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Abstract

Signal processing methods for audio classi cation and music content
analysis are developed in this thesis. Audio classi cation is here un-
derstood as the process of assigning a discrete category label to an un-
known recording. Two speci ¢ problems of audio classi cation are con-
sidered: musical instrument recognition and context recognition. In the
former, the system classi es an audio recording according to the instru-
ment, e.g. violin, ute, piano, that produced the sound. The latter task
is about classifying an environment, such a car, restaurant, or library,
based on its ambient audio background.

In the eld of music content analysis, methods are presented for mu-
sic meter analysis and chorus detection. Meter analysis methods con-
sider the estimation of the regular pattern of strong and weak beats in
a piece of music. The goal of chorus detection is to locate the chorus seg-
ment in music which is often the catchiest and most memorable part of
a song. These are among the most important and readily commercially
applicable content attributes that can be automatically analyzed from
music signals.

For audio classi cation, several features and classi cation methods
are proposed and evaluated. In musical instrument recognition, we con-
sider methods to improve the performance of a baseline audio classi ca-
tion system that uses mel-frequency cepstral coef cients and their rst
derivatives as features, and continuous-density hidden Markov models
(HMMs) for modeling the feature distributions. Two improvements are
proposed to increase the performance of this baseline system. First,
transforming the features to a base with maximal statistical indepen-
dence using independent component analysis. Secondly, discriminative
training is shown to further improve the recognition accuracy of the
system.

For musical meter analysis, three methods are proposed. The rst
performs meter analysis jointly at three different time scales: at the
temporally atomic tatum pulse level, at the tactus pulse level, which cor-
responds to the tempo of a piece, and at the musical measure level. The
features obtained from an accent feature analyzer and a bank of comb-
Iter resonators are processed by a novel probabilistic model which rep-



resents primitive musical knowledge and performs joint estimation of
the tatum, tactus, and measure pulses.

The second method focuses on estimating the beat and the tatum.
The design goal was to keep the method computationally very ef cient
while retaining suf cient analysis accuracy. Simpli ed probabilistic
modeling is proposed for beat and tatum period and phase estimation,
and ensuring the continuity of the estimates. A novel phase-estimator
based on adaptive comb ltering is presented. The accuracy of the
method is close to the rst method but with a fraction of the compu-
tational cost.

The third method for music rhythm analysis focuses on improving
the accuracy in music tempo estimation. The method is based on esti-
mating the tempo of periodicity vectors using locally weighted  k-Nearest
Neighbors (k-NN) regression. Regression closely relates to classi ca-
tion, the difference being that the goal of regression is to estimate the
value of a continuous variable (the tempo), whereas in classi cation the
value to be assigned is a discrete category label. We propose a resam-
pling step applied to an unknown periodicity vector before nding the
nearest neighbors to increase the likelihood of nding a good match
from the training set. This step improves the performance of the method
signi cantly. The tempo estimate is computed as a distance-weighted
median of the nearest neighbor tempi. Experimental results show that
the proposed method provides signi cantly better tempo estimation ac-
curacies than three reference methods.

Finally, we describe a computationally ef cient method for detect-
ing a chorus section in popular and rock music. The method utilizes a
self-dissimilarity representation that is obtained by summing two sep-
arate distance matrices calculated using the mel-frequency cepstral co-
ef cient and pitch chroma features. This is followed by the detection of
off-diagonal segments of small distance in the distance matrix. From
the detected segments, an initial chorus section is selected using a scor-
ing mechanism utilizing several heuristics, and subjected to further pro-
cessing.

Keywords Audio signal analysis, audio classi cation, audio-based
context recognition, musical instrument recognition, music meter anal-
ysis, chorus detection.
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Chapter 1

Introduction

Imagine walking on a street and listening to your favorite string quartet
from the head phones of your portable music device. As you are walk-
ing towards the city center, the traf ¢ gets harder and the noise level in
the surrounding environment increases. At some point you may need to
switch from classical music to something 'louder' such as heavy metal
as the quiet nuances of the violin performance are barely audible any-
more.

We are starting to have more and more devices that automatically
adapt to the situation and adjust their behavior accordingly. In the
above case, for example, the device might use its microphone to sense
the increased noise level and make a decision to adjust the current
playlist to incorporate music that is better audible in the loud environ-
ment. Modern hearing aids already adapt their behavior according to
the environmental noise levels. As another example, consider a device
which would automatically detect that the user goes jogging and select
the playlist accordingly. The individual songs in the playlist could be se-
lected to provide suitable motivation for different parts of the exercise,
so that songs with slower tempo are played when the pace is slower and
songs with faster tempo when running faster.

To be able to make sophisticated decisions on what music to select
in each context, the system needs information on the user's context and
music content. Context information may include e.g. recognizing the
location, such as in a car or at home. Many sensors are available for
context sensing including acceleration, illumination, global positioning
system (GPS) location, temperature, camera, or microphone. Each sen-
sor type has its own bene ts regarding power consumption, cost, and
type of information it provides. Context recognition using using audio is
attractive since microphones are already available in many portable de-
vices such as mobile phones, and audio provides a rich source of context
information. Automatic audio content analysis methods can be used



to provide information on and categorize audio signals captured by the
built-in microphone.

Music content information includes for example genre, style, release

year, mood, harmony, melody, rhythm and timbre. Some of these at-
tributes such as the genre and release year are usually available as tex-
tual metadata. By employing a number of music experts it is possible to
categorize even large catalogues of music with regard to several musical
attributes and use this information in making music recommendations,
as is done e.g. by the personalized radio service Pandora.com. How-
ever, using human experts is costly and slow, making the development
of automatic music content analysis methods attractive. Compared to
human abilities, machine analysis of music content is only in its infancy.
In some applications, such as tempo estimation or chorus detection from
popular and rock music, machines obtain accuracies up to 90% which
makes building practical applications possible. In addition, music con-
tent information such as tempo and timbre can combined with textual
metadata such as genre and release year to improve the performance
e.g. in content-based retrieval.

The following lists some other applications of audio content analysis.

2 Multimedia information retrieval and indexing is facilitated by au-
tomatic analysis of e.g. events in a video soundtrack or attributes
of a musical piece [32].

2 Content modi cation and active listening can be enabled with con-
tent data describing the beats and measures [83]. For example,
consecutive tracks can be mixed in a beat-synchronous fashion to
make a smooth transition. Music player interfaces may provide
novel functionality such as looping or skipping to musically mean-
ingful locations such as the beginning of the next chorus [66].

2 Music transcription means transforming an acoustic music signal
into written music, a score [99]. Amateur musicians would ben-
et from applications which would reliably convert their favorite
music collections to notated form.

2 Object-based audio coding aims at using high-level objects such as
musical notes as a basis for compression [174]. Being able to en-
code and represent sound producing objects separately would en-
able e.g. changing the lead instrument to something else or chang-
ing its playback style during resynthesis.

2 Automatic accompaniment systems make it possible for soloists to
practice with a virtual accompaniment which follows the soloist [169,
151].



1.1 Terminology

1.1.1 Musical terminology

A musical sound is often characterized with four main perceptual at-
tributes: pitch, loudness, duration and timbre. These four attributes
make it possible for a listener to distinguish musical sounds from each
other. Pitch, loudness and duration are better understood than tim-
bre and they have clear physical counterparts. For musical sounds,
pitch is usually well de ned and is almost equal to inverse of the pe-
riod for sounds that are periodic or nearly periodic. Fundamental fre-
qguency Fq is the corresponding physical term and is measured in Hertz
(Hz). Pitched musical sounds usually consist of several frequency com-
ponents. A perfectly harmonic sound with fundamental frequency Fgq
has harmonics at integer multiples of the fundamental frequency.

According to Shephard, the perception of musical pitch can be graph-
ically represented using a continually cyclic helix having two dimen-
sions: chroma and height [164]. Chroma refers to the position of a
musical pitch within an octave, i.e., a cycle of a helix, when seen from
above. Pitch height refers to the vertical position of the helix seen from
the side.

The physical counterpart of loudness is intensity , which is propor-
tional to the power of an acoustic waveform. The third dimension, per-
ceived duration, corresponds quite closely to the physical duration for
tones that are not very short.

Timbre is the least understood among the four attributes. It is some-
times referred as sound "color” and is closely related to the recognition
of sound sources [71]. When two musical sounds have equal pitch, loud-
ness and duration, timbre is the property which makes it possible to
distinguish the sounds from each other. Timbre is a multidimensional
concept and depends mainly on the coarse spectral energy distribution
and its temporal evolution.

Musical meter relates to rhythmic aspects of music. Perceiving the
meter can be characterized as a process of detecting moments of mu-
sical stress from the signal and inferring the underlying periodicities.
Pulse sensations at different levels together constitute the meter [99].
The most distinct level is the one corresponding to individual beats, and
is called the beat or tactus. This is the rate at which most people tend
to tap their foot on the oor while listening to music. The tempo of a
piece is de ned as the rate of the tactus pulse. It is typically repre-
sented in units of beats per minute (BPM), with a typical tempo being
of the order of 100 BPM. The sequence of musical measures relates to
harmonic changes or the length of musical patterns.  Bar lines separate
the measures in musical notation. Typically, every Nth beat coincides



with the beginning of a measure. In a 4/4 time signature typical for
Western popular music, every 4th beat coincides with the beginning of

a measure, and is called a downbeat. The shortest meaningful dura-
tion encountered in music is called temporal atom or  tatum and often
coincides with the duration of 8th or 16th note.

On a larger timescale than the measure, the form of Western popular
and rock music pieces often consists of distinguishable sections such as
intro, verse, bridge, chorus, and outro [121]. The different sections may
repeat and a typical structure of a musical work consists of one or more
repetitions of a verse and chorus. The chorus is often the "catchiest” and
most memorable part of the song and is thus good to be used for music
previewing, as a so-called music thumbnail [16]. Another use for the
chorus section is as a mobile phone ring tone.

1.1.2 Context and metadata

Moran and Dourish de ne context as the physical and social situation in
which computational devices are embedded [129]. In its general sense,
context can describe the state of the environment, the user, and the de-
vice. For the purposes of this study, context describes the situation or
physical location around an entity. The basic goal in context aware com-
puting is to acquire and utilize information on the context of a device to
provide better services for the user [129]. For example, a mobile phone
may automatically go into a silent mode when it detects that the user
sits in a meeting or in a concert.

Context information can also be used as an automatically created
metadata for media such as music: for example when the device detects
that the user is in a car and listens to music, it may automatically tag
the played songs as suitable for the car environment and provide simi-
lar songs to the car environment later on [80, 162]. On a general level,
metadata can be de ned as data which describes data. Typical meta-
data for a music le includes information on the artist, composetr, track
and album title, genre, and beats-per-minute (BPM).

1.2 Related research elds

1.2.1 Computational auditory scene analysis, speech pro-
cessing, multimedia content description, and audio
ngerprinting

This thesis falls within the broad eld of audio content analysis. This
section brie y introduces some related research elds and provides ref-
erences to more detailed overviews.



Audio content analysis is related to computational auditory scene
analysis (CASA) [48, 176]. In this eld, the ultimate goal is to analyze
and interpret complex acoustic environments, including the recognition
of overlapping sound events, and thus their sources.

Some related elds are more developed than e.g. those presented in
this thesis, and can be used a source of methods and techniques. The
speech and speaker recognition eld is well developed although still un-
der extensive research efforts. Many feature extraction and statistical
modeling techniques used nowadays for environmental sound classi -
cation or music content analysis were rst developed for speech. For
overviews of speech and speaker recognition see [88, 61, 149, 148].

Query-by-example of audio is an important application for audio con-
tent analysis. Here, the goal is to nd items with similar attributes from
audio catalogues [72]. A special requirement in this area is to be able to
ef ciently compute distances between the audio samples in a database.

Audio ngerprinting, music recognition, or content-based audio iden-
ti cation is a well matured technology based on automatic analysis of
audio content. Here, the goal is to link an unlabeled audio le to its
metadata (artist, album, title) for the purposes of broadcast station
monitoring, cleaning up metadata in music collections, or discovering
the identity of a song heard in a bar. For overviews on audio nger-
printing see [30, 29, 175].

The multimedia description standard MPEG-7, developed by the
Moving Pictures Expert Group standardizes the representation of con-
tent descriptive metadata, such as musical instrument parameters [122,
95]. Reference content analysis methods are given, but new content
analysis methods can be developed to automatically produce this meta-
data. A more comprehensive review of audio content analysis is given
in Chapter 2.

1.2.2 Music information retrieval

The eld of music information retrieval (MIR) considers technologies
to enable access to music collections [32]. MIR is a multidisciplinary
eld drawing from music perception, cognition, musicology, engineering,
and computer science. The growth of research interest in the eld is
evident e.g. from the number of papers published in the Proceedings of
the International Conference on Music Information Retrieval. The rst
conference was held in 2000 and the proceedings included 35 papers,
whereas in 2008 the number of papers had grown to 111 [2].

Most commonly, digital music catalogues are accessed with the help
of textual metadata [32]. As the metadata may be rich and descriptive,
this provides ef cient ways to access and nd music. However, a prob-
lem is how to obtain high quality metadata for large music catalogues.



Companies such as Pandora.com ([5]) and AllMusic ([1]) use human ex-
perts to annotate descriptive terms for large catalogues of songs and are
able to provide high quality search and music recommendation services.
However, annotating a song e.g. at Pandora.com takes an estimated 20
to 30 minutes ([3]), which leads to large costs. Moreover, concerns raise
of the consistency of metadata as large populations of people are needed
to annotate collections of several million sound tracks.

An alternative for expert annotated metadata is to collect tags from
users, as done by social music websites such as last.fm [4]. However,
this leads to problems on how to mine high quality information from
noisy tag clouds as typically users are allowed to assign whatever tags
they desire for the music. There are also approaches where analysis of
freeform text content on the Web is used to derive descriptions for music
content. Brian Whitman describes pioneering work on this area in his
thesis [179]. A more comprehensive review on music content analysis is
given in Chapter 3.

1.2.3 Context awareness

Context recognition is de ned as the process of automatically deter-
mining the context around a device. In addition to being a promising
source of automatic metadata for music or other media types, informa-
tion about the context would enable wearable devices to provide better
service to users' needs, e.g., by adjusting the mode of operation accord-
ingly. Recent overviews on context awareness can be found in [77] and
[101].

Compared to image or video sensing, audio has certain distinctive
characteristics [50]. Audio captures information from all directions and
is more robust than video to sensor position and orientation. In addi-
tion, the nature of information is different from that provided by vi-
sual sensors. For example, what is said is better analyzed from audio
but the presence of nonspeaking individuals cannot be detected. Audio
can provide a rich set of information which can relate to location, ac-
tivity, people, or what is being spoken [50]. The acoustic ambiance and
background noise characterizes a physical location, such as inside a car,
restaurant, or church. Different activities such as typing a keyboard or
talking can be distinguished based on the sound they create.

1.2.4 Applications of audio-based context awareness and
automatic music content analysis

Applications based on audio-based context awareness are still very much
work in progress, and general environmental awareness based on au-
dio input remains a dif cult research problem. However, in some very



narrow elds commercial applications are emerging. For example, the

smart alarm clock by Smart Valley Software detects the optimal mo-
ment to wake up by monitoring the quality of your sleep using the mi-

crophone of a mobile phone [6]. Modern hearing aids optimize their
performance according to the noise quality of the environment [19].

Context-aware music services are at research prototype stage. For
example, Lehtiniemi describes an user evaluation of a prototype context-
aware music recommendation service in [109]. A high-level architecture
of the service is described in [162].

