtained
using different accent feature extractors. The performance of a certain
accent feature extractor depends on the parameters used, such as
the parameteŗ controlling the weighted differentiation described
in section II-A2. There is also some level of dependency between
the accent features and periodicity estimation parameters, i.e. the
length of the GACF window, and the exponent used in computing
the GACF. These parameters were optimized for all accent features
using a subset of the database, and the results are reported for the
best parameter setting.

The proposed chroma accent features based on F0 salience es-
timation perform best, although the difference is not statistically
signi�cant in comparison to the accent features proposed earlier
in [2]. The difference in comparison to the three other front ends in
tempo estimation is statistically signi�cant. The accent features based
on the QMF-decomposition are computationally very attractive and
may be a good choice if the application only requires classi�cation
into rough tempo categories, or if the music consists mainly of
material with a strong beat.

Table III shows the results when the resampling step in tempo
regression estimation or the outlier removal step is disabled, or
when no weighting is used when computing the median of nearest
neighbor tempo estimates. The difference in performance when the
resampling step is removed is signi�cant. Our explanation for this is
that without the resampling step it is quite unlikely that similarly
shaped example(s) with close tempi are found from the training
set, and even small differences in the locations of the peaks in the

TABLE IV
CONFUSION MATRIX IN CLASSIFYING INTO TEMPO CATEGORIES SLOW(0

TO 90 BPM),MEDIUM (90 TO 130 BPM),AND FAST (OVER 130 BPM)
FOR THE PROPOSED METHOD. ROWS CORRESPOND TO ANNOTATED TEMPO

CATEGORIES, COLUMNS TO ESTIMATED TEMPO CATEGORIES.

slow medium fast

slow 76% 16% 8%

medium 4% 96% 0%

fast 28% 14% 58%

TABLE V
CONFUSION MATRIX IN CLASSIFYING INTO TEMPO CATEGORIES FOR THE

REFERENCE METHODKLAPURI et al. [2]. ROWS CORRESPOND TO
ANNOTATED TEMPO CATEGORIES, COLUMNS TO ESTIMATED TEMPO

CATEGORIES.

slow medium fast

slow 60% 30% 10%

medium 1% 99% 0%

fast 32% 24% 44%

periodicity vector can lead to a large distance.
The outlier removal step does not have statistically signi�cant

effect on the performance when using the chroma features. However,
this is the case only with the chroma features for which the result
is shown here. The accuracy obtained using the chroma features
is already quite good and the outlier removal step is not able to
improve from that. For all other features the outlier removal improves
the performance in both tempo and tempo category classi�cation
by several percentage points (the results in Table II are calculated
with outlier removal enabled). Using distance based weighting in
the median calculation gives a small but not statistically signi�cant
improvement in the accuracy.

3) Performance across tempo categories:Examining the perfor-
mance across in classifying within different tempo categories is
illustrative of the performance of the method, showing how evenly
the method performs with slow, medium, and fast tempi. Tables IV
and V depict the confusion matrices in tempo category classi�cation
for the proposed method and the best performing reference method,
respectively. Rows correspond to presented tempo, columns to the
estimated tempo category. Errors with slow and fast tempi cause
the accuracy of tempo category classi�cation to be generally smaller
than that of tempo estimation. Both methods perform very well in
classifying the tempo category within the medium range of 90 to
130 BPM. However, especially fast tempi are often underestimated
by a factor of two: the proposed method would still classify 28% of
fast pieces as slow. Very fast tempi might deserve special treatment
in future work.

4) Effect of training data size:The quality and size of the training
data has an effect on the performance of the method. To test the effect
of the training data size, we ran the proposed method while varying
the size of the training data. The outlier removal step is omitted.
Figure 5 shows the result of this experiment. Uniform random
samples with a fraction of the size of the complete training data were
used to perform classi�cation. A graceful degradation in performance
is observed. The drop in performance becomes statistically signi�cant
at training data size of 248 vectors, however, over 70% accuracy
is obtained using only 71 reference periodicity vectors. Thus, good
performance can be obtained with small training data sizes if the
reference vectors span the range of possible tempi in a uniform
manner.
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Fig. 5. Effect of training data size (number of reference periodicity vectors)
on tempo estimation accuracy.