Some elds of automatic music content analysis have reached suf-
cient maturity for practical applications. For example, the Nokia PC
Suite software contains functionality to calculate the tempo from user's
own music les. In professional applications, tempo analysis has existed
for long. However, the analysis is not faultless and in (semi)professional
applications the user may be able to x the analysis errors e.g. by tap-
ping the correct tempo, such as in the Music Maker music editing soft-
ware by MAGIX. In amateur applications we cannot expect the user to
be able to x tempo estimation errors by tapping and work on robust
tempo analysis methods is thus needed. In addition, some aspects of
music meter are more dif cult to analyze than others. For example,
analyzing the average tempo can be done robustly, but positioning the
beats or beat phase estimation is much more challenging. Estimating
the bar line positions is also challenging but important for many prac-
tical applications, such as seamless beatmixing of tracks.

1.3 Scope and purpose of the thesis

This thesis considers methods for automatic content analysis of music
and audio. Common to the selected methods is that they can be used
for automatic metadata generation for music . The metadata can relate
to the content, i.e. which instruments are used, what is the tempo of
the piece, or where is the chorus section. Automatic music content de-
scriptors provide an ef cient means for automatically deriving content
descriptive metadata from multimillion music track collections. Besides
the actual music content, the metadata can relate to the usage or con-
text, i.e. in which situation has the music been listened to. Examples
include in a car, bus, outdoors jogging, or at home with friends. In
the latter scenario, a mobile music player collects context information
and automatically associates information describing the situation to the
played music.

More speci cally, methods are proposed to address different sub-
problems in music and audio content analysis. Publications [P1], [P2],
[P3], and [P4] consider audio classi cation. In the rst three publi-



cations the task is the classi cation of musical instruments, and [P4]
considers the classi cation of the environment or device context based
on the background sound ambiance.

Methods for musical instrument recognition have been originally
proposed in [P1], [P2], and [P3]. The methods focus on classifying the
instrument based on monophonic, single note recordings. The method
proposed in [P1] suggests several frequency and time domain features
that are useful for musical instrument recognition, and presents exper-
iments using a hierarchical classi cation scheme utilizing the natural
taxonomy of musical instrument families. In [P2] a very pragmatic ap-
proach is taken and an analysis is made of the ef ciency of different
features in the musical instrument classi cation task, and the problem
of generalizing across different environments. Publication [P3] proposes
the use of hidden Markov models with a left-right topology for instru-
ment recognition and studies the use of linear feature transforms to
transform concatenated MFCC and delta MFCC features.

Publication [P4] presents a method for recognizing the context based
on audio. Similar techniques are applied as in [P3]. The paper focuses
on techniques that could be used to improve the system's performance
with negligible increase in the computational load at the on-line classi-
cation stage.

In music content description, the focus is on music meter analysis
and chorus detection. Music meter analysis is considered in publica-
tions [P5], [P6], and [P7]. The method presented in [P5] is a complete
meter analysis system capable of jointly estimating the tatum, beat (tac-
tus), and bar level pulses in musical signals. However, when large music
catalogues are processed or an algorithm should be run on an embed-
ded device such as mobile phone, computational complexity becomes an
issue. In publication [P6] a computationally very ef cient method is
proposed for beat tracking. The method runs faster than real-time on
a mobile phone. The method presented in publication [P7] focuses on
the most important subtask, tempo estimation, and signi cantly out-
performs the previous methods in accuracy.

Finally, publication [P8] describes a method for chorus detection
from music les. The method is computationally ef cient while main-
tains suf cient accuracy for practical applications.

This research originated from the need to build a functional block
into an automatic transcription system being constructed at the De-
partment of Signal Processing at Tampere University of Technology.
This work was originated by Anssi Klapuri who describes the work in
more details in his Ph.D. thesis [99]. The latter part of the research
has been done with Nokia Research Center, where the research is cur-
rently related to the development of a context aware mobile music ser-
vice, which requires technologies for context sensing and music content
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analysis [162].

1.4 Main results of the thesis

This section describes the main novel results and contributions of this
thesis.

1.4.1 Publication 1

Publications [P1] to [P3] consider the problem of musical instrument
recognition. In publication [P1], several features are proposed to de-
scribe each musical instrument note. A hierarchical classi cation scheme
was implemented which utilizes the natural taxonomy of instrument
families. The main results were:

2 Novel features were proposed for musical instrument classi ca-
tion.

2 Combining cepstral coef cients with other spectral and temporal
features was proposed to effectively take into account both spec-
tral and temporal information found important in human timbre
perception experiments.

2 Segmenting the note to attack and steady state segments and sep-
arately extracting features from both were proposed.

2 The use of a manually-designed hierarchical classi cation taxon-
omy was evaluated and found not to improve the performance
which contradicts with the earlier results of Martin [124].

1.4.2 Publication 2

Publication [P2] presents a detailed evaluation of several features for
musical instrument recognition, and studies the problem of generaliz-
ing across different instances of the same instrument, e.g. different
violin pieces played by different performers at different locations. The
simulations were performed on a database larger than any study had
used by that time. The main results were:

2 When more than one example of an instrument is included in
the evaluation, the performance of the system signi cantly drops.
Generalizing across instruments and recording locations is identi-
ed as the key problem in instrument classi cation.

2 The effectiveness of different features in instrument classi cation
was analyzed.



2 Different cepstral features were evaluated, and cepstral coef cients
based on warped linear prediction were proposed. Mel-frequency
cepstral coef cients were found to be the best choice considering
classi cation accuracy and computational complexity.

2 The effect of using one or several notes for instrument classi ca-
tion was tested.

1.4.3 Publication 3

In publication [P3], the use of hidden Markov models with a left-right
topology for instrument note modeling is proposed. The motivation for
using hidden Markov models for instrument notes is that the model
may be able to learn the different spectral characteristics during the
onset and steady states, removing the need for manual segmentation
as was done in [P2]. In addition, the use of discriminative training and
linear feature transforms to transform the catenated static and dynamic
cepstral coef cients is proposed. The main results were:

2 The use of left-right hidden Markov models for instrument note
modeling was proposed.

2 Transforming the features to a base with maximal statistical inde-
pendence using independent component analysis can give an im-
provement of 9 percentage points in recognition accuracy in musi-
cal instrument classi cation.

2 Discriminative training is shown to improve the performance when
using models with a small number of states and component densi-
ties.

2 The effect of varying the number of states and component densities
in the HMMs is studied.

1.4.4 Publication 4

Publication [P4] presents a method for recognizing the context based on
audio. Similar techniques are applied as in [P3]. The paper focuses on
techniques that could be used to improve the system's performance with
negligible increase in the computational load in the on-line classi cation
stage. The main results were:

2 Building context aware applications using audio is feasible, espe-
cially when high-level contexts are concerned.

2 Discriminative training can be used to improve the accuracy when
using very low-order HMMs as context models.
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2 Using PCA or ICA transformation of the mel-cepstral features does
not signi cantly improve the accuracy, contrary to the case of mu-
sical instruments.

2 In comparison with the human ability, the proposed system per-
forms rather well (58% versus 69% for contexts and 82% versus
88% for high-level classes for the system and humans, respec-
tively). Both the system and humans tend to make similar con-
fusions mainly within the high-level categories.

2 The recognition rate as a function of the test sequence length ap-
pears to converge only after about 30 to 60 s. Considering practical
applications on mobile devices this poses challenges as we would
like to use much less audio for performing the recognition to save
energy.

1.4.5 Publication 5

Publications [P5], [P6], and [P7] present several methods for music me-
ter analysis. Publication [P5] presents a complete meter analysis sys-
tem which performs the analysis jointly at three different time scales:
at the temporally atomic tatum pulse level, at the tactus pulse level,
which corresponds to the tempo of a piece, and at the musical measure
level. Acoustic signals from arbitrary musical genres are considered.
The main results were:

2 A probabilistic model representing primitive musical knowledge
and capable of performing joint estimation of the tatum, tactus,
and measure pulses was presented.

2 The model takes into account the temporal dependencies between
successive estimates and enables both causal and noncausal esti-
mation.

2 To overcome the problems of having very limited amount of train-
ing data, an approximation for the state-conditional observation
likelihoods was presented.

2 The transition probabilities were proposed to be modeled as a prod-
uct of the prior probability of the period and a term describing the
tendency of the periods to be slowly varying.

2 |n simulations, the method worked robustly for different types of
music and improved over two state-of-the-art reference methods.
The method ranked rst in the ISMIR 2004 beat induction contest.
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1.4.6 Publication 6

Publication [P6] presents the second method for music meter analysis,
and focuses on estimating the beat and the tatum. The design goal was
to keep the method computationally very ef cient while retaining suf-
cient analysis accuracy. The paper presents a simpli ed back-end for
beat and tatum tracking and describes its implementation on a mobile
device. The main results were:

2 The computationally intensive bank of comb- Iter resonators was
substituted with a discrete cosine transform periodicity analysis
and adaptive comb lItering.

2 The back-end incorporates similar primitive musicological knowl-
edge as the method presented in [P5], but with signi cantly smaller
computational load.

2 A method based on adaptive comb ltering was proposed for beat
phase estimation.

2 Complexity evaluation showed that the computational cost of the
method was less than 1% of the method presented in [P5] and
the one by Scheirer [158]. However, it should be noted that the
method [P5] was implemented as a combination of Matlab/C++,
whereas the proposed method and Scheirer's method were imple-
mented fully in C++. A real-time implementation of the method
for the S60 smartphone platform was written.

1.4.7 Publication 7

The last publication ([P7]) in music meter analysis focuses on improving
the performance in tempo estimation. The tempo is the most important
metrical attribute in practical applications. The main results were:

2 A method for measuring musical accentuation based on the chroma
features was presented.

2 A method for tempo estimation using locally weighted  k-NN re-
gression was presented. The method involves a resampling step
which gives a signi cant improvement in performance.

2. A method to compute the tempo estimate as a weighted median of
nearest neighbor tempi was proposed.

2 Experimental results show that the proposed method provides sig-
ni cantly better tempo estimation accuracies than three reference
methods.
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2 The method is straightforward to implement and requires no ex-
plicit prior distribution for the tempo as the prior is implicitly in-
cluded in the distribution of the  k-NN training data vectors. The
accuracy degrades gracefully when the size of the training data is
reduced.

1.4.8 Publication 8

Publication [P8] presents a computationally ef cient chorus detection
method. This subproblem in music structure analysis was chosen as it
seemed possible to obtain good accuracies and many potential applica-
tions exist. The main results were:

2 A method for analyzing song self distance by summing the self-
distance matrices based on the MFCC and chroma features was
proposed.

2 A scoring method for selecting the chorus section from several can-
didates was proposed.

2 A method utilizing matched Iter for re ning the location of the
nal chorus section was proposed.

2 The method provides a good chorus detection accuracy while being
fast to compute.

1.5 Outline of the thesis

This thesis is organized as follows. Chapter 2 presents the relevant
background information on feature extraction, classi cation, regression,
and statistical modeling needed to understand the contents of the the-
sis. In addition, we discuss relevant research on musical instrument
recognition, environmental audio classi cation, and relevant elds. Chap-
ter 3 discusses relevant research on automatic music content analysis,
focusing on music meter and music structure analysis. Chapter 4 dis-
cusses some new applications made possible by automatic audio content
analysis techniques. Finally, Chapter 5 summarizes the observations
made in this study and suggests some directions for future work.

13



Chapter 2

Audio classi cation

This Chapter provides the necessary background for audio classi cation
and serves as an overview for publications [P1], [P2], [P3], and [P4].
We rst discuss methods for feature extraction and classi cation, and

conclude with a sections summarizing relevant research on these elds.

2.1 Overview

Figure 2.1 presents a block diagram of the main components of a generic
audio classi cation system. The preprocessing stage consists of opera-
tions such as mean removal and scaling the amplitude to a xed range,
such as between -1 and 1. The feature extraction stage transforms the
input signal into a low-dimensional representation which contains the
information necessary for the classi cation or content analysis task. In
practise, however, they also contain extra information since it is dif -
cult to focus only on a single aspect of audio [32]. Model training either
stores the feature vectors corresponding to the class of the labeled input
signal as a nite number of templates, or trains a probabilistic model
based on the observations of the class. In the classi cation step, the
feature stream of the input signal is compared to the stored templates,
or a likelihood value is calculated based on the probabilistic models of
the trained classes. The recognition result is given as the class giving
the best match. The following sections examine the techniques needed
in different parts of this general system in more detail.

2.2 Feature extraction and transformation

2.2.1 Features

In this part, a selection of acoustic features for audio classi cation and
music content analysis are presented.
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Figure 2.1: A block diagram of a generic audio classi cation system.

Mel-frequency cepstral coef cients

Mel-frequency cepstral coef cients ([40, 148]) and their time deriva-
tives are the de-facto front-end feature-extraction method in automatic
speech recognition systems. They have also become the rst choice
when building music or general audio content analysis systems. We
will use here the conventional Discrete Fourier Transform (DFT)-based
method utilizing a mel-scaling Iterbank. Figure 2.2 shows a block dia-
gram of the MFCC feature extractor. The input signal may be rst pre-
emphasized to atten the spectrum. Pre-emphasis is typically used in
speech and speaker recognition systems; for other types of signals such
as environmental sounds or music it may not always be helpful. Next,
a lterbank consisting of triangular Iters spaced uniformly across the
mel-frequency scale and their heights scaled to unity, is simulated. The
mel-scale is given by

f
Mel(f) = 2595 l0g;o(1 + =50); (2.1)

where f is the linear frequency value in Hz [148]. The mel-scale is a
perceptually motivated frequency scale. It is approximately linear up
to 1000 Hz and logarithmic thereafter. To implement this Iterbank, a
window of audio data is transformed using the DFT, and its power spec-
trum is calculated by squaring the absolute values of DFT output. By
multiplying the power spectrum with each triangular lter and sum-
ming the values at each channel, a spectral energy value for each chan-
nel is obtained. The dynamic range of the spectrum is compressed by
taking a logarithm of the energy at each lIterbank channel. Finally,
cepstral coef cients are computed by applying a discrete cosine trans-
form (DCT) to the log Iterbank energies. DCT decorrelates the cepstral
coef cients, thereby making it possible to use diagonal covariance ma-
trices in the statistical modeling of the feature observations.
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Figure 2.2: Block diagram of the MFCC analysis. Optional or new
blocks are denoted with dashed lines.

In most cases, it is possible to retain only the lower order cepstral
coef cients to obtain a more compact representation. The lower coef -
cients describe the overall spectral shape, whereas pitch and spectral
ne structure information is included in higher coef cients. The zeroth
cepstral coef cient is normally discarded, as it depends on the signal
gain, and often we wish to ignore gain differences. The dynamic, or tran-
sitional properties of the overall spectral envelope can be characterized
with delta cepstral coef cients [167, 149]. Usually the time derivative
is obtained by polynomial approximation over a nite segment of the
coef cient trajectory.

Linear prediction

Linear prediction (LP) analysis is another way to obtain a smooth ap-
proximation of the sound spectrum. Here, the spectrum is modeled with
an all-pole function, which concentrates on spectral peaks. Linear pre-
diction is particularly suitable for speech signals, but can be applied also
to other sound source recognition tasks. Schmid applied LP analysis to
musical instrument recognition already in 1977 [159].
In classical forward linear prediction, an estimate for the next sam-

ple of a linear, discrete-time system, is obtained as a linear combination
of p previous output samples:

X
p(n) = ay(nij i); (2.2)
i=1
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where a; are the predictor coef cients, or linear prediction coef cients.
They are xed coef cients of a predictor all-pole Iter, whose transfer
function is

1 5 1 .
A(zy 1; Piazi®
The set of predictor coef cients fay;ap;:::;apg can be solved using the
autocorrelation method [149]. The linear prediction cepstral coef cients
can be ef ciently calculated from the linear prediction coef cients using
the recursion

H(z) =

(2.3)

1%t
Ch=iani —  Kcan«k (2.4)
N =1
for n> 0, where ag =1 and ax =0 for k > p.

The conventional LP-analysis suffers from a uniform frequency res-
olution. Especially in wideband audio applications, poles are wasted
to the higher frequencies [79]. The technique of warped linear pre-
diction was rst proposed by Strube in 1980 [168]. In wideband au-
dio coding, WLP has proved out to outperform conventional LP based
codecs especially with low analysis orders [79]. Motivated by this, in
[P2] we proposed to use cepstral coef cients based on linear prediction
on a warped frequency scale. The frequency warping transform was
obtained by replacing the unit delays of a discrete, linear system with
rst-order all-pass elements. In practice, we used the WarpTB toolbox
by Harm & and Karjalainen for implementing the warped linear predic-
tion calculation [78]. It consists of Matlab and C implementations of
the basic functions, such as the warped autocorrelation calculation. The
cepstral coef cients were calculated from the warped linear prediction
coef cients using the recursion 2.4.

Other instantaneous features

Spectral centroid (SC) is a simple but useful feature. The spectral cen-
troid correlates with the subjective qualities of "brightness” or "sharp-
ness”. It can be calculated from different mid-level representations,
commonly it is de ned as the rst moment with respect to frequency

in a magnitude spectrum. Let X(k) be the be the kth frequency sample
of the discrete Fourier transform of the  tth frame. The spectral centroid
at frame t is computed as

P . .
K_o KiX¢(K)j |
Ko IXt(K)j

where K is the index of the highest frequency sample.
Zero crossing rate (ZCR) is de ned as the number of zero-voltage
crossings within a frame.

SC = (2.5)
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Short-time average energy is the energy of a frame, and is computed
as the sum of squared amplitudes within a frame.
Band-energy. The band-energy at the ith band at frame t is com-
puted as =
125, 1Xt(1)j?
Ko iXt(K)J?
where S; denotes the set of power spectrum samples belonging to the ith
frequency band. The number of subbands can be de ned according to
the application. In [P4] we experimented with 4 and 10 logarithmically-
distributed subbands.
Bandwidth measures the width of the range of frequencies the input
signal occupies. In publication [P4], bandwidth is calculated as

BE(i) = (2.6)

Ko(ki SC)2¢K(K)j?
Ko iXt(K)j2

U
BW, = t (2.7)
where SC; is the spectral centroid measured at the frame  t.
Spectral roll-off measures the frequency below which a certain amount
of spectral energy resides. It measures the "skewness” of the spectral
shape. It is calculated as

X X
SRy=argmax[ jX{(m)j>- TH¢ jX{(k)?3] (2.8)
P m=o k=0
where TH is a threshold between 0 and 1. In our experiments, the value
used was 0.93.
Spectral ux (SF) measures the change in the shape of the magni-

tude spectrum by calculating the difference between magnitude spectra

of successive frames. The spectral ux is calculated as

X
Sk = iXe(k)iil X a(k)ij: (2.9)

k=0
Before the low level features are fed to a classi er, certain normaliza-
tions may be applied. Especially when several different features are
concatenated to a single vector, it is necessary to normalize the mean
and variance using global estimates measured over the training data.
This makes the contribution of different features equal. The input to the
classi er is a sequence of feature vectors Xx;, where t is the frame index,
and where the components of x; are the values of different features.

Features for describing musical instrument notes

The previous features are instantaneous, meaning that they can be ex-
tracted from short frames of the input signal. When isolated notes
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are considered, there are features that can characterize the note as a
whole. The amplitude envelope of a note contains information for in-
stance about the type of excitation; e.g. whether a violin has been bowed
or plucked. Tight coupling between the instrument excitation and res-
onance structure is indicated by short onset durations. The amplitude
envelope of a sound can be calculated by half-wave recti cation and low-
pass ltering of the signal. Another means is the calculation of the short
time root-mean-square (RMS) energy of the signal, which we found to
be a more straightforward way of obtaining a smooth estimate of the
amplitude envelope of a signal. Features such as onset duration, decay-
time, strength and frequency of amplitude modulation, crest factor, and
detection of exponential decay can be analyzed from an RMS-energy
curve. We calculated the RMS energy curve in 50% overlapping 10 ms
long hanning-windowed frames.

Onset duration is traditionally de ned as the time interval between
the onset and the instant of maximal amplitude of a sound. Decay
time is correspondingly the time it takes the sound to decay a certain
amount, e.g. -10dB from a level corresponding to -3dB of the maximum.
To measure the slope of amplitude decay after the onset, in publica-
tions [P1] and [P2] we proposed a method where a line is tted into the
amplitude envelope on a logarithmic scale. The tting was done for the
segment of the energy envelope that was between the maximum and the
-10 dB point after that. Also, the mean square error of that t is used
as a feature describing exponential decay. Crest factor, i.e. the maxi-
mum of amplitude envelope divided by the RMS level of the amplitude
envelope is also used to characterize the shape of the amplitude enve-
lope. These three features aim at discriminating between the pizzicato
and sustained tones: the former ones decay exponentially, and have a
higher crest factor than sustained tones. Figure 2.3 depicts two example
amplitude envelopes and the line t used for feature extraction.

The RMS-energy envelope, now on a linear scale, can also be used
to extract features measuring amplitude modulation (AM) properties.
Strength, frequency, and heuristic strength (term used by Martin [124])
of amplitude modulation is measured at two frequency ranges. Rates
from 4 to 8 Hz measure tremolo, i.e. AM in conjunction with vibrato,
and rates between 10-40 Hz correspond to "graininess” or "roughness”
of the tone. The RMS-energy envelope is rst windowed with a hanning
window. Then, FFT analysis is performed on the windowed envelope,
and maxima are searched from the two frequency ranges. The frequency
of AM is the frequency of the maximum peak. The amplitude features
are calculated as the difference of the peak amplitude and the average
amplitude, and the heuristic amplitude is calculated as the difference of
the peak amplitude and the average amplitude of the frequency range
under consideration.
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Figure 2.3: Short-time RMS-energy envelopes for guitar (left) and violin
tones (right). Post-onset decay is measured by tting a line on dB-scale.
The different onset durations, slight beating in the guitar tone, and am-
plitude modulation in the violin tone are clearly visible.

Onset asynchrony refers to the differences in the rate of energy de-
velopment of different frequency components. In [P1] and [P2] we used
a "sinusoid envelope” representation (see details in [51]) to calculate the
intensity envelopes for different harmonics, and the standard deviation
of onset durations for different harmonics is used as one feature. See
Figure 2.4 for a depiction of sinusoid envelope representations calcu-
lated for a ute and clarinet sounds. For the other feature measuring
this property, the intensity envelopes of individual harmonics were t-
ted into the overall intensity envelope during the onset period, and the
average mean square error of those ts was used as feature. A similar
measure was calculated for the rest of the waveform. The last feature
calculated is the overall variation of intensities at each band. These
features suffer from the dif culty of obtaining a robust representation
for the development of individual partials of a tone. The sinusoidal en-
velope depends on obtaining an accurate estimate of the fundamental
frequency and the sounds to be perfectly harmonic which is not the case
for real musical instruments. A better approach would be e.g. to use a
Iterbank to decompose the signal into individual partials.

2.2.2 Feature transformations

The main idea of linear data-driven feature-transformations is to project

the original feature space into a space with lower dimensionality and
more feasible statistical properties, such as uncorrelatedness. We tested
the effectiveness of some feature transformations in publications [P3]
and [P4]. In order to obtain the transform matrix W, the features
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Figure 2.4: Sinusoid envelope representations for ute (left) and clar-
inet (right), playing the note C4, 261 Hz. Reprinted from [P1]. °c 2000
IEEE.

extracted from the training data samples of all classes were gathered
into a matrix X = [Xy;X2;:::;X7] where each column represents the n-
dimensional feature vector measured in an analysis frame. The scalar

T denotes the total amount of feature vectors from all recordings of all
the classes in the training set. The transform matrix W of sizem¢£ nis
applied on X producing the transformed m£ T dimensional observation
space O = WX . In this work, three different techniques were used.
The principal component analysis (PCA) nds a decorrelating trans-
form ([44, p. 115]), independent component analysis (ICA) results in

a base with statistical independence ([82][44, p. 570]), which is a much
stronger condition than uncorrelatedness, and the linear discriminant
analysis (LDA) tries to maximize class separability ([44, p. 120]).

Principal component analysis

Principal component analysis projects the original data into a lower-
dimensional space such that the reconstruction error is as small as pos-
sible, measured as the mean-square error between the data vectors in
the original space and in the projection space. The rows of the trans-
form matrix consist of the m eigenvectors corresponding to the m largest
eigenvalues of the covariance matrix of the training data. Projection
onto a lower-dimensional space reduces the amount of parameters to be
estimated in the classi er training stage, and uncorrelated features are

ef ciently modeled with diagonal-covariance Gaussians.
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Independent component analysis

The goal of independent component analysis is to nd directions of min-
imum mutual information 1, i.e., to extract a set of statistically inde-
pendent vectors from the training data X . Statistical independence is
a stronger condition than uncorrelatedness. Whereas PCA results in
uncorrelated variables whose covariance is zero, ICA methods consider
also higher-order statistics, i.e., information not contained in the covari-
ance matrix [82, p. 10]. The linear ICA assumes that linear mixing of a
set of independent sources generates the data. More precisely, the data
model is x = As, where X is the original feature vector, A is a mixing
matrix, and s are the underlying independent sources. The goal of ICA
is to estimate both A and s using the observed x. After estimating A,
the transformation matrix is obtained as W = Ai 1. Here, the ef cient
iterative FastICA algorithm was used for nding the ICA basis trans-
formation [81].

Salam and Erten have suggested the use of ICA in context recogni-
tion by motivating that information on the movements of the user and
the state of the environment is mixed in the measured signals [154].
Himberg et al. have used PCA and ICA to project multidimensional
sensor data from different contexts into a lower dimensional represen-
tation, but reported only qualitative results [76].

In speech recognition, the use of an ICA transformation has been re-
ported to improve the recognition accuracy [146]. In the MPEG-7 gen-
eralized audio descriptors, ICA is proposed as an optional transforma-
tion for the spectrum basis obtained with singular value decomposition
to ensure maximum separability of features, and Casey's results have
shown the success of this method on a wide variety of sounds [31].

There are various alternatives on how the features are input to the
feature transform. In this thesis, we perform ICA on concatenated
MFCC and ¢ MFCC features, see Figure 2.2. Including the delta coef -
cients is a way to include information on temporal-dependencies of fea-
tures, which is ignored if the transform is applied on static coef cients
only. The results are reported in publications [P3] and [P4]. In [31]
and [146] delta coef cients were not considered, and in [100] logarith-
mic energies and their derivatives were used. Somervuo has applied
ICA on ve-frame "context windows” in phoneme recognition [166].

Linear discriminant analysis

Linear discriminant analysis differs from PCA and ICA by utilizing the
class labels. In this thesis, class is synonymous to an audio context or a

1The mutual information between two independent random variables is zero [20, p.
57]
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musical instrument category. Thus, whereas PCA and ICA do not make
distinction between feature vectors belonging to different classes, LDA
tries to maximize the separability of data from different classes. The
goal is to nd basis vectors that maximize the ratio of between-class
variance to within-class variance. Finding the transform matrix in-
volves computing two covariance matrices: the within-class covariance
matrix Sy, and the between-class covariance matrix Sy ([44, p. 120]).
The rows of the transform matrix are the  m eigenvectors corresponding
to the m largest eigenvalues of the matrix  Sj,'Sp. An additional limit
for the dimension of the resulting features is presented by the fact that
for C classes there are at most C j 1 linearly independent eigenvectors
([44, p. 124]).

It should be noted that the extra computational load caused by ap-
plying any of these transformations occurs mainly in the off-line train-
ing phase. The test phase consists of computing the features in the
usual way plus an additional multiplication once per analysis frame
with the m £ n matrix W derived off-line using the training data. Thus,
these transforms are particularly attractive in resource-constrained con-
text recognition applications.

2.3 Classi cation and acoustic modeling

2.3.1 k-Nearest Neighbors

The k-nearest-neighbors ( k-NN) classi er performs a class vote among
the k nearest training-data feature vectors to a point to be classi ed
([44, p. 182][20, p. 125]). In our implementation, the feature vectors
were rst decorrelated using principal component analysis and the Eu-
clidean distance metric was used in the transformed space. When the
k-NN classi er is used, itis usually not feasible to perform classi cation
on an individual frame basis, but the information of frames is usually
accumulated over a certain time period by averaging. For example, in
audio-based context recognition we estimated the mean and standard
deviation (std) of the features over one-second windows with an inten-
tion to model the slowly-changing attributes of environmental audio,
such as nite-length acoustic events, and to reduce the computational
load at the classi cation stage. These values were used as new feature
vectors. For musical instruments, we have used e.g. averaging over the
onset and steady state segments separately, and then catenating the
features from the different segments into a long feature vector.

The k-NN algorithm can be applied also to regression problems. The
difference is that in regression the output value to be predicted is contin-
uous in opposite to being discrete as in classi cation tasks. In a typical
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scenario of k-NN regression the property value of an object is assigned to
be the average of the values of its k nearest neighbors. The average can
also be a distance weighted average, in which case the method is an ex-
ample of locally weighted learning [12]. The distance function must ful-

Il the following requirements: the maximum value is at zero distance,
and the function decays smoothly as the distance increases [12]. In [P7]
we compute the tempo as a weighted median of the nearest neighbor
tempi, which increases the robustness compared to a weighted average.

2.3.2 Hidden Markov and Gaussian mixture models

A hidden Markov model (HMM) ([149, pp. 321-386]), is an effective
parametric representation for a time-series of observations, such as fea-
ture vectors measured from natural sounds. In this work, HMMs are
used for classi cation by training a HMM for each class, and by select-
ing the class with the largest posterior probability.

In each of our classi cation tasks, our acoustic data comprises a
training set that consists of the recordings O = (0%;::;0R) and their
associated class labels L = (11;:::;1R). Depending of the application, "
can express the context where the recording has been made or the mu-
sical instrument playing on the musical excerpt  r. To be more speci c,
O'" denotes the sequence of feature vectors measured from recording r.
The purpose of the acoustic models is to represent the distribution of
feature values in each class in this training set.

Description of a HMM

A continuous-density hidden Markov model (HMM) with N states con-
sists of a set of parameters pthat comprises the N -by-N transition ma-
trix, the initial state distribution, and the parameters of the state densi-

ties [88]. In the case of Gaussian mixture model (GMM) state emission
densities ([148]), the state parameters consist of the weights, means
and diagonal variances of the state GMMs. The possibility to model
sequences of states with different statistical properties and transition
probabilities between them makes intuitively sense in our applications,
since sounds are dynamic phenomena. For instance, one can imagine
standing next to a road, where cars are passing by. When a car ap-
proaches, its sound changes in a certain manner, and after it has passed
there is a clear change in its sound due to the Doppler effect. Naturally,
when no cars are passing by the sound scene is rather quiet. Hopefully,
the different states in the model are able to capture the different stages,
and the statistical variation between different roads, cars, and record-
ing times is modeled to some extent by the different components in the
GMM state densities.
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The HMM parameters can be iteratively optimized with the Baum-
Welch algorithm [149]. This algorithm iteratively nds a local maxi-
mum of the maximum likelihood (ML) objective function ([18])

xR X X
F(£)=log p(OjL)=  logp(O'jl") = logp(O'jo); (2.10)
r=1 c=1r2A;

where £ denotes the entire parameter set of all the classes c¢2f 1;:::;Cg,
and A is the subset of [1; R] that denotes the recordings from the class
c. The optimization can be done for each class separately. The opti-
mization starts with an initial set of values for the model parameters
(the initial state distribution, transition probabilities, and parameters
of the state densities), and then iteratively nds a better set of model
parameters. The re-estimation equations are omitted here due to space
reasons and since standard formulae were used in this thesis. See the
details in [149].

In the recognition phase, an unknown recording O is classi ed using
the maximum a posteriori rule:

p(c)p(Ojc) |
p(0)

where we used the Bayes' rule. Since p(O) does not depend on c, and
if we assume equal priors p(c) for all classes, we can maximize p(Ojc).
The needed likelihoods can be ef ciently computed using the forward-
backward algorithm, or approximated with the likelihood of the single
most likely path given by the Viterbi-algorithm [149][88].