5) Using an artist �lter: There are some artists in our database
which have more than one music piece. We made a test using the so-
called artist �lter to ensure that this does not have a positive effect on
the results. Pampalk has reported that using an artist �lter is essential
for not to overtrain a musical genre classi�er [30]. We reran the
simulations of the proposed method and, in addition to the test song,
excluded all songs from the same artist. This did not have any effect
on the correctly estimated pieces. Thus, musical pieces from the same
artist do not overtrain the system.

6) Computational complexity:To get a rough idea of the com-
putational complexity of the method, a set of 50 musical excerpts
were processed with each of the methods and the total run time
was measured. From fastest to slowest, the total run times are 130
seconds for Seppänen et al. [13], 144 seconds for the proposed
method, 187 seconds for Ellis [10], and 271 seconds for Klapuriet
al. [2]. The Klapuri et al. method was the only one that was
implemented completely in C++. The Seppänen et al. and Ellis
methods were Matlab implementations. The accent feature extraction
of the proposed method was implemented in C++, the rest in Matlab.

IV. D ISCUSSION AND FUTURE WORK

Several potential topics exist for future research. There is some
potential for further improving the accuracy by combining different
types of features as suggested by one of the reviewers. Figure 6
presents a pairwise comparison of the two best performing accent
front ends: the F0-salience based chroma accent proposed in this
paper and the method KLAP. The songs have been ordered with
respect to increasing error made by the proposed method. The error
is computed as follows ([9]):

e = jlog2(
computed tempo

correct tempo
)j: (8)

The value 0 corresponds to correct tempo estimates, and the value 1
to tempo halving or doubling. Out of the 355 test instances, 255
instances were correctly estimated using both accent features. 60
instances were incorrectly estimated using both accent features. At
indices between 310 and 350 the method KLAP correctly estimates
some cases where the proposed method makes tempo doubling or
halving errors. But at the same range there are also many cases where
the estimate is wrong using both accent features. Nevertheless, there
is some complementary information in these accent feature extractors
which might be utilized in the future.

Second direction is to study whether a regression approach can
be implemented for beat phase and barline estimation. In this case,
a feature vector is constructed by taking values of the accent signal
during a measure, and the beat or measure phase is then predicted
using regression with the collected feature vectors. Chroma is gen-
erally believed to highlight information on harmonic changes ([31]),
thus the proposed chroma accent features would be worth testing in
barline estimation.

Fig. 6. Comparison of errors made by the proposed method using the chroma
accent features (solid line) and the KLAP accent features (dot). The excerpts
are ordered according to increasing error made by the proposed method, thus
the order is different than in �gure 3.

V. CONCLUSION

A robust method for music tempo estimation was presented. The
method estimates the tempo using locally weightedk-NN regression
and periodicity vector resampling. Good performance was obtained
by combining the proposed estimator with different accent feature
extractors.

The proposed regression approach was found to be clearly superior
compared to peak picking techniques applied on the periodicity
vectors. We conclude that most of the improvement is attributed to the
regression based tempo estimator with a smaller contribution to the
proposed F0-salience chroma accent features and GACF periodicity
estimation, as there is no statistically signi�cant difference in error
rate when the accent features used in [2] are combined with the
proposed tempo estimator.

In addition, the proposed regression approach is straightforward to
implement and requires no explicit prior distribution for the tempo as
the prior is implicitly included in the distribution of thek-NN training
data vectors. The accuracy degrades gracefully when the size of the
training data is reduced.
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��	��������� ����	�� ������#��� #�� E����� :�); � ���� ��� ����� ��	�
��������� ����� ��
��� ��� ������ ���� ������� ������� ���� ������� #����
����	����	������#����������	��������#������:��;���� ��	������		���
����	��������������������$������2��������$���	$���� �����������������
	���������%������	��#��������	����������		��������� ��������� �����
����	��������������	����������������	��������		���� ����������������
���� ������ ���� #���� ���&�	��� #���� ����� �	�� ����� ���� � ������ � ����
�������	��������������#���������������	������������ ������������������&��
	���#���� �	����	��� ���� ���� ����������� �	� ���� ������ #���� �����&�� � ����
�������� 	��#���� ���&�	���#����� ���� ��	���� �	�� ����� ����� �������� ����
��� ���� ���� ���� ������� #���� ��%������ ��� 	#������� #�� #��
����
����
���	�����������&�	���#�������	��� ��	���	���������� �����:�); �

��#� � ����$�����%�$%���&!�

��"���#���� ������	�	���4�����������	��������������� ����������� �
��������� ������� ���� ������	��!��� �	� ������ ��� �� #��� � ����� ���� ����
#��	��� ���� ��"�� #���� ������ ���� 	��� ��������&���	�� � 	�� ����� #���� ���
	#������� ��� ���� �&������ 	�� �������� &������ ������� �� ��� #��� � 8����
������	�	�������������������	������#��������������� ��� � ����:B; �/��
�����$	��������&�������=������
�������������������� ���&���	�����	�
�������� #��$���� ���������� ��	���� ����	��������� ���� ��������������
��������������!��	��������������������������������� ������	�������	����
�	�� � 1��	�� �	� ���� ���������� ���� ������ ������� ��� �	 $��������� �	�
))*A*�
3!�������������� ��
�
���� 4���� ��������� ���� ����������� ��� ?*� ��� �������� $ ���	$���
������� ������� ����� #����� ���� ���� �&������ 	�� �)� 4��� � ���������
9���	����� ���� !��	��� �	���������<��	�� �����#���� ��� ��	��� �0������?+�
���%������#�������������&�����	�������������%������ ���������������
��������������������%��������������	��?*3!��	������ �%��������%����� �
���	��� ��������� ���� ����������� ��� �	������ �-+� ��� �� ����� �	� ���� ��
����������� ���%������ ���	����	�� �	�� ���� �	$��� �	���  � /�� 	��� ������
�������	��� �����#��� 	�� ���� ��������� �	������ ������	 ��� ��� ������� �	�
�"������ 	��� 	�� ���� �$��&�� ������ �������� ��� �F�� ��� � F��E�� ��� �F��2��
2F�� ��� �F�� 8�� $���� �	� 	&����� � ���� ������� ��� ������ ����� ��	�� ��
������	����"�	���&�����	���?��	�8-�������������	��� ���	�����	���
���� ������ ������� � ���� ���	��� &���	��� ���� �	�����!� �� #�� ��&������
�����&���	��#��������"�����&���� �
�
������ ���� ���������� ����� ������#���� �����&��� ��� ��� ��������� $���� ��
4���� &���	�� ���� ���	��� &���	��� #	��� 	�� $����� ���� �) �
�������	��� �
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������"�����������	�������������������������������� ��"�97�4<��	������
������ � E���� ������ � 9��� (<� ��� ���� ��������� �����"� ���������� ���� ����
������	��������������������������� ���	���������������� ( ����$������������
#���� ������	�	��� ���������� ����� ��� ��������� ��� #��� � ����� � �$	�
��������� ��������� ���� ������ 	��� �	�� ����4���������� �������	����	��
���� ���	��� �������� � ���� ������ � $��� 9��� (<� 	�� ���� 4���� ���������
�����"� ��� ����������� ��� ����E��������� ��������� 	��4 ����&���	��� 	��
#����� �� ���� ( � �	�����	��������� ��� ���� ���	��� ��������� �����"�
� �	��$� 9���(<�������������	�����	�����	�����E������������������ 	������
���	���&���	���	��#����� ������ ( ���������)�����?���	$��"�������	����
���	��� ���� 4���� ��������� ���������� ��������&��� � �� � ����E������
���������������������������������������������"�$��� ����	�#���������
��� ������������	��	$����	������	����	�������	����� ����	$�����������
���������	��������������������" ��
�
���������&����	��������������$	�������������������� ���������$	����#��
�	��	�����������������������#��	������������������� �����������	���	��
#���� ���� ��������� ��� ���� ��������� ���������	�� ���� � ���� #������� 	��

�������������������������������������������������� ������������������
	������	�������#�����������	��������	�������4������ ������ �8�����
	�� 	��� �"����������� ��� ������ #���������� �	� ������ �� � ������������
	�����	���������	�����������������"������	���	����� �4�������������
�����" �0���� �	��� ��	���� 	�� �	���� ���� ������� ������ � ��&����� ��'��
�����#�������������	�����������������"�$�����"��#�� ����%����������	��
���������������&����� ����������������	������	����� ������	�����	���
������#��� ��� :-;�$��� �	���� �	�#��#����������������	 &��������� �����
4������������������"��	����	���"��#���������������� ��������4����
��������� ���� ���������&�� �	� ������ ���	�����	��� �	� � ����$	���� �"������
����4���� ��������� �����"� �	��� �	��#���������	������ ����������� �
4	��	&���� �������� ���� ��������� ��������� ������ ���� � ���� ����������
���� ������� �����"� ���� �	�� ����	��� ��� $���� ��� ������ ���� ����
���	��������"�	���������������������$��������4����� ����" �����
��"�� �����	�� ������#��� ���� ����� ������������ ���� 7�4 � ��������
����� �

��+� � 	!,�!��!"��!-�($))�!"��,��-�(��!���)������(�

/��������������������������"���	�����	����������	�� ����������	��������
���������&����������	����	����	�����	�������	������ ���	���	��������	�
���� 	�� �������� �����	� � 3	$�&���� ���� �	�&������	��� ��� ���� ����	���
����� 	�� ���� ��	���� ��� ���������� ������ 9����������	� �� ����	&�����	���
��������� �������������	�<�� ���� ����	���� �������� ��� � 	����� �	�� &����
$������	�	����� �/��������	�������������#��������	� ������������������
����	��� $����� �	� �	�� �	�����	��� �	� ��	���� �����	�� � �	� ��
�� ���
��	���� ��������� 	�� ������ ���������&������ �	��� ��	�	 ������ ��� ����
��������� �����"�� ��� ������������ ����	�� �������� �	� � ��� 	��� ����
����������:-;���������!�� ��
�
���� ���	��� ��������� �����"� � �	��$� 9���(<���� ��	�������$������A�#��A�

����� ��	��������	����9 ���(<�����������	�����������������"������
������
��� �������� �	� ���� �	���� 9 ��� (< �7�"� �������	���� �	���� �����&������ ����
����������� ��	��� ���� ������������ �	$���������� ����� �� ������ ������� ����
�	$��� �������	��� 	�� ���� 
����� � /�� ������� 	�� ���� �� ���� ��	��� ����
����	�������������������	�������	���������&�������� ����	����9 ���(<����
������������������"�����������!���#���������������� �����&���� �/��
�	��� 	�� ���� �����&��������	��������	��!	�����	��&�� �������������	���
����������������������������������������&��������9 ���(<�����	��������������
�����������#���������������������	�������	��������� &����� �����������
��������������������	�����������	�����	�������	���� ������������	���
�����	�����	�	����� ��

�

������� )=� ,	
� �	��$�� �������
� $������ � �	��$� 9��� (<���� �	
�
�����-.�/
���*�����0�%1�2��������

�

�������?=� ,	
�2�������$%�
���������
�$������ � $��� 9���(<����
�	
������-.�/
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�

�������@ � ,	
��������������
�$������� 9� �(<�����	
������-.�/
�
�� *�����0� %1� 2������� �%����
�� ���
�� ��$$���� �	
� 
��
	���
�� �	��$�� �������
� $������ ���� 2���� �������
� $��
����� �
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������ ���� ������������ ����� ���� ���	��� ����4���� ���� ����� ������
���� ���� ������ � ����� ��&��� ���� ������ ��������� ����� "� � ��$����� ����

�������� <�9<�9
G

<�9 (��(��(�� $����	��$� �� �� $����� �	��$��
G

� ��� ����

���	��� ��������� �����"� ������ ���� �#	&�� ������#��� �� ����������
	������	� � ������� @� ��	$�� ���� ������� ��������� ����� "� �	��
4��	���H�� 5>�
�� �� &�����6 � 0�������� �������	�� $��� � ��	� ���
���������	�������������������������$������������$�� �����	�#�����	����
#��� �%���� $������� 9� � � �	� $��������<� ����� �	� ����	 ��� $��� � ��
��������� �������� ����	���� �	� 	��� ��������� �����"� �� ������$��� ����
������� #�� 4��	��� :�?; � 3�� �	���������� ��&����� #���� ������	�	���
���	���� ������������	���#�� �	�������� �"������� 	�� �� �������� ��������
���� ����� �	�#����� ����������������	���#���	���$���� ������������	� �
����� $��� ���	����� �	� ����� ��� ��������� �	���� ��� ���� ����������������
������������	� �

��.� � �������!"���/�����&!(�0�&)��,��(�%01-�(��!���)����* �

���� �	��	$���� ����� ��������� �	� ������� $����� ������ 	 �� ���� ���������
�����"� �	�����	��� �	� �� ��������&�� �������� ���� $���� � �	� �	� � ����
#�����!���	�� ����	�� ����� ����� ��� �������� �	� ���� 	�� � ���������� #��
2	�	� ��� :-;�� �"����� �����$�� 	������� 	�� ���� �	$����� ������� ����� 	�� ��
��������� �����"�$�������2	�	� 	�������� 	�� ���� ������ ��� �������� � /��
������	�����������������	������	������������������� �������������������
	����������	��	������	������������������ �
�
0��������������������������	���������	������������	 ���������������
�����"������������&��������������������������
����	 	�������������������
��������	�����	�������	���	���	�����������������$�� ����������������
����&����� �����������������������	��������	$������ ����	����� / �	������
��������������"����&��������&������
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<9 �� ��   �� �� 2/ � 9�<�

$����� 2 � ��� ���� ���#��� 	�� #����� ��� ���� �	�� � ������ <�9� �	����
��	���� �	� ���� ������ ����	���� #��	$� ���� ������ <)9� � �	� ���� ���	���
#��	$��������������	����������	�	� �����&������	�� / ��	�����	������
�	��������������&������	�� � 9/ <��������������	�����$�����������
�����	�
��&�� ��������	��� ��� ���� � 0����E% � �� ������ �"����� � � �	���#������ �����
�	������������������&�������������
���#������������ ����&�����������
������� �	� �	����� ��� ���� ����� ����	��� � ������ ��� ��� ��� #�� $	����
��������� $������� �������� ����	��� �	� ���	&�� ���� ���� ��� 	�� �����
���������&������$	��������	&����������	������ �3	$� &���������$���
������	�������������������������������������������� ���	�$	�
�$��� �
�
�������������#���	������	������	�����	�������	����� ������ � 9/ <�����
����� �������� �8��	��� �		
���� �	�� ������� ��� � 9/ <����� ���5���������6�
�	� ���	&�� ��������&�� �	���� ��	�� �� � ����� ��� �	��� #� � ������������ ��
�	$��������������&����	��	�� � 9/ <�����������/
��	$������������$����A*�
������ ����&����� 	�� ����� �	����������#����� �CA* ���� ��	$��������������
&����	��	�� � 9/ <������#����������	�� � 9/ < �
�
������������	�����	����	�!��	���	������������������ ���������	�� ��/�  �
������		������������������	�� � 9/ <���������������#������������ � 9/ <�$����
����/
����������&���������	����������� %� 9�<�I�3 ������I�*��J��) 3 ��$����
3� I�� � ���� ������� ����������� ���� 	#������� #�� �������� ���� �	�����
$�����������		������������������	�� � 9/ <��������������������	�������
��&���	��	����&� �����&������	��������������������� 	�	��!������	��$	�
�������� $���� ���� (���� ����	�� ���������� ��� :�@;�� ��� � ���� &������
�����������������������	��������������� �0��	#���&� ��������	��������
�������������������	��������$�������&�����
�������� ������������������

������	�� � ����� $	���� ����� ����� ���� �	��	$���� #���� �!���	�� $	����
�"������	��������$�����	�����	��������������������" �����������������
�	���#������������	�����������������	�������������� ����������	����� ��	�
	&���	��� ������ $�� ������ ���� ������	��� ���������� ��� ��� ��� ������ �*�
������� 9���� ����� ����	����<� ���� �������� � ���� ��#�� �� 	�� ��������
��������� ��	�� ���� ���� ����	���� �������� � ���� �� 2/ � �	� ������� �	��
��������������������	����#�� 4 ��
�
���� ����	����� 	�� ����7�4�����������	��������������� ���������������
���	����#���

� <�9<9 �1���� 1 �� � 12� �� �   �� � 9)<�

$����� 41�  � ���� ����	����� <9�� 1 � 	�� ���� ��������� �����"� ����

��		����� #�� ���������� $���� �� �/
� $���� �	����������� %)9�<�I� K�� �� I�
���J��@ �2	�	�9:-;<� ����	����� ��	����� ������	��� ��� ����	��$���� ����
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������ ��� �� �	���#������ �	� 	�����!�� ����$������� ���E % � �*��$�����$��
�����	���������"��	���������������	��	&������������ ����#���'�������������
���������$��������������&���		������	�������	������ ��������	�����
��������� ������������� #� ���"���!����������	��� "� �������������������

�	��� ��
���� ��	���� ������� � /�� ��� ������ 	��� ��	��� 	 �� ������ ����	����
�������� ����������� ���� ��������� 	�� �����	�� ) - )� �� �� #���� �	����� ����
��	��������������	����������������� �� ��	��$����� *<9? ���� ��� � �

��	����������&��#��������������	��������	����	����� ���������	�����	���
	�� ������ ����	���� ������� � /�� �	� ����� 	�� ������ ���� ���� ��� �	����� ����
�������	�� ��� ����� ��	��������������������#����"���! ���� "  �/�������
����� ���� ��	��� ��	��� *<9? �#�� � �	�� ���� �������� ���������� � ����

�������	����������������������������	������������ ��  �

��5� � ��!-�!"��,���*����%&����&!�&0��,���,&�$(�

��"�� ���� �"���� �	����	�� ���� ������� 	�� ���� ��	���� �� ���	�� ��� ��������
������ ���������� ��� �$	� 	�� 	��� �������	�� � )�� 
����� �� ��&�� ��������
#���������#��7��������� ��	������!���	������������� ��	�������������#��
���������� ��������� ��	��� ��������	��� ��	�� �� ������� ���&��� �����
����������������"�:�A; �3�����$������)�����������	� ���������"�����	���
��	���	������	����������� �(����������������������� �����$��������	��
�����	�
�������������@C@��������������������������� �����	������	����
�����	�� ��� -� 	�� �+� ��������� 9?)� 	�� +@� #������ ������ ��&���<� :D; � /��
������	��� ���� ��	���� ���� �	������ 	�� �$	� ���������� � �#�����	��� 	��
�%���� ������ � �$	� �������	���� ������� 
������� ���� �	 ���������� �	�
�	���� ���� �������� 	�� ������ ��������������� �������� � ���� $	���� #��
������� #�� �� ��	���� 	�� -� 	�� �+� ��������� �	���� $���� � $	� ����������
��#�����	�� ��������+���	$�������������	���������	� �?)�#��?)�#������
$���� �$	� �+� #�� �+� #����� �	��� ���������� ��#�����	�� � ����� ��� ����
������!��� ������ 	�� ���� ��������������� �������� 	���� ����� ��� ���� ����
�����������"���������	������������
����	����	��� �� ������	�������������
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��������#���	���������	��+@�#��+@������$��������	�� ����	�����������
?)�#�����	�����#�����	�� ��
�
���������	��������������������"�����	�������������	 �����������������
���������$�����������$	�
������ �������	����������� ����������	��������
���	����$���� <)9�� ��������������	����� <@9��  ������	������	������

�	$��������������������������"������������	�� <)C<)9����"9 �� 5� � �

�	� <�)C<@9���9 25� �� � � ���� ��������� ��� ���� ����� ��	�� $����� �	�

��������	��������	��� � 5 ����������������	��	�������������
��������������
?)�	��+@������ 2 ���������������	�������	������#���� �����������"��� ��
�������� �	� ���&���� 	&��� ����"��� �/�������������	�� ����������#	&�����
���� �	����� �������	�������	������������������������ ����	�������������
���	������ ����������������������	�������������	��� ����	�����	�������
�	����&������������������	���������	����	���������� ���		��������	��
��������������	������������� �
�
0������������������������������	�����	������������� $�����������	�� 5 ��
����	����	�������9 ���(<����������������������"�������	��	$����&����������
����������=��������������� <��9 �5(�� ���	�����������	�����9���
���

$����#���
��	�	������������+<���������������� <��9 �5(�� ���	�������

����� ����	���� � ���� ����� ��������� <��9 �5(�� � 	�� ���� ����	�������

����� 9$����� �	�	�� ��� ������� +< � ���� ����	�
<��9C<��9<��9 ��� 5(�5(�5(� ��� � � ������������	$�$���������	���

��	����������$��������	����$�����$	���������������� �������#�����	����
���� ���� ����	� <��9C<��9<��9 ��� 5(�5(�5(� ��� � � � �	$� $���� ����

�	����	�� �������� �� ���	��� ���������� �����	�� 	�� ���� ��� 5 �� $���� �	�
��#�����	�� � ���� �������� ���� ����	�� ���� �������� ��� � &������ 	�� ����
����	���� �	������� �	� ���� ����	������� ���� � ���� ���� �����&����� 	��

<��9 �5(��� � ���� <��9 �5(��� � ���� ���� �	�����	������ �������� ����

��	���� �	�� #	��� ��������� � � � $���� 5 �<?) � ��� � 5 �� I+@ � ������ ���������
&�������������	����#�� <9 �5�� � ����� <9 �5�� �  �

�
7�&����� ����������� ���� ����� ����� �	� ������� ���� ���� �� ��	���� �	����	��
�����������#�����	�������������������������	������� ���	�����	��������	��
�����������	������������������	����������	����	���� �������������	����
���������������	���� �������������	���������	������ �����������	������
�	� ���� �$	� �������	���� ����������� ��� ���� ��������� � ���	�� ���� ������
��	��� � ���� �	��	$���� ����������� ���� ������ ����	��� � ����� 	�����
���������&��� $	���� #�� �	���#�� � ������ ������ #��	$� � �&�� #���� 	#�
�������&����������������	��#���"������������$������ ��#����	��A*��	����
��	��	����������	������	� �
�
/�� <+@9�� � T <?)9�� � �� ��� ���������� �� �		�� ������ $���� ���� +@� #����

�	�����	����$�����$	�?)�#�����	�����#�����	�� ����� ��	�������������
�	���� ��� ��������� ���	������ �	� ���� �	����� ����"� 	�� ���� �	����$�����
������!��� <+@9�� � ����������������������
������+@�#���� �E����������� �

�������	����������������	���������	���������������? )��������	���������	��
��� ��'������ ���	������ �	� ���� �	���� ������!���� <?)9�� � � 	���� ��� ����

��	���� #��������� $	���� ������� ��� ��"����� 	��� #���� � �	�� ����
�������� �	����	� � ��������� ��� ���� ������� 	�� ���� ��� ����� ��	���������	�����
��	���� �	� @-� ����� ?)� 	�� +@� ���� <?)9�� � � T� <+@9�� � � ����

<?)9�� � �T� <+@9�� � ���� ���� �	����� ����"� 	�� ���� �	���� ������!����

<?)9�� � ���������������������	����������!���� <?)9�� � ��������	��������
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���� �	� ������ ��� ���� �	����������!����#	��� <?)9�� � ����� <?)9�� � �����

���� ������� ��� ���� �	� ?) � ������ ������ ���� �������� �� ���� �	� ��'���� ����
��	���������	����������������
����������������	���� ������������?)�	��+@�
#������	�����	����$����������������#�����	��������� �����!� �
�
/�� ����� ������� ���� �#	&�� �	�����	��� ���� �	�� ����� �� �� ���� ��	����
�����	�������'������#������	������������������	���� �������	����&������
	�� ���� �������� ��	���� �����	�� ���� �� ������ 	������ 	� � ��&��#�����#��	���
��������������#���������������� ���������������	$�� ����	�������������
	�� ���� �������� ��	���� �����	�� ���� ���	���� $���� <<)9<��99 �� �� � 9����

#��������<����� <<@9<�?99 �� �� �9�������<������&�������	�#���������������

�	���� ��	��� ���� ����� ��	�� <A<)9�A<�99 �� �� �� � �	�

<A<@9�A<?99 �� �� ��  �

�
������������������	���$�����$	�
�������	���������?) �����+@��#����	$�
	�� 	��� �������	�� ��	��� ���� ����	���� ���������&����� � 	�� ���� ��������
��	���������	������������������������	������� ����� ����	� � 9?)<��������
��������� ����	� 	�� ����� 	�� ���������&������ 	�� ����?) ��	���� 
������ �	�
����&������ 	������� ���� 
����� � /�� � 9?)<�T� * B� ���� ���� ������� 	�� ����
�������� ��	���� �����	�� ��� ��	���� �	� ?)� ����� +@�� ��� � ��	���� ���������
�	��������������	�������	������	����	��������!���� � 9?)<����������������
��� ���� �	�?) �/�� ���� ������� 	�� ���� �������� ��	����� ����	�����������������
@-��������������	�����������	����	����������������� �����������	�������	�
����	�����&������������������	�� ��������������	��� ����	���		
���	��
����#���� �	����	�� 	�� ���� ��	���� �����	�� � � � ��� ��� � �������������	����
�������������������������	���������	���	�������	��� ��	�������������	��	��
��&�����������	������	���"����� ��	���������������� 	������	����������
�	�@C@������ ���������� ���� ��	���� �������� 	��?)� 	��+ @=���� ���� �	����
��	��� �#	&�� ���� �	�� ����� ���� ��	���� �����	�� ��� 
��� � ��� ���� 	��� ���
������� ��	�� ����#�����!���	�� ��	���� � /�� ������ ���� �� ���� ������� �	���
�	����&���	�#��?)�	��+@ ��

#�� 	6����
����

���� ����	�� $��� �&�������� 	�� ����#���� �	��������� 	�� )*+� �	������
�����	�
������������� �4	���	���������������&������ ����&�������	����
����������� ����	���� ������ ���� �	��� ���������� $����� ���� ���������� ���
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�����	#&�	�� �������	���������	���$�������	�������� ���������	������
������ � ���� ���	����	��� $���� ����� $���� �� ���������� �		��� $�����
��	$��� ����#���� ������	��!���7�4� 	�� ���� ������� ���� ����$���� ����
������� ������ � ���� �������������� �����"� &������!��� 	�� ��������������
������������������	����	��$	�
��������������������� ��	���$�����	���
��������	��� ��
�
1���	�������	�������������������������$������������ ���������������
��� ���� ����	���� ����� 	�� ���� ������� �����9 ><����� �������	�� �����9 � <=�
� �I� 9) >� <�C�9>�L� � < � �	 � ���������� >� ���� � ��$�� ����� ���� ���	������
��	���� �����	�� $���� ��"����� 	&������ $���� ���� ������ ��� ��	����
�����	��� ���� ���������� ���� ������� ����� � 	�� ���� �����	�� $����� ���� ���
������� ��	���� �����	�� 	&�������$���� ���� ���	������ � ����	� � >���� ����
�������������������	� ����� ��	������������	���������	��������	���������	���
���� �� �����������	�	�� ����� ��	������������	�����������������	���������	� �
�����������������������������	�����������
��������� ����	�����	&������
������������������&������	�����������������	&������ �����
� �
�
��#��� �� ��	$�� ���� ��	���� �������	�� ������� �8������ �� ��� ���� �	�����
������ � ���� �	��� �	��	�� ���	�� ��� ������ 	������� ��� � ��� #���������
���C	�������	����	���	��������	���������	���������� ����������	�� �����
���	��� �	$� ����������� ���� �������� $���� ���� 	������ � �	���� �����	��
������� ��� ��"��� �	� ?*� ���	��� � 8����� �#��� �	� 	����� � �� ��"��� �������
������������#��������#�������	������������	�������� ��������������
&��$ � /�� ���� �������� ��	���� �����	�� ��� ��	����� ���� � ?*� ���	����� �"�
�������� ��� �	���#�� �	��	$������������	������	������ ���������	�����
�������	��	��������������������������7�4 ��	�����	� ����������	���
������ ��� �	��� #�� ��	������ ��� ����� ���� �	���� $���� �� ����� ���������
&����� ��	�� ������� ��� � ��� ���� ������� ����� ��������� � $���� ���� ?*� ��
��������������������������	�������	����$����������� ������$�	�����	�
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