¢t=arg max p(cjO) = arg max (2.11)

Model initialization

Careful initialization is essential for the Baum-Welch algorithm to be
able to nd good model parameters. This is especially true for com-
plex models with several states (NS) and component densities per state
(NC). A useful heuristic to train models so that the amount of states and
component densities is iteratively increased is the following: The mod-
els are initialized with a single Gaussian at each state. The component
with the largest weight is split until the desired value of NC is obtained.
Each component split is followed by a speci ed humber of Baum-Welch
iterations (e.g. 15), or until the likelihood converges. There are several
ways for initializing the state means and variances. One is based on
using global estimates over the whole training data of each class. E.g.,
for each class c a three-state HMM is initialized with means 1o 0:1%,
1., and ! .+0:1%, where 1 . is the mean vector computed from the train-
ing data of class c, and ¥ is the corresponding standard deviation vector.
The three variances can be set equal to %£. Another method is to use the
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the k-means clustering algorithm to cluster the data into as many seg-
ments as there are states in the model and estimate the initial means
and variances from the cluster populations.

Sometimes it may be possible to initialize the states using various
heuristics. For example, when training HMM models with a left-right
topology? for musical instrument notes we may segment the note into as
many segments as there are states in the model, and then estimate the
initial state parameters from these segments. The Baum-Welch itera-
tions are then performed during which the algorithm essentially nds
the optimal segment boundaries.

In practice we need to do experimentation to determine the suitable
method of initialization. Especially the k-means clustering initializa-
tion leads to models of varying quality, and often it is necessary to re-
peat the initialization a few times, and perform cross-validation on a
validation set to determine the quality of the resulting models.

What do HMM state densities model for non-speech sounds?

To gain insight into the properties of sounds modeled by different HMM
states it is useful to visually study the Viterbi segmentations after train-
ing, or in the test stage. In Figure 2.5, a three-state HMM has been
trained using a recording of the sound next to a road. The top panel
shows the amplitude of the signal as a function of time. The high am-
plitude peaks correspond to passing cars. The bottom panel shows the
resulting Viterbi segmentation through the three states. The state num-
ber one models the silent periods when there are no cars passing; the
second state the transition periods when a car is either approaching or
getting farther, and the third state the period when the car is just pass-
ing or is very close to the recording place. A similar example with a mu-
sical sound is depicted in Figure 2.5. A three-state HMM was trained on
trumpet recordings, and the segmentation is shown for a melody phrase
of 15 seconds in duration. By listening it was found that state one rep-
resents high-pitched notes and pauses between notes, low-pitched notes
are modeled with state three. Interestingly, state two models the initial
transients.

A discriminative training algorithm

Maximum Likelihood estimation is well justi ed if the observations are
distributed according to the assumed statistical model. In our applica-
tions, it is unlikely that a single HMM could capture all the statistical
variation of the observations from an arbitrary audio environment or

2In a model with left-right topology, state transitions to the previous state are not
allowed but the process must either proceed to the next or remain in the same state.
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Figure 2.5: The top panel shows the amplitude of a recording made
next to a road with passing cars. The bottom panel shows the Viterbi
segmentation through a three-state HMM trained using the recording.
The length of the analysis window is 30 ms.

all the articulation and nuances of a musical instrument, for instance.
Moreover, the training databases are much smaller than for example
the available speech databases, preventing the reliable estimation of
parameters for complex models with high amounts of component densi-
ties. In applications where computational resources are limited such as
context-awareness targeted for embedded applications, we may have to
use models with as few Gaussians as possible, since their evaluation is
one of the computational bottlenecks in the recognition phase. In these
cases a model mismatch occurs and other approaches than ML may
lead into better recognition results. Discriminative training methods
such as the maximum mutual information (MMI) aim at maximizing
the ability to distinguish between the observation sequences generated
by the model of the correct class and those generated by models of other
classes [149].

Different discriminative algorithms have been proposed in the liter-
ature. The algorithm used in this thesis has been presented recently,
and one of its bene ts is a straightforward implementation. The algo-
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Figure 2.6: The top panel shows the amplitude of a solo melody played
with a trumpet. The bottom panel shows the Viterbi segmentation
through a three-state HMM trained for the trumpet class. The length
of the analysis window is 30 ms.

rithm was proposed by Ben-Yishai & Burshtein, and is based on an ap-
proximation of the maximum mutual information criterion [18]. Their
approximated maximum mutual information (AMMI) criterion is:

x X _ X _
Jg= f log[p(c)p(O"jo)l i , log[p(c)p(O'jo)lg; (2.12)
c=1 r2A;¢ r2B¢

where B is the set of indices of training recordings that were recognized
as class c. The set B, is obtained by maximum a posteriori classi cation
performed on the training set. The parameter 0 - , - 1 controls the
"discrimination rate”. The prior probabilities p(c) do not affect the max-
imization of J(£) , thus the maximization is equivalent to maximizing

the following objective functions:

X X
Jc(E) = logp(O'jc) i , logp(O'jo); (2.13)
r2Ac r2Bc

forallthe classes 1- c- C. Thus, the parameter set of each class can be
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Figure 2.7: A possible taxonomy of Western orchestral instruments.

estimated separately, which leads to a straightforward implementation.
The authors give the re-estimation equations for HMM parameters [18].
This discriminative re-estimation can be iterated. We used typically
5 iterations, since the improvement in recognition accuracy was only
minor beyond that. In many cases, using just one iteration would be
enough since it sometimes gave the greatest improvement. The recog-
nition was done only at the rst iteration, after which the set B stayed
xed. The following iterations still increase the AMMI objective func-
tion and increase the accuracy at least in the training set. However,
according to our experience, continuing iterations too long causes the
algorithm to over t the training data, leading into poor generalization
on unseen test data. Maximum of 5 iterations with ., = 0:3 was ob-
served to give an improvement in most cases without much danger of
over tting.

2.4 Methods for musical instrument recognition

This section describes relevant research on the classi cation of musi-
cal instrument sounds and is background for publications [P1], [PZ2],
and [P3].

There exists a large variety of musical instruments in the world. In
practical applications, we naturally train the system with the classes of
instruments that are most likely for that particular application. In this
thesis, Western orchestral instruments are considered. This is done for
two reasons. First, the timbre of these instruments has been extensively
studied, providing insights into the information that makes recognition
possible and should therefore be attempted to extract from the sounds.
Second, recordings of these instruments are easily available, whereas
in the cases of more exotic instruments we would rst have to make the
databases. Figure 2.7 presents a possible taxonomy of Western musical
instruments.
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In de ning the musical instrument recognition task, several levels
of dif culty can be found. Monophonic recognition refers to the recog-
nition of solo music or solo notes, and is the most often studied. This
study also uses isolated notes as test material mainly because sam-
ples with annotations were available with a reasonable effort, and there
were published isolated note recognition systems with which the perfor-
mance could be compared. However, this can be generalized to mono-
phonic phrases by introducing a temporal segmentation stage. Poly-
phonic recognition has received fewer attempts. The following sections
review the relevant research in these areas. For other reviews see [75,
74].

2.4.1 Monophonic recognition

Most systems have operated on isolated notes, often taken from the
same, single source, and having notes over a very small pitch range.
The most recent systems have operated on solo music taken from com-
mercial recordings. The studies using isolated tones are most relevant

for the results presented in publications [P1], [P2] and [P3].

Studies not testing generalization across databases

Table 2.1 presents examples of studies on classifying isolated notes on a
single collection of sounds, or where examples of an instrument within
the same collection may have existed both in the training and test set.
As we will see later, this makes the results too optimistic. Thus, the
following studies are interesting mainly from the methods point of view.

Kaminskyj and Materka used features derived from a root-mean-
square (RMS) energy envelope via PCA and used a neural network or a
k-nearest neighbor ( k-NN) classi er to classify guitar, piano, marimba
and accordion tones over a one-octave band [90]. More recently, Kamin-
skyj ([89]) has extended the system to recognize 19 instruments over a
three-octave pitch range.

Fujinaga trained a k-NN with features extracted from 1338 spec-
tral slices of 23 instruments playing a range of pitches [57]. A genetic
algorithm was used for nding good feature combinations. When the
authors added features relating to the dynamically changing spectral
envelope, and velocity of spectral centroid and its variance, the accu-
racy improved [56]. Their latest study incorporated small re nements
and added spectral irregularity and tristimulus features [58].

Martin and Kim reported a system operating on full pitch ranges
of 14 instruments [125]. The best classi er was the  k-NN, enhanced
with the Fisher discriminant analysis to reduce the dimensions of the
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Table 2.1: Summary of selected earlier research on musical instrument
recognition on isolated notes with a single example of each instrument,
or where the same instrument may be present in the test and train sets.

Author year ref. ‘ Accuracy H Number of instruments

Kaminskyj 1995 [90] 98 4
Jensen 1999 [85] 100 5
Kaminskyj 2000 [89] 82 19
Fujinaga 1998 [57] 50 23
Fraser & Fujinaga 1999 [56] 64 23
Fujinaga 2000 [58] 68 23

Martin & Kim 1998 [125] 72(93) 14(5 families)
Kostek 1999 [103] 97 4
81 20

Eronen & Klapuri 2000 [P1] 80(94) 30(6 families)

Agostini et al. 2003 [9] 70(81) 27(6 families)
Kostek 2004 [104] 71 12
Chetry et al. 2005 [130] 95 11

Park & Cook 2005 [133] 71(88) 12(3 families)

data, and a hierarchical classi cation architecture for rst recognizing
the instrument families. Jensen used a Gaussian classi er and 16 pa-
rameters from his timbre model developed mainly for sound synthesis
for classifying between ve instruments [85].

Kostek has calculated several different features relating to the spec-
tral shape and onset characteristics of tones taken from chromatic scales
with different articulation styles [103]. A two-layer feed-forward neural
network was used as a classi er. Later, Kostek and Czyzewski also tried
using wavelet-analysis based features for musical instrument recogni-
tion, but their preliminary results were worse than with the earlier fea-
tures [105]. In [104], Kostek reports that a combination of wavelet and
MPEG-7 based features improved upon either of the features alone.

Agostini et al. [9] use spectral features and compare different classi-
ers in classifying between 27 instruments from the McGill University
Master Samples collection. Support vector machines and quadratic dis-
criminant analysis are the most successful classi ers. They report that
most relevant features are inharmonicity, spectral centroid, and the en-
ergy contained in the rst partial. The inharmonicity was measured
as a cumulative distance between the rst four estimated partials and
their theoretical values.

Park and Cook extract several features from harmonic components
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Table 2.2: Summary of selected research on musical instrument recog-
nition on isolated notes across different recording conditions.

Author year ref. H Accuracy H Number of instruments ‘
Martin 1999 [124] 39(76) 27(8 families)
Eronen 2001 [P2] 35(77) 29(6 families)

Eggink & Brown 2003 [46] 66(85) 5(2 families)

Eronen 2003 [P3] 68 7

Livshin etal. 2003 [115] 60(81) 8-16(3-5 families)
Peeters 2003 [137] 64(85) 23(7 families)

and use these to train a neural network classi er [133]. Their features
included spectral shimmer, spectral jitter, spectral spread, spectral cen-
troid, LPC noise, inharmonicity, attack time, harmonic slope, harmonic
expansion/contraction, spectral ux shift, temporal centroid, and zero-
crossing rate. Chetry et al. use line spectral frequencies (LSF) as fea-
tures and train a codebook for each instrument using the  k-means clus-
tering method [130].

A common limitation of all these studies is that they often used only
one example of each instrument, or when several databases are used,
allow samples of an instrument from a database be present in both the
test and training set. This signi cantly decreases the generalizabil-
ity of the results, as we will demonstrate with our system in publica-
tion [P2], where the results are signi cantly worse than in [P1] where
we used only samples from the McGill University Master Samples col-
lection. Generalizing across databases is dif cult.

Studies testing generalization across databases

Table 2.2 lists research which test generalization across databases. An
important point is that examples of an instrument recorded in certain
condition, or from a single database, are included either in the test or
training set, but not both. This way, we get some evidence that the
system is learning to classify an instrument (such as a violin), and not
just the audio samples of a certain violin played by a certain performer
in a particular acoustic place.

Martin used a wide set of features calculated from the outputs of a
log-lag correlogram [124]. The classi er used was a Bayesian classi er
within a taxonomic hierarchy, enhanced with context dependent feature
selection and rule-one-category-out decisions.

Livshin et al. present an explicit test classifying instrument sam-
ples across databases [115]. It is shown how the generalization across
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databases lowers the recognition accuracy. In addition, the authors re-
port that using LDA is helpful for obtaining features that help the gen-
eralization across databases.

Peeters starts with a large set of acoustic features and then performs
iterative feature selection to arrive at an optimal set of features for each
part of a hierarchical classi er [137, 143]. The classi er is either k-NN
or a Bayesian classi er with each class modeled as a Gaussian den-
sity. The presented results, 64% correct for 23 instruments and 85 %
for families are done across databases providing a realistic estimate of
the performance. The hierarchical classi ers perform better than direct
classi cation. Although the results cannot be directly compared to our
results in [P2], it is likely that his system is performing better and rep-
resents the state-of-the-art in isolated note classi cation. Peeters does
report excluding some articulations which we did keep in our database,
such as muted sounds, which probably increases the performance in his
simulations. In addition, we used also synthetic notes for which the
classi cation accuracy was very poor. However, it seems advantageous
to start with a very large set of features and then perform automatic
feature selection to reduce the feature set as proposed by Peeters. The
feature set that was used in [P2] was smaller, and we did not fully ex-
plore the set of possible feature combinations.

Recognition of monophonic phrases

Table 2.3 presents examples of systems evaluated on monophonic phrases.
On one hand, monophonic phrases are easier to classify than isolated
notes as there are more than one note to be used for recognition. Pub-
lication [P2] analyzes the recognition rate as the number of notes given
to the system for classi cation is varied. On the other hand, being able
to measure onset characteristics will require a note segmentation or on-
set detection step, and may often be impossible when consecutive notes
overlap.

Marques built a system that recognized eight instruments based on
short segments of audio taken from two compact disks [123]. They used
16 mel-frequency cepstral coef cients and a support vector machine as
a classier.

Brown has used speaker recognition techniques for classifying be-
tween oboe, saxophone, ute and clarinet [26]. She used independent
test and training data of varying quality taken from commercial record-
ings. By using bin-to-bin differences of constant-Q coef cients she ob-
tained an accuracy of 84 %, which was comparable to the accuracy of
human subjects in a listening test conducted with a subset of the sam-
ples. Other successful features in her study were cepstral coef cients
and autocorrelation coef cients. In an earlier study, her system classi-
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Table 2.3: Summary of selected research on musical instrument recog-
nition on monophonic phrases.

Author year ref. H Accuracy H Number of instruments
Dubnov & Rodet 1998 [43] not given 18
Brown 1999 [25] 94 2
Marques & Moreno 1999 [123] 83 8

Martin 1999 [124] 57(75) 27(8 families)

Brown 2001 [26] 84 4
Krishna & Shreenivas 2004 [8] 74 3
Livshin & Rodet 2004 [116] 88 7
Essid et al. 2006 [53] 93 10

ed between oboe and saxophone samples [25].

Krishna & Shreenivas train a GMM with line spectral frequencies
(LSF) as features from individual notes of three instruments, and then
classify monophonic phrases using the models [8].

Livshin and Rodet start with a very large initial set of features and
then perform iterative feature selection to arrive at a feature set that
classi es monophonic phrases at almost the same accuracy as the com-
plete feature set [116].

Essid et al. adopt a pairwise classi cation strategy with GMMs or
SVMs as classiers [53]. An optimized subset of features was found
for each pair of classes using a feature selection method. The authors
perform pairwise classi cation between instrument pairs, and choose
the nal result as the class that wins most pairwise classi cations. The
authors demonstrate that the system outperforms a baseline system
where a GMM s trained for each class.

Content based retrieval of instrument samples

The MPEG-7 standard presents a scheme for instrument sound descrip-
tion, and it was evaluated in a retrieval task as a collaboration between
IRCAM (France) and IUA/UPF (Spain) in [142]. The evaluated features,
or descriptors in MPEG-7 terminology, were calculated from a repre-
sentation very similar to our sinusoid envelopes, which were discussed
in 2.2. The authors performed an experiment, where random notes were
selected from a database of sound samples, and then similar samples
were searched using the descriptors, or just random selection. The sub-
jects were asked to give a rating for the two sets of samples selected
in the alternative ways. A "mean score” of approximately 60 % was ob-
tained using one descriptor, and approximately 80 % when using ve
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Table 2.4: Summary of selected research on musical instrument recog-
nition on polyphonic material.

Author year ref. H Number of instruments H Polyphony
Eggink & Brown 2003 [46] 5 2
Livshin & Rodet 2004 [116] n/a 2

Essid 2005 et al. [52] 5 max 4
Leveau 2007 et al. [110] 10 4
Kitahara 2007 et al. [97] 5 max 4
Little & Pardo 2008 [114] 4 4

descriptors.

2.4.2 Polyphonic recognition

Polyphonic instrument recognition, i.e., recognition of instruments on
sound mixtures has received less research interest than monophonic
instrument classi cation. The problem is substantially more dif cult
than the monophonic case. In addition to labeling the instruments,
the method needs to estimate the number of instruments in the mix-
ture. The main dif culty lies in the fact that feature extraction for
each instrument is the mixture is very dif cult since the harmonic par-
tials overlap. The methods may either try to separate individual notes
or instruments from the mixture and apply techniques developed for
monophonic recognition, or alternatively try to extract robust features
directly from the polyphonic mixture. Table 2.4 lists some approaches
trying to cope with the polyphonic situation.

Godsmark and Brown used a "timbre track” representation, in which
spectral centroid was presented as a function of amplitude to segregate
polyphonic music to its constituent melodic lines [60]. In assigning pi-
ano and double bass notes to their streams, the recognition rate was
over 80 %. With a music piece consisting of four instruments, the pi-
ano, guitar, bass and xylophone, the recognition rate of their system
decreased to about 40 %.

The work of Kashino et al. in music transcription involves also in-
strument recognition. In [93], a system transcribing random chords
of clarinet, ute, piano, trumpet and violin with some success was pre-
sented. Later, Kashino and Murase have built a system that transcribes
three instrument melodies [91, 92]. Using adaptive templates and con-
textual information, the system recognized three instruments, violin,
ute and piano with 88.5 % accuracy after the pitch of the note was pro-
vided. The work was continued by Kinoshita et.al. [96]. The authors
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presented a system that could handle two note chords with overlapping
frequency components using weighted template-matching with feature
signi cance evaluation. They reported recognition accuracies from 66
% to 75 % with chords made of notes of ve instruments.

Eggink & Brown utilize the missing feature theory by marking fre-
guency regions with overlapping partials as unreliable, assuming nearly
harmonic spectra and known fundamental frequencies [46]. The fea-
tures are logarithmic energies at 60Hz wide spectral bands spanning
the frequency range from 50Hz to 6kHz, with 10Hz overlap between
adjacent bands. Instruments are modeled with a GMM, and a binary
mask is used to exclude unreliable feature components from the cal-
culation of the GMM likelihood. A potential problem here is that the
method assumes independence of feature components which does not
hold for spectral energies. In the tests, the fundamental frequency was
supplied to the system. The authors tested the system in a more realis-
tic condition with analyzed FOs, but reported only preliminary results.

Essid et al. [52] apply their pairwise classi cation strategy also for
recognition of polyphonic mixtures. They train pairwise classi ers be-
tween all possible instrument combinations and show promising results
in recognizing typical instrument combinations for jazz music.

Leveau et al. [110] decompose the signal using instrument speci ¢
harmonic atoms. The authors report that classifying the instrument
label without knowing the number of instruments can be done only with
17% accuracy.

Kitahara et al. apply linear discriminant analysis to nd a feature
set which is little affected by overlapping. The authors quantitatively
evaluate the in uence of the overlapping on each feature as the ratio
of the within class variance to the between-class variance in the dis-
tribution of training data obtained from polyphonic sounds [97]. The
motivation for this is the assumption that if a feature greatly suffers
from the overlapping, it will have a large variation.

Livshin and Rodet report preliminary experiments on instrument
recognition on duets [116]. They demonstrate that their recognizer de-
veloped for monophonic phrases performs rather well in recognizing the
dominant instrument in duets when applied directly on the two-note
mixtures. They also develop a system that uses an FO estimator to nd
the harmonic partials in a frame, and then generate two Itered sam-
ples for recognition: one retaining only the harmonic partials and the
other only the residual. The monophonic recognizer is applied sepa-
rately to the samples. This latter method is more accurate in recogniz-
ing the weaker instrument.

Little and Pardo present a very interesting approach for labeling the
presence of an instrument where the learning done is done on weakly
labeled mixtures [114]. This means that the system is presented with
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examples where only the presence of a target instrument is indicated,
but the exact times during which it is active is not needed. The authors
report that the system trained with weakly labeled mixtures performs
better than one trained with isolated examples, and suggest that this is
because the training data, in the mixed case, is more representative of
the testing data, even when the training mixtures do not use the same
set of instruments as the testing mixtures.

2.5 Methods for audio-based context recognition

In this section, we review some research results relevant for audio-
based context recognition and especially publication [P4]. We start by
brie y discussing context awareness in general without limiting to au-
dio input only. This because the methods used for other sensory types
are sometimes quite similar to those used in the audio domain, although
specialized features can be developed for audio. One of the reasons for
this is that since we are dealing with environmental sounds, the in-
put can contain practically any sounds, which makes the utilization of
highly specialized feature extractors a dif cult task and favors generic,
possibly data-driven feature extraction methods.

The second eld to be reviewed is context recognition based on audio
which is most relevant for us. When publication [P4] was written, there
were few publications on the topic. Recently, it has started to attract in-
creasingly more research interest. In addition, we review some results
on domains which have a different problem formulation but bear simi-
larity with regard to data or methods used. These include audio classi-
cation and retrieval, personal audio archiving, and video sound track
segmentation.

2.5.1 Context awareness

In many cases the context-awareness functionality is build upon an ar-
ray of different sensors sensing the context. In [106], the set of sen-
sors included accelerometers, photodiodes, temperature sensors, touch
sensors, and microphones. Low level features were then extracted from
these sensor data inputs. The purpose of the feature extraction step is to
transform the (often high dimensional) input data into a more compact
representation while keeping suf cient amount of information for sepa-
rating the different classes. As an alternative to extracting features de-
signed using domain expertice or heuristics, blind, data driven transfor-
mations can be used. For example, principal component analysis (PCA)
or independent component analysis (ICA) can be used to transform the
raw input into a low dimensional representation [76, 154].
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In general, the process of context recognition is very similar regard-
less of the sensors or data sources used for the recognition. The fea-
ture vectors obtained from sensors are fed to classi ers that try to iden-
tify the context the particular feature vectors present. As classi ers,
e.g. hidden Markov models (HMMs) [35], or a combination of a self-
organizing map and a Markov chain have been used [106].

2.5.2 Audio-based context awareness

Recognizing the context or environment based on audio information has
started to attract increasing amount of research interest. One of the ear-
liest studies was done by Clarkson, who classi ed seven contexts using
spectral energies from the output of a Iter bank and a HMM classi-
er [35]. In [155], Sawhney describes preliminary experiments with dif-
ferent features and classi ers in classifying between voice, traf ¢, sub-
way, people, and other. The most successful system utilized frequency-
band energies as features and a nearest-neighbor classi er. Kern clas-
si es between street, restaurant, lecture, conversation, and other using
a set of low-level features transformed using Linear Discriminant Anal-
ysis (LDA) and a Bayes classi er with HMM class models [94].

In publication [P4], we compared various features and classi ers in
recognizing between 24 everyday contexts, such as restaurant, car, li-
brary, and of ce. The nal system used catenated MFCCs and their
rst-order derivatives as features and hidden Markov model with dis-
criminative training for classi cation. In addition, a listening test was
made to compare the system's performance to the human abilities. The
average recognition accuracy of the system was 58% against 69% ob-
tained in the listening tests in recognizing between 24 everyday con-
texts. The accuracies in recognizing six high-level classes were 82% for
the system and 88% for the subjects.

More recent studies have reported sometimes high performance g-
ures with various methods and also concrete implementations on mobile
devices. On a set of 27 contexts, Bonnevier has reported an accuracy
of 69% with a Bayesian classi er and a subset of features obtained by
running a feature selection algorithm on an initial set of MPEG-7 fea-
tures, MFCCs, and zero-crossing rate [21]. Note that the method was
allowed to pick individual features from a feature vector such as the
MFCC which may raise concerns about over tting the training data.

Ma et al. presented a HMM based environmental noise classi ca-
tion system and reported over 91% accuracy in ten-way classi cation
of contexts bar, beach, bus, car, football match, launderette, lecture, of-
ce, railway station and street using three second test excerpts [120].
MFCCs augmented with the energy term and their rst and second or-
der derivatives were used as features. The authors also performed a
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listening test on the same data. The listener's performance was signif-
icantly worse than the system's; this is probably due to the fact that
only 3 seconds of test data was given for them. The context aware sys-
tem was implemented as a client-server system where the server used
an of ine database to produce the noise models which were then used
for online noise classi cation. Using the same database, Perttunen et
al. [145] computed the averaged Mel scale spectrum over three second
segments and used a Support Vector Machine (SVM) classi er and re-
ported further improvement in the classi cation accuracy.

Aucouturier et al. have analyzed the typical Bag-of-frames (BOF)
approach, where framewise features such as MFCCs are modeled with
GMMs. A limitation of this approach is that the it ignores the tempo-
ral sequencing of the feature vectors: the likelihood of a feature vector
sequence given the GMM parameters is the same irrespective of the
temporal ordering of the feature vectors. In [13], they report on a listen-
ing test where human subjects are made to listen to "spliced” and not-
spliced versions of environmental audio recordings. Spliced versions
are done by splitting the audio into short frames, scrambling the or-
der of the frames and concatenating again. The authors conclude that
splicing has a signi cant but relatively small effect on the human per-
formance on audio context recognition, and that the BOF approach is
rather suf cient approach for audio context recognition in opposite to
music similarity where the drop in recognition ability is larger. The au-
thors also report that their result is in contradiction to our earlier study
in human perception of audio environments where identi cation of indi-
vidual sound events has been reported as a cue for identi cation [144].

In [14], Aucouturier etal. report a 90% precision in query-by-example
of audio from four environmental sound classes after retrieving the ve
rst recordings. The precision is measured as the ratio of returned
recordings from the correct class to the number of retrieved recordings.
The signal is modeled with MFCC coef cients and each recording with
a GMM, and their distance is measured with the Kullback-Leibler (KL)
divergence ([20, p. 55]) using Monte Carlo simulation. An interesting
result is that, according to the authors, in environmental sounds major-
ity of the frames are important for classi cation whereas in polyphonic
music a minority of the frames differentiate the music from other music
pieces, and majority of the frames is in fact detrimental for the perfor-
mance of music similarity.

2.5.3 Audio classi cation and retrieval

The features typically used for audio-based context awareness are simi-
lar to those used in different audio information retrieval tasks [55]. The
earliest approaches were done on classifying only a few types of envi-
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ronmental noises. El-Maleh et al. classied ve environmental noise
classes (a car, street, babble, factory, and bus) using line spectral fea-
tures and a Gaussian classi er [47]. Vehicle sound classi cation was ap-
proached using discrete hidden Markov models by Couvreur et al. [37].
They used linear prediction cepstral coef cients as features. The au-
thors also described an informal listening test, which showed that, on
the average, humans were inferior in classifying these categories com-
pared to their system.

Speech/music discrimination is a typical example and the paper by
Scheirer and Slaney describes a basic approach using a combination
of several features [156]. In some studies environmental noise is in-
cluded as one of the categories. See for example the papers by Lu et al.
([119]), and Li etal. ([113]). Various granularities of the task description
are possible by further subdividing the classes. Zhang and Kuo ([181])
classi ed between harmonic environmental sound, non-harmonic envi-
ronmental sound, environmental sound with music, pure music, song,
speech with music, and pure speech. B Uchler et al. report on classifying
clean speech, speech in noise, noise, and music in hearing aids with very
high accuracy except for the "speech in noise category” [19].

The MPEG-7 standard by the Moving Picture Experts Group presents
methods for multimedia content description and also for describing gen-
eral sound sources. Casey has used a front-end where log-spectral ener-
gies are transformed into a low-dimensional representation with singular-
value decomposition and independent component analysis [31]. The
proposed classi er uses single-Gaussian continuous-density HMMSs with
full covariance matrices trained with Bayesian maximum a-posteriori
(MAP) estimation. Casey has reported impressive performance gures
using the system on a database consisting e.g. of musical instrument
sounds, sound effects, and animal sounds.

In a realistic audio retrieval system we need to be able to ef ciently
compute distances between models of audio clips in a audio database.
Helen and Virtanen present various similarity measures between GMM
or HMM maodels of features for audio retrieval of speech, music, and
environmental sounds [72].

2.5.4 Analysis of video soundtracks

Analyzing and categorizing video soundtracks is a related research eld
to audio-based context recognition. Describing soundtracks using key
audio effects is an interesting approach used for sound track catego-
rization. In [28], Cai et al. propose a framework for detecting key audio
effects and describing an audio scene. They use a hierarchical proba-
bilistic model, where an HMM is rst built for different audio effects
based on sound samples, and then a higher level model is used to con-
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nect the individual models. The optimal key effect sequence is searched
through the candidate paths with the Viterbi algorithm. This approach

is interesting since individual sound events have been found to be a
strong cue for audio context identity [144], although the complexity of
the system is likely to be too large for context awareness applications.
More recently, the authors have proposed an unsupervised co-clustering
approach for the same task [27].

2.5.5 Personal audio archiving

Ellis and Lee have worked on an application to record personal expe-
rience as continuous, long audio recordings [50]. Automatic analysis of
the content for indexing purposes is an essential requirement as it is ex-
pected that only a fraction of the material is of any value. The authors
performed automatic segmentation and labeling of 62 hours of recorded
personal audio. They used the Bayesian Information Criterion (BIC)
([20, p. 216]) as a segmentation criterion, as earlier used in speaker
segmentation. The distance matrix between various segments was cal-
culated using the Kullback-Leibler divergence ([20, p. 57]) between sin-
gle diagonal-covariance Gaussians tted to the spectral features, and
spectral clustering was performed on the similarity matrix to group the
segments. The most successful features were average log-domain audi-
tory spectrum, normalized entropy deviation, and mean entropy.

2.5.6 Discussion

In recent years, progress has been made in audio-based context recogni-
tion. Very good performance has been reported e.g. in [14, 120, 145],
although the set of used recordings has been smaller than we have
used in publication [P4]. Moreover, the database presented in [120]
provides only little variation between the different recordings from the
same environment and thus leads to high recognition percentages. This
was tested by repeating the experiments of [120] using their publicly
available data. We used a simple approach where each recording was
modeled with a Gaussian tted to its features, and classi cation was
done with a k-Nearest Neighbor classi er with symmetrized Kullback-
Leibler divergence as the distance metric. This lead to over 90% accu-
racy on the dataset of [120].
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Chapter 3

Music content analysis

Music content analysis is a broad eld covering tasks such as
2 transcription of melody, bass, or chords
2 analysis of meter and structure
2 classi cation of music by genre, artist, or mood
2 nding remix or cover versions of original songs.

This chapter reviews relevant research on meter and structure analysis
as background for publications [P5], [P6], [P7], and [P8].

3.1 Meter analysis
Musical meter is a hierarchical structure, which consists of pulse sen-

sations at different time scales. The most prominent level is the  tactus,
often referred as the foot tapping rate or beat. Here, we use the word

Figure 3.1: A musical signal with the tatum, tactus (beat), and measure
levels illustrated. Reprinted from [P5].  °c 2006 IEEE.
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Figure 3.2: Overview of the beat and tatum analysis system of [P6],
which is a good representative of the main modules in a meter analysis
system. Reprinted from [P6]. °c 2006 University of Victoria.

beat to refer to the individual elements that make up a pulse. Figure 3.1
illustrates a musical meter where the dots denote individual beats and
each sequence of dots corresponds to a particular metrical level. We use
the term period of a pulse to refer to the time duration between succes-
sive beats and phase to refer to the time when a beat occurs with respect
to the beginning of a piece. The tempo of a piece is de ned as the rate
of the tactus pulse. In a musically meaningful meter, the pulse periods
are slowly varying and each beat at the larger levels must coincide with

a beat at the smaller levels.

3.1.1 Overview

Meter analysis involves estimating the possibly time-varying period of
one or more metrical levels, and the locations of each beat. A full meter
analysis system can estimate the periods and locations at the three most
prominent metrical levels (measure, tactus, and tatum), whereas beat
tracking involves estimating the time-varying tempo and the locations
of the beats at the tactus level. In some applications it is suf cient to
perform tempo estimation, i.e., to estimate the rate of the tactus pulse
ignoring the phase.

Automatic rhythm analysis often entails the steps of measuring mu-
sical accentuation, analyzing the periodicity in the accent signals, and
determining the period corresponding to one or more metrical levels.
Figure 3.2 depicts an overview of the beat and tatum analysis system
in [P6].

3.1.2 Musical accent analysis

The purpose of musical accent analysis is to extract features that corre-
late with the beginnings of sounds and discard information irrelevant
for tempo estimation. The purpose is to device a feature that reacts to
events that give emphasis to a moment in music, such as beginnings of
all discrete sound events, especially the onsets of long pitched events,
sudden changes in loudness or timbre, and harmonic changes. Fig-
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Figure 3.3: 10 second excerpt of the audio waveform of the song "25 or 6
to 4” by Chicago (top panel), and the corresponding accent signal (lower
panel).

ure 3.3 depicts an example of a musical waveform and extracted accent
signal which reacts to spectral changes in the piece. Bello et al. divide
the features used in onset detection to two broad groups: methods based
on the use of signal features and methods based on probabilistic signal
models [17]. The signal features include e.g. temporal features such
as amplitude envelope, spectral features such as spectral difference or
spectral ux, spectral features using phase such as the mean absolute
phase deviation, and time-frequency and time-scale analysis based on
e.g. wavelet decomposition of the signal. Another group of features is
based on an assumption that the signal can be described by some prob-
abilistic model. For example, a statistical measure of "surprise” may
consist of adapting some signal model based on incoming data, and an-
alyzing when incoming data in a short window no longer ts the model.
Another example is the log-likelihood ratio test, which entails training
two probabilistic models with data on both sides of a time instant, and
computing the likelihood ratio of these models.

In publications [P5], [P6], and [P7] we apply various spectral fea-
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tures for musical accent analysis. The main steps in the methods are
decomposing the signal into frequency bands and measuring the degree
of change in the bands. The frequency decomposition can be done with
the help of the DFT ([P5]), using a multirate Iterbank ([P6]), or using a
chroma analyzer or the mel-frequency lterbank [P7]. Chroma features
will be described in more detail in section 3.2.2. In publication [P5],
an accent feature extractor is presented which utilizes 36 logarithmi-
cally distributed subbands for accent measurement and then folds the
results down to four bands before periodicity analysis. The benet of
using a wide range of subbands is that it is possible to detect also har-
monic changes in classical or vocal music which do not have a strong
beat. The method in [P6] is designed with the goal of keeping the com-
putational cost low. The accent feature extractor based on the chroma
features in [P7] can be considered to further emphasize the onsets of
pitched events and harmonic changes in music. Measuring the degree
of change consists of half-wave recti cation (HWR) and weighted differ-
entiation of an accent band envelope.

3.1.3 Pulse periodicity and phase analysis

Musical accent analysis is followed by periodicity analysis, since musi-
cal meter concerns the periodicity of the accent, not the onsets them-
selves. A natural choice is to apply a periodicity estimator, such as
autocorrelation, to the accent signal to nd intrinsic repetitions. The
autocorrelation is de ned as

i 1

Al) = ailna(nj I); 0-1- Nj1 (3.1)
n=0

for a frame of length N of the accent signal a(n). The autocorrelation
may be applied separately for a set of subbands, in which case a(n) rep-
resents the accent signal from a single subband. Performing periodicity
analysis directly on half-wave recti ed differentials of subband power
envelopes was proposed by Scheirer ([158]), and was an important ad-
vance compared to earlier methods based on discrete onset detection.
Figure 3.4 depicts an example periodicity measurement from a signal
using autocorrelation. Offset and scale variations have been normal-
ized from the autocorrelation, see details in [P6]. The autocorrelation
will show peaks at the lag corresponding to the basic periodicity of the
accent signal, and its integer multiples.

A straightforward solution for beat or tatum period estimation con-
sist of weighting the autocorrelation or other periodicity observation
with a prior, and selecting the period corresponding to the maximum
peak. This is the principle used e.qg. in [P5], [P6] and [49].
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Figure 3.4: (a) autocorrelation and (b) summary periodicity, with beat
(B) and tatum (T) periods shown. Reprinted from [P6].  °c 2006 Univer-
sity of Victoria.

When an estimate of the period has been obtained, the remaining
task is to position the individual beats to the timeline. This often en-
tails making a prediction to the next beat location given the location
of the previous beat and the new period estimate, and nding a local
maximum of the accent signal near the predicted position. At the end of
the signal, the best path through the accent signal may be searched. A
good example of such a method is the dynamic programming approach
presented by Ellis [49].

Some periodicity estimators provide an estimate of the phase in ad-
dition to period. Scheirer proposed the use of a bank of comb- Iter res-
onators with constant half-time for beat tracking [158]. The accent sig-
nals are fed to a bank of comb- Iter resonators with delays tuned across
the range of beat periods to be measured. The energy at each band in-
dicates the strength of periodicity in the signal corresponding to that
particular delay. The delays of the comb- Iter give an estimate for the
beat phase. This is equivalent to using the latest ¢ outputs of a res-
onator with delay ¢. The phase estimation in [P5] and [P6] is based on
examining resonator outputs and de ning a weight for the deviation of
the phase from an ideal beat location. Ideally, the location of a beat is
characterized by a large value on all accent channels, and the location
does not deviate much from the ideal location obtained by adding the
current period estimate to the previous beat location.
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Table 3.1: Summary of selected research on music meter analysis. The
values in the column Input denote A=audio, S=symbolic or MIDI.

Author year ref. Approach H Input H Output
Allen multiple agent S beat
& Dannenberg 1990 [10]
Rosenthal 1992 [153] multiple agent S beat, measure,
time signature
Brown 1993 [24] autocorrelative S tempo, measure period
Parncutt 1994 [134] rule-based S measure, beat
Large 1995 [107] oscillator S beat
McAuley 1995 [126] oscillator S beat
Scheirer 1998 [157] oscillator A beat
Toiviainen 1998 [169] oscillator S beat
Goto 1999 [64] multiple-agent S beat, half-note, measure
Eck 2000 [45] rule-based S tempo
Raphael 2001 [150] probabilistic S+A transcription
Seppéanen 2001 [160] histogramming A tatum+beat
Wang & Vilermo 2001 [177] histogramming A beat
Goyon et al. 2002 [67] histogramming A tatum
Cemgil & Kappen [33] probabilistic S beat
Jensen and Andersen [87] histogramming A beat
Laroche [108] probabilistic A beat
Uhle and Herre [173] histogramming A tatum period, tempo,
time signature
Hainsworth & probabilistic A beat
Macleod 2004 [70]
Klapuri etal. 2006 [P5] probabilistic A measure, beat, tatum
Seppanen et al. 2006 [P6] autocorrelative A beat, tatum
Alonso et al. 2007 [11] autocorrelative A tempo
Davies & Plumbley 2007 [39] autocorrelative A beat
Dixon 2007 [42] multiple agent A beat
Ellis 2007 [49] autocorrelative A beat
Peeters 2007 [140] autocorrelative A measure, beat, tatum
Seyerlehner et al. 2007 [163] regression A tempo
Shiu & Kuo 2008 [165] probabilistic A beat
Eronen & Klapuri 2008 [P7] regression A tempo

3.1.4 Methods for music meter analysis

This section reviews previous work on music meter analysis and serves
as an introduction to publications [P5], [P6], and [P7]. Tempo estima-
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tion methods can be divided into two main categories according to the
type of input they process. The earliest ones processed symbolic (MIDI)
input or lists of onset times and durations, whereas others take acous-
tic signals as input. Examples of systems processing symbolic input
include the ones by Rosenthal [153], Dixon [41], Brown [24] and Toivi-
ainen and Eerola [170]. Some of the systems such as the one by Dixon
([41]) can be extended to process acoustic signals by employing an onset
detector as a preprocessing step.

The best performance on realistic, acoustic music material is typi-
cally obtained with systems that have originally been designed to pro-
cess acoustic signals. One approach to analyze acoustic signals is to
perform discrete onset detection and then use e.g. inter onset interval
(I01) histogramming to nd the most frequent periods, see e.g. [161].
However, it has been found better to measure musical accentuation in a
continuous manner instead of performing discrete onset detection [68].

The broad approaches of meter analysis systems could include

2 rule-based

2 autocorrelative
2 oscillating Iters
2 histogramming
2 multiple agent
2 probabilistic

2 regression

This is the categorization proposed by Hainsworth ([69]) with the ad-
dition of the regression category. There are methods that do not nicely
t into any of these categories, but we consider the categorization to be
useful anyway for characterizing some of the most prominent aspects of
the systems.

Another method of classifying meter analysis systems is by causal
operation [69]. If a system is causal, the meter estimate at a given
time depends only on past and present data. A noncausal system can
use future data and backward decoding. In some applications, such as
automatic accompaniment, causal operation is essential. In others, such
as producing rhythm related metadata for digital music archives, the
methods can be noncausal.

Table 3.1 presents a hopefully representative set of the various ap-
proaches.
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Rule-based

Rule-based approaches tend to be simple and encode sensible music-
theoretic rules [69]. They were among the rst approaches to meter
analysis. An example of a rule-based system is the one by Parncutt
who devised a model to predict the tactus and measure for a series of
repeated rhythms [134]. A simpler model for tempo prediction from
symbolic data was presented by Eck [45].

Autocorrelation

Autocorrelation is a method for nding periodicities in data and has
been applied in many meter analysis systems [69]. The autocorrelation
provides information only on the periods, therefore phase estimation re-
quires further processing. The lag which maximizes the autocorrelation
value often coincides with the beat, although there are peaks at inte-
ger multiples of the beat. Davies and Plumbley try to explicitly model
the ideal outputs of an autocorrelation function to different metrical
structures using comb lter templates [39]. Brown used the autocorre-
lation to predict the beat and measure period from single melodic lines
in symbolic format [24]. Ellis rst estimates the beat period using auto-
correlation and then nds the individual beats using dynamic program-
ming [49]. Alonso et al. use a subspace analysis method to perform
harmonic+noise decomposition before accent feature extraction and pe-
riodicity analysis using autocorrelation or other related periodicity esti-
mators [11]. Peeters proposes the combination of DFT and autocorrela-
tion for period estimation to suppress the harmonics in the periodicity
observation [140].

Oscillating Iters

Two distinct approaches can be found in oscillating Iter methods for
meter analysis [69]. One is based on exciting an adaptive oscillator
by an input signal and, if successful, the oscillator starts to resonate
at the frequency of the beat. Large used a single nonlinear oscillator
with adaptive phase and period to track the beat of piano performances
represented in symbolic format [107]. In his method, a sequence of im-
pulses at note onsets acted as a driver and perturbed both the period
and phase of an oscillator. Other examples of methods using an adap-
tive oscillator include those by McAuley [126] and Toiviainen [169]. The
input to the systems by Large ([107]) and McAuley ([126]) consisted of
series of impulses each corresponding to an onset of an individual note.
The goal of Toiviainen was to build an interactive MIDI accompanist
that tracks the performance in real time and plays back a prede ned
accompaniment in synchrony with the performance [169].

49



The second approach of oscillating lters is based on using a bank of
comb lter resonators with delays spanning the range of periods to be
estimated. This approach was pioneered by Scheirer who implemented
one of the rst successful methods for beat tracking from audio [157].
The output of a comb lter with delay ¢ for input v(n) is given by

re;m=®r(s;ni ¢)+@ i ®)v(n) (3.2)

where the feedback gain ®, = 0:5¢=" is calculated based on a selected
half-time Ty in samples. The comb Iters have an exponentially decay-
ing impulse response and the half-time refers to the delay during which
the response decays to half of its initial value. Scheirer used a half-time
equivalent to 1.5-2 seconds in his beat tracking system [157]. In pub-
lication [P5] we use a half-time equivalent to 3 seconds since the goal
is to analyze also longer, measure level pulses. A bank of comb lters
can be used as a periodicity estimator when the delays ¢ are set so that
they get values across the range of possible periods to be estimated. The
comb Iter which gives the most energetic output is likely to correspond
to the beat period or its multiple or sub-division. Moreover, an estimate
of the phase is available by examining the internal state of the delay
of the most energetic comb Iter [157]. This method is well suited for
causal beat tracking. A disadvantage of this method that it is compu-
tationally intensive, especially if the comb Iter bank is used to process
several frequency bands separately as proposed by [157]. McKinney and
Moelants compared the tempo histograms obtained from tempo tapping
data of human subjects and periodicity outputs of a comb Iterbank,
autocorrelation, and an IOl histogram, and concluded that the output
of a comb Iterbank was closest to the tempo histogram obtained from
human subjects [127].

A bank of comb- lters performs well in period and phase estima-
tion [P5], but is computationally intensive. In publication [P6] a com-
putationally lighter solution combining autocorrelation and discrete co-
sine transform is used for periodicity estimation. For phase estimation,
we still use comb- lters but now in an adaptive manner, tuning the
comb- lter parameters according to the current and previous period es-
timates.

Histogramming

Histogramming methods are based on detecting discrete onsets from the
input signal and histogramming the inter-onset-intervals of detected
onsets to nd the most prominent periodicity. A good example of this
category of methods is the one by Sepp @nen [160]. He rst performed
onset detection followed by tatum period estimation by IOl histogram-
ming. Several acoustic features were then extracted at locations de ned
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by the tatum signal and used in a pattern recognition system to classify
which of the tatum instances corresponded to beats. Sepp anen reports
that the method did not match the Sheirer method in beat tracking per-
formance. Other examples of histogramming methods include the ones
by Goyon et al. [67], Wang and Vilermo [177], Uhle and Herre [173], and
Jensen and Andersen [87].

Multiple agent

The basic idea of multiple agent methods is that there are multiple
agents or hypotheses independently tracking the beat [69]. Each agent
receives scores based on how well it ts to the data. Low scoring agents
may be killed during the process. At the end of the signal, the agent
with the highest score wins and determines the beat. Early methods
operating on symbolic or MIDI input include e.g. the ones by Allen and
Dannenberg [10] and Rosenthal [153]. Later methods operating on au-
dio signals include those by Goto [64] and Dixon [42] 1.

Goto rst performs onset detection on several frequency ranges [64].
The onsets are then fed to multiple agents which make parallel pulse
hypotheses based on the onset time vectors. The agents calculate the
inter-beat interval and predict the next beat time. Information on har-
monic changes is used to determine the type of the pulse (beat, half note,
or measure) and estimate the hypothesis reliability [64].

Dixon has developed a method called BeatRoot which uses a multiple
agent architecture [42]. The rst versions of the method processed MIDI
input. In the latest version a spectral- ux based onset detector is used
to make the system applicable for beat tracking on audio.

Probabilistic

Probabilistic methods de ne a model for the meter process whose pa-
rameters are then estimated. The basic idea here is that the under-
lying meter process goes through a sequence of states, and generates
a sequence of observations such as periodicity vectors or onset times.
Cemgil and Kappen ([33]) formulated a linear dynamic system for beat
tracking which has since been used by other authors such as Shiu and
Kuo ([165]) and Hainsworth and Macleod ([70]). The beat process is
modeled as a linear dynamic system as follows:

Xn+1 = ©(n+1jn)x, + 2,;  (transition equation) (3.3)

Yn = M(n)x, + vy, (Observation equation) (3.4)

1Goto and Dixon have written many early papers on the topic: we selected here the
most recent and representative articles.
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where X, is the hidden state variable and vy, the observation, and 2,
and v, are noise terms. The state variable is

Xn =[An;én]"s (3.5)

where A, and ¢, are the phase (temporal location) and period of the
current beat, respectively. The next beat location is predicted as

Ani1 = An+ én (3.6)

and the next period as the previous period, i.e., ¢n+1 = ¢én. Consequently,
the state transition matrix ~ ©(n + 1jn) can be written as
" 4

©(n +1jn) = i : 3.7)

1
0
Shiu and Kuo ([165]) and Hainsworth and Macleod ([70]) observe only
onsets and not the period. Then,
h i
M(n)= 1 0 : (3.8)

Thus, the observation y isthe nth observed onset time and corresponds
to the A, in x,. Beat tracking according to this model consist of the
sequential estimation of the state trajectory between times 0 and n.
This is solved with Kalman lItering in ([165]) and with particle Itering

in [70].

A different probabilistic formulation is presented in [P5]. There, the
meter process is modeled as a hidden Markov model depicted in Fig-
ure 3.5. The hidden variables are the tatum, beat (tactus), and mea-
sure periods, denoted by ¢, ¢B, and ¢C, respectively. The observation
is the periodicity vector (output of the resonance Iterbank) s. Arrows
indicate dependencies between the variables. The transition probabil-
ities of the model are designed to impose smoothness on the adjacent
period estimates, and to model the dependencies of the different pulse
levels. The optimal sequence of period estimates is found by Viterbi
decoding through the model. Thus, the model estimates the periods of
the three pulses simultaneously. The phase estimation is done after
period estimation. Two separate hidden Markov models are evaluated
in parallel, one for the beat phase and another for the measure phase.
In both models, the observation consists of the bandwise output of the
resonator corresponding to the found pulse period. Transition proba-
bilities are designed to impose smoothness between successive phase
estimates. Phase estimates are obtained by Viterbi decoding through
the beat and measure phase models. Hainsworth ([69]) reports that the
method in [P5] outperforms his method in [70]. However, since the ob-
servations fed to these two probabilistic models are different, we cannot
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Figure 3.5: Hidden Markov model for the temporal evolution of the
tatum, beat, and measure pulse periods. Reprinted from [P5]. °c 2006
IEEE.

yet draw general conclusions on what is the best probabilistic model for
the meter process.

Other approaches for meter analysis which could be categorized as
probabilistic include those by Raphael ([150]), who performed rhythm
transcription with a hidden Markov model that described the simul-
taneous evolution of three processes: a rhythm process, a tempo pro-
cess, and an observable process. The rhythm process modeled the posi-
tion within a measure a note can have. The observation was |0l data
measured from MIDI or from audio with the help of an onset detec-
tor. Laroche modeled an ideal accent signal as a sequence of discrete
pulses, which was then correlated with the measured accent signal to
determine a set of beat period candidates. Based on the beat period can-
didates, dynamic programming was applied to nd the beat phase [108].

Regression

We add here a new category of tempo estimators which is based on us-
ing regression. Seyerlehner et al. proposed the k-Nearest Neighbor
algorithm as an interesting alternative to peak picking from periodic-
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ity functions [163]. Peak picking stages are error prone and one of the
potential performance bottlenecks in rhythm analysis systems. For ex-
ample, an autocorrelation type beat tracker may select the beat period
by picking the maximum peak from the autocorrelation function, pos-
sibly weighted by the beat prior. Using the  k-Nearest Neighbor was
motivated based on the observation that songs with close tempi have
similar periodicity functions. The authors searched the nearest neigh-
bors for a periodicity vector and predicted the tempo according to the
value that appeared most often within the  k songs but did not report
signi cant performance improvement over reference methods. Publica-
tion [P7] studies this approach further and shows signi cant improve-
ment in tempo estimation accuracy over the method presented in [P5].

3.2 Structure analysis and music thumbnailing

This section describes the necessary background and related research
for the chorus detection method presented in publication [P8].

3.2.1 Overview

Music thumbnailing refers to the extraction of a characteristic, repre-
sentative excerpt from a music le. Often the chorus or refrain is the
most representative and "catchiest” part of a song. A basic application
is to use this excerpt for previewing a music track. This is very useful if
the user wishes to quickly get an impression of the content of a playlist,
for example, or quickly browse the songs in an unknown album. In ad-
dition, the chorus part of a song would often make a good ring tone for a
mobile phone, and automatic analysis of the chorus section would thus
facilitate automatical extraction of ring tone sections from music les.

Western popular music is well suited for automatic thumbnailing as
it often consists of distinguishable sections, such as intro, verse, chorus,
bridge, and outro. For example, the structure of a song may be intro,
verse, chorus, verse, chorus, chorus. Some songs do not have as clear
verse-chorus structure but there still often exist separate sections, such
as section A and section B which repeat. In this case the most often re-
peating and energetic section is likely to contain the most recognizable
part of the song.

The goal of music structure analysis is to analyze the location of one
or more sections from the music le. The methods typically start by
computing features from the signal using either xed-length frames or
beat-synchronous frames. Next, the goal is to nd the segment bound-
aries and to group repeating segments, such as all choruses. Peeters
et al. ([141]) divide the methods into two main categories: the "state”

54



Figure 3.6: Self-distance matrix of the song "Superstar’ by Jamelia.
The ellipses mark the diagonal stripes of low-distance corresponding to
chorus repetitions. This particular song has four choruses marked with
1, 2, 3, and 4. The notation x-y indicates that the particular diagonal
stripe is caused by a low distance between the chorus instances x and y.
The dashed ellipses indicate low distance stripes caused by matching a
chorus to itself which are hidden by the main diagonal.

approach and the "sequence” approach. The state approach considers
each part of a music track to be generated by a state. Each state has
characteristic acoustic information which separates the parts generated
by different states from each other. A part does not have to be repeated
later in the track. Representing musical parts as states with different
acoustic properties is motivated by the knowledge that in popular mu-
sic the different parts often have a characteristic accompaniment which
stays constant during the part. In this case, the goal of the structure
analysis is to nd the most likely state sequence that could have gener-
ated the acoustic features. A good example of the state approach is the
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Figure 3.7: A schematic view of a music structure analyzer.

work by Logan and Chu who used agglomerative clustering or a hidden
Markov model and Viterbi decoding to assign feature frames to different
segments [117]. A basic problem especially with the HMM based seg-
mentation is how to constrain the temporal span of the segmentation
to be long enough. When a HMM is trained using short-time features
for a music le, similar low-level feature vectors may be grouped to the
same state but it is unlikely that this would match with high-level song
segment structure. For example, in Figure 2.6 different states model dif-
ferent parts of the trumpet notes. One solution is to use a large number
of states in the HMM model, and then histogram the decoded sequence
of states and use the histograms as new features [112].

The sequence approach assumes that there exist repeating sequences
in the music track. A sequence is de ned as a time interval with cer-
tain succession of musical properties, such as notes or chords. Different
repeats of a sequence are not necessarily identical but similar. These
sequences are visible in a self-distance matrix (SDM) as off-diagonal
stripes indicating a succession of pairs of times with high similarity.
Figure 3.6 shows an example SDM for the song "Superstar” by Jamelia.

We will give here a short introduction to the steps of a music struc-
ture analysis method which is based on the sequence approach and SDM
processing. This serves as an introduction to [P8]. Figure 3.7 depicts
the basic operations of a music structure analyzer that is based on self-
distance analysis [65, 136]. The method starts with feature extraction
and SDM calculation. This is followed by nding repeated sections from
the SDM, grouping repeated sections belonging to the same high-level
segment (e.g. verse), and selecting the chorus sections. The following
sections describe these steps in more detail.

3.2.2 Chroma feature extraction

Whereas MFCCs are applicable to a wide variety of sounds such as
speech, music, and environmental sounds, chroma is a music-speci c
feature for describing the spectral content of musical sounds. The chroma
is motivated by the Shephard helix ([164]) of musical pitch perception [66].
Chroma features are typically used for music structure analysis ([16,
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Figure 3.8: A schematic view of chroma feature analysis. The top panel
shows the magnitude spectrum of a note A4 with fundamental fre-
quency 440 Hz. The energy corresponding to the same pitch class is
accumulated over several octaves on the same pitch class bin.

66]), key estimation (e.g. [62, 138]), cover song identi cation ([84]), or
detecting harmonic changes for bar line analysis [83]. Figure 3.8 depicts
a schematic view of the chroma feature analysis. Energy at a musical
semitone scale is accumulated to twelve pitch classes over a range of oc-
taves [16]. In the gure, the note frequency is represented as MIDI note
number. The conversion from frequency in Hertz to MIDI note number

is done using the equation

MIDI note number =69+ round(12 Iog(;jj)zlog(Z)); (3.9)
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where round denotes rounding to nearest integer. Note that using MIDI
note numbers is not necessary for chroma feature analysis but is used
in the gure for the convenience of representing the x-axis.

A straightforward way of calculating the chroma features is to map
each bin of a short-time discrete Fourier transform to exactly one of the
twelve pitch classes C, C#, D, D#, E, F, F#, G, G#, A, A#, B, with no
overlap. A relatively long analysis frame is needed to get suf cient res-
olution for the lower notes. In [P8] we use 186 ms frames. The energy is
calculated from a range of six octaves from C3 to B8 and summed to the
corresponding pitch classes. The chroma vectors are often normalized
by dividing each vector by its maximum value.

Another alternative for calculating the the chroma features is to use
a multiple fundamental frequency estimator to estimate the strength of
a range of FO candidates, which are then folded to chroma bins. This
kind of approach was proposed by Paulus and Klapuri for music struc-
ture analysis in [136]. We apply their chroma analysis method as a
rst step in musical accent feature estimation in [P7]. The input sig-
nal sampled at 44.1 kHz sampling rate and 16-bit resolution is rst di-
vided into 93 ms frames with 50% overlap. In each frame, the salience,
or strength, of each FO candidate is calculated as a weighted sum of
the amplitudes of its harmonic partials in a spectrally whitened signal
frame [98]. The range of fundamental frequencies used here is from
80 Hz to 640 Hz. Next, a transform is made into a musical frequency
scale having a resolution of 1/3rd of a semitone (36 bins per octave).
For each bin, only the maximum-salience fundamental frequency com-
ponent is retained. Finally the octave equivalence classes are summed
over the whole pitch range using a resolution of three bins per semitone
to produce a 36 dimensional chroma vector xy(k), where k is the frame
index and b=1;2;::; by is the pitch class index, with Iy = 36.

There exist several variants for measuring information similar to
the chroma feature. The pitch class pro le (PCP) is a synonym for the
chroma features [59]. Gomez calls her variant of the chroma feature
analysis the harmonic pitch class pro le (HPCP) [63]. Purwins et al.
compute a twelve-dimensional chroma representation from the constant
Q transform ([23]) and call the features constant-Q pro les [147]. The
constant-Q transform achieves a constant-Q resolution whereby time
resolution increases and frequency resolution decreases with increas-
ing frequency (Q denotes the ratio of frequency to resolution). Moreover,
the frequencies of the transform bins can be made to coincide with mu-
sical frequencies. The pitch histogram by Tzanetakis and Cook, which
is based on detecting and histogramming dominant pitches from the
output of a multiple FO estimator, is also a closely related feature [172].

In music structure analysis, it is desired that the distance would
be high between different song segments (e.g. verse and chorus) and
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small between instances of the same segment (e.g. different repetitions
of the chorus). The chroma features reveal similarities in melody and
harmonic accompaniment between different sections of the song even
if the used instrumentation or lyrics would change between sections.
The MFCC features are sensitive for changing accompaniment between
different choruses and differences in lyrics at different instances of the
verse. Bartsch and Wake eld reported that chroma features outperform
MFCC features in music thumbnailing [16]. Most current structure
analysis methods use chroma features and optionally augment them
with MFCC features or features describing the rhythm. Paulus and
Klapuri have presented a detailed study of the suitability of different
features for music structure analysis [135].

3.2.3 Self-similarity analysis

The next step is to calculate song self-similarity (or equivalently self-
distance). Various distance functions such as the Euclidean distance or
the cosine distance (inner product) can be used. Specialized distance
functions have been presented by Goto ([66]) and Lu et al. [118]. Before
distance calculation, the feature vectors are usually normalized, e.g., to

a mean of zero and standard deviation of one, or to a maximum element
of one.

The self-distance measurements can be represented in a self-distance
matrix (SDM). Figure 3.6 shows an example SDM for the song "Super-
star” by Jamelia. Each entry D¢(i;j) in the SDM represents the dis-
tance of the beat synchronous features of two time instances i and |
of the music le. See details in publication [P8]. The song has four
choruses, which repeat with almost the same melodic, harmonic, and
instrumentation content, resulting in strong diagonal segments of low
self-distance into the SDM. A diagonal segment which starts at the
point (i:j ) and ends at (¥ Jl) indicates that the musical segment which
starts at time i and ends at 1l repeats starting at time j and ending at
time {l. The diagonal stripe is created to the SDM since the feature
vector sequences during these time intervals are similar.

There are also diagonal segments of low self similarity correspond-
ing to the verse, see e.g. the diagonal stripe before the stripe corre-
sponding to the repetition of choruses 1 and 2. In addition, there are
usually many short segments of low self-distance corresponding to re-
peated melodic and/or rhythmic phrasing.

If a song has varying tempo and constant-length analysis frames are
used, the diagonal stripes in the self-distance matrix will not be diag-
onal anymore but curved according to the tempo changes. Beat syn-
chronous feature segmentation will keep the stripes diagonal.

Bartsch and Wake eld ([16]) and Goto ([66]) used a representation
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equivalent to the SDM called time-lag triangle. In the SDM both axes
represent time, in the time-lag triangle the axes are time and lag. The
matrix D (i;j ) can be converted to a time-lag triangle L (ljj ;j) with I =
i i J. The time-lag triangle transforms a diagonal repetition into a hor-
izontal constant-lag line.

3.2.4 Detecting repeating sections

The next step is to detect repeating segments from the SDM or time-lag
triangle. This is not a straightforward task since the diagonal stripes
corresponding to repetitions can be very weak when the features are
extracted from realistic audio recordings. A straightforward method
would be to binarize 2 the SDM using some known methods for image
binarization. However, the problem is that this will create many er-
roneous detected regions of small self-distance in locations where just
a few feature vectors happen to be similar to each other. A better al-
ternative is to utilize the knowledge that we are looking for diagonal
stripes of low self-distance. Bartsch and Wake eld proposed to calcu-
late moving averages of the SDM values [16]. Goto proposed a two-stage
adaptive thresholding method where sums are calculated across the di-
agonals of the SDM, and adaptive thresholding is then applied to detect
a certain number of diagonals to be searched for repetitions [66]. The
nal repetitions are searched using another adaptive thresholding on
the selected one-dimensional diagonal segments of the SDM. A slightly
varied version of this method is used in [P8]. Note that both Bartsch
and Wake eld and Goto proposed the methods for the time-lag triangle,
but this is an equivalent representation to the SDM [65].

3.2.5 Grouping and labeling sections

Each diagonal segment in the SDM represents just a pair of repeated
sections. If a complete description for the musical pieces is desired,
next it is necessary to group the segments representing the same mu-
sical section. Cooper and Foote construct a segment level distance ma-
trix and apply the Singular Value Decomposition to cluster similar seg-
ments [36]. Goto groups together segments detected from the time-lag
triangle having close starting and ending points, and in addition uti-
lizes knowledge of already found segments to search for missing seg-
ments [66].

The remaining problem is how to assign meaningful labels to the
sections. Most studies have considered only labeling the chorus, and

2Binarization is an image processing operation during which an image consisting of
multiple shades of gray is converted to one having only two levels, black and white.
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used various heuristics, such as selecting the most often repeating sec-
tion as a chorus [66]. Ong presents an extension of the Goto method
to obtain a more complete segmentation [131]. Only few studies have
attempted full description including segmentation and assigning musi-
cally meaningful labels for the segments. Examples include Maddage
et al. who perform explicit segmentation into vocal & nonvocal sections
to aid structure analysis [121], and Paulus and Klapuri who proposed
using N-grams for automatic segment labeling [136].

3.2.6 Methods for music structure analysis

Table 3.2 summarizes selected research on music structure analysis and
chorus detection. This is not a complete listing but hopefully a repre-
sentative set of the various approaches. The methods are categorized
according to the features used and the main approach, "sequence” or
"state”. In addition, the table lists the information produced by the sys-
tem. "Thumbnail” means that the system produces a single representa-
tive section to be used as a thumbnail. Methods that produce segmen-
tation information return the boundaries of all musical parts, but with-
out musically meaningful labels such as intro, verse, chorus, bridge, or
outro. Some methods produce the boundaries of all parts but label only
e.g. the chorus, or the chorus and verse. The methods that produce a
complete description including segment boundaries and musical labels
for the parts can be considered the most advanced.

One of the rst examples music thumbnail extraction using cluster-
ing was that of Logan and Chu [117]. Levy et al. propose a hierarchical
timbre model where a large HMM modeling different "timbre types” of
music is rst trained, and the most likely sequence of states is obtained
for a music le by Viterbi decoding through this model [112, 111]. His-
tograms of the decoded sequence of states are then used to characterize
different musical sections. Rhodes et al. also use state occupancy his-
tograms as features and propose an explicit prior probability distribu-
tion for the section durations in a Bayesian structure analysis frame-
work [152].

Cooper & Foote [36] rst calculate a self-distance matrix. Segment
boundaries are found by correlating a kernel along the diagonal of the
matrix. A segment-level SDM is them computed, and segments are clus-
tered by applying singular value decomposition (SVD) on the segment-
level SDM. Paulus and Klapuri present a related method where ini-
tial segments are rst found by kernel correlation [136]. They de ne
the probability that two segments belong to the same musical part as
a function of distances between segments, and then try to optimize a
probabilistic tness measure for different segment description candi-
dates using these probabilities. Jensen solves the problem using the
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shortest path algorithm for the directed acyclic graph [86].

The use of the self-similarity representation for music structure anal-
ysis was proposed by Foote, who rst considered using the matrix for
visualizing music and audio content [54]. Several methods have been
proposed to automatically extract structural information from the self-
distance matrix. Wellhausen & Crysandt used the MPEG-7 spectral
envelope features to calculate a similarity matrix and detected diagonal
line segments from it [178]. Chai used chroma features and proposed
distance function to overcome variations in the key between different oc-
currences of the same part [34]. Bartsch & Wake eld [16] and Goto [66]
operated on an equivalent time-lag triangle representation.

Some methods apply classi cation of music segments to help label-
ing. Lu et al. ([118]) and Maddage ([121]) use classi cation between
instrumental / vocal sections as further cues for segment labeling. For
example, Lu et al. classify a segment as intro, bridge, or outro if it is
classi ed as instrumental and depending on the temporal position.
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Table 3.2: Summary of selected research on music structure analysis

and chorus detection.

Author year ref. Features H Approach H Output
Foote 1999 [54] MFCC sequence visualization
Logan & Chu 2000 [117] MFCC state thumbnail
Dannenberg & Hu chroma or sequence || segmentation
2002 [38] transcription
Peeters et al. 2002 [141] bandwise state segmentation
FFT
Cooper & Foote 2003 [36] MFCC state segmentation+
verse+chorus
Wellhausen & MPEG-7 sequence choruses
Crysandt 2003 [178] spect. env.
Lu etal. 2004 [118] CQT sequence || segmentation+
intro+bridge+
outro
Bartsch & chroma sequence thumbnail
Wake eld 2005 [16]

Chai 2005 [34] chroma sequence || segmentation
Goto 2006 [66] chroma sequence choruses
Maddage 2006 [121] chroma+octave- state full description

scale cepstral
coef cients
Eronen 2007 [P8] MFCC+chroma sequence thumbnail
Jensen 2007 [86] rhythmogram+ state segmentation
PLP+
chroma
Ong 2007 [131] HPCP sequence || segmentation
Peeters 2007 [139] MFCC+ sequence || segmentation
spect. contrast+
chroma
Levy & MPEG-7 state segmentation
Sandler 2008 [111] AudioSpec.Proj.
Paulus & MFCC+chroma+ state full description
Klapuri 2008 [136] rhythmogram
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Chapter 4

Applications

This Chapter discusses some applications of music content analysis, fo-
cusing on applications that can utilize the methods presented in this
thesis. We conclude with a brief discussion on where the analysis al-
gorithms should be run in a practical environment where the user has
computing devices connected to an online music service.

4.1 Music recommendation and search

Most of the commercial interest in the music information retrieval eld

is probably targeted towards the problems of music recommendation
and automatic playlist generation. Here, the task can be de ned for
example as follows: given an example song, return a list of songs with
similar characteristics. A question raises how well do methods based on
audio content only perform in returning similar songs. Finding similar
music based on content attributes has received plenty of research inter-
est, see e.g. [132]. A certain level of performance can be obtained using
audio information for music recommendation. However, there seems
to exist a "glass ceiling” above which it is dif cult to get using only
low-level signal features. The performance seems to saturate around
60%-70% of good matches [15].

Similar conclusions were obtained in a user study reported by Lehtiniemi
in [109]. For that study, the author of this thesis implemented a content-
based music recommendation method which utilized a similarity met-
ric proposed by Pampalk [132]. Mel-frequency cepstral coef cients are
extracted from music les and modeled with single-Gaussian densi-
ties with full covariance matrices. Song distance is calculated with
the Kullback-Leibler (KL) divergence between the Gaussian distribu-
tions. In addition, the rhythmic aspects of signals are modeled and com-
pared with the so-called uctuation pattern feature which measures the
strength of amplitude modulation on a set of frequency bands. The nal
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distance between music les is a weighted sum of the timbral distance
returned by the KL divergence and the distance of the uctuation pat-
tern features. To make the system scale to large music collections, a
clustering scheme was implemented where the distance between songs
is computed only within songs in the same cluster. The author imple-
mented the method into a prototype end-to-end mobile music service.
The users of the service were able to select a seed song and request
playlists of similar music to their mobile phone and stream the songs
over a network connection. The users were requested to vote whether
the returned song was similar to the seed song. On the average, 63%
of the songs were considered acceptable. The most annoying errors are
cross-genre confusions the system makes: e.g. some classical and jazz
songs are confused by the system, sometimes also music from the rap
and rock genres. Within some music types such as metal, the recom-
mendations based on content attributes only can be surprisingly good.
The general conclusion is that the content attributes need to be aug-
mented with higher level metadata such as genre and release year to
make the recommendations acceptable. This kind of song similarity is
not expected to suf ce as the only source of music recommendations, but
can be used to e.g. provide recommendations to new content for which
there are not yet enough material to train a collaborative- Itering ([73])
based music recommender.

4.2 Active music listening

Active music listening can be de ned as a form of music enjoyment
where the listener has some control over the content besides basic trans-
port controls of play, stop, rewind, forward, and changing the song. For
example, in seamless playback or beat mixing the user may make tran-
sitions from one song to another while the system takes care of mixing
the song in a continuous fashion. Beat and possibly measure level anal-
ysis is utilized to time-synchronize the beats, and time stretching (or
pitch shifting) to align the tempos during the transition. In clubs and
discos professional DJs vary music tracks also by looping and rearrang-
ing them. However, DJ devices are expensive and have complicated
user interfaces making them unattractive for the public. The devices
may require manual preparation by adding loop points or segmenting
the music in advance. Some computer applications may offer a semi-
automatic approach consisting of automatic beat tracking followed by
a step where the user taps in the downbeats (for example, in Magix
Music Maker 10). The availability of fully automatic methods for ex-
tracting music rhythm information such as beats and measures from
musical les can bring these functionalities to amateur listeners.
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Figure 4.1: A prototype music player interface with buttons for looping
and skipping measures in a beat synchronous manner.

One novel example of active music listening is presented here. The
ideas were originally presented by Timo Kosonen and the author in [102].
The idea in this music player concept is to allow the user to repeat parts
of the music le in an easy manner. The user interface is depicted in Fig-
ure 4.1. A loop button has been included in addition to the traditional
music player controller buttons. When the user presses the loop button,
the system starts to loop the currently playing measure of the music.
The end result is an entertaining music listening experience especially
with electronic music, where the user may easily repeat parts of the le
in order to e.g. make the music le longer. For example, when a user
wishes to entertain his guests in a home party, he may make simple
DJ-like effects such as looping portions of music in an easy way.

Another technique examined in this prototype was to study whether
the listening experience during fast forward and rewind can be made
more pleasing by utilizing rhythm information. When the user enables
fast forward or rewind, the system will proceed as follows: it will rst
render the currently playing beat until the end, and then skip to the
beginning of the next measure in the case of fast forward, or in the
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beginning of the previous measure if the user initiated rewind, and play
the rst beat. Then it jumps again to another measure, plays the rst
beat, and so on. The audible effect of this compared to the conventional
method of fast forward or rewind is that the user is able to hear the
tempo of the piece during fast forward or rewind.

Tzanetakis and Cook ([171]), Goto ([66]), and Boutard et al. ([22])
have studied a skip to section functionality for ef cient music brows-
ing. Displaying musical sections with different colors and allowing the
user to skip between the sections help the user nd a section of inter-
est within a music track. Wood and O'Keefe extended an open source
music player with a "mood bar” that presents a graphical mapping of
a low-level feature along the music timeline [180]. However, their pub-
lications do not discuss using musical meter for intra-track skipping.
Moreover, their implementations do not keep the music playback con-
tinuous when the user presses a skip button; their implementations
may be good choices, if the goal is only to allow the user to locate a sec-
tion of interest quickly. The focus of the presented active music listening
interface is more on entertainment; we want to make intra-track music
browsing more pleasing by preserving the rhythm sensation, and allow
the user to focus on a particular section by a looping functionality.

4.3 Music variations and ring tone extraction

Jehan has presented methods to manipulate music recordings, for ex-
ample, by creating "music textures” that continue in nitely by concate-
nating music track segments, pieces of music tracks between onsets,
with a similar metrical location [83]. For example, a music track seg-
ment occurring on a downbeat is a candidate for occurring on a down-
beat in the extended music texture. The presented music player inter-
face did not utilize segmentation into the sound onset level but created
longer versions of music tracks by repeating full measures or varied ver-
sions of music tracks by changing the playback order of measures or full
beats.

The bottom part of the user interface in Figure 4.1 has simple con-
trols for recording the playback order of the song. During or before
playback, the user may press record and the system records which mu-
sical segments (beats and measures) are rendered and in which order.
This allows the user to record a personalized version of a song by loop-
ing some segments, or to record only a part of the song to be used as
a personalized ring tone. The idea in the player interface is that the
variation is not stored as audio le but as metadata: a simple metadata
format indexing the beats, measures, and sections of the songs can be
used to store the variations in a compact way.
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Figure 4.2: A prototype tool for visualizing, listening, and xing auto-
matically analyzed chorus segments for ring tone use.

One of the interesting uses for chorus detection is automatic extrac-
tion of ring tone segments from arbitrary music les. The chorus is
often the most catchiest and memorable part of a song and thus suit-
able to be used as a ring tone. However, as the analysis methods are
not perfect and especially determining the accurate boundaries of the
chorus start and end section is challenging (see details in [P8]), there
may be a need for tools to perform further adjustments to the analyzed
chorus section. Figure 4.2 presents a prototype user interface developed
by Timo Kosonen and the author which can be used to visualize, listen
to, and correct chorus section analysis results. The motivation of this
interface was twofold: to operate as a chorus annotation tool to pro-
vide evaluation material for the algorithm, and to test the feasibility of
a semiautomatic ring tone creation scheme where an algorithm is run
rst and then a manual inspection is done to verify the result.

The user interface provides mechanisms to make checking the suit-
ability of the chorus section as a ring tone very fast. With the press
of the space bar, the operator can start playing the chorus section from
the beginning. Special buttons exist to adjust the beginning and end of
the chorus section backward and forward. Moreover, when moving the
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location of the chorus section, the system automatically quantizes the
start to the nearest beat. This makes it possible to very fast adjust the

location so that the sample beginning remains continuous and does not
cause clicks: the playback can often be started in the beginning of a full
beat in a smooth manner.

4.4 A note on practical implementations

Considering practical mobile music services and applications that use
automatically analyzed music metadata, there are several alternatives
on where the analysis algorithms should be run. It is possible to run
analysis the on the mobile device for the user's music les. The bene t
of this is that it does not matter where the material has come from,
the same analysis can be performed for over-the-air (OTA) downloaded
content or content transferred from a PC, or even content recorded with
the mobile computer. However, the analysis consumes battery power,
more complex algorithms are slow to run on current devices, and, if
the content is protected with some digital rights management (DRM)
technology, the audio waveform may not be accessible.

There are certain applications where it is convenient to perform the
analysis on the mobile computer. One example are various beat syn-
chronized visualizations where changes in the graphics are synchro-
nized to the beat of the music. In this case the beat tracking can be
performed in real time during the music playback and rendering of the
visualization. For beat tracking this is feasible as it can be performed
computationally ef ciently while maintaining suf cient analysis accu-
racy, as is demonstrated in publication [P6].

Another alternative is to run analyzers on the user's personal com-
puter (PC). There we have more computing power than on the mobile
terminal. However, the disadvantage is that songs downloaded OTA to
the mobile device would have to be separately transferred to the PC for
analysis, and then the analysis results synchronized back to the mobile
device. In addition, this requires that the user has an additional device
in addition to the mobile phone to be able to use those features of the
application that require the metadata.

A good place to run the analysis is on the servers of a music service
or a speci ¢ metadata provider. This has the bene t of having to run
the analysis only once on each music le, and the analysis results can
be delivered to each user needing the le metadata. The metadata can
be downloaded speci cally to the mobile computer or PC, or it can be
attached to the header section when downloading the les. On a ser-
vice, we can utilize parallelism and huge computer farms to run even
complex analyzes to large catalogues. In addition, since many music

69



feature extractors are still in their very early stages and provide in-
formation that is semantically on a low level, there is the possibility
to create part of the metadata manually by employing human experts.
The process could even be a semiautomatic one where an automatic an-
alyzer is run rst, and then a human operator checks the results. One
of the purposes of the tool presented in gure 4.2 was to test this kind
of a semiautomatic process. The problem is, however, that the cost will
be at a signi cantly higher level compared to fully automatic processes

if we need to include a step where a human operator is needed.

A challenge when providing metadata from a service is that one
needs a reliable mechanism to identify user's own music les such that
metadata can be downloaded for those. Audio ngerprinting ([30][29])
is the only reliable solution, but this again consumes battery power. A
problem occurs with non-commercial content such as user-created mixes
or amateur production that are not found in the catalogue. A solution
to this would be to send the content from the mobile terminal to the ser-
vice for analysis but this consumes the scarce upstream network band-
width. However, we have already seen the rst services that provide
analyses for user's own les, see The Analyze API by the Echonest cor-
poration [7].
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Chapter 5

Conlusions and future
work

5.1 Conclusions

This thesis presented several methods for audio classi cation and mu-
sic content analysis. As suggested by human timbre perception experi-
ments, utilizing both spectral and temporal information is bene cial in
musical instrument classi cation. A wide set of features was proposed
and implemented in publication [P1] resulting in very good performance
on the McGill University Master samples collection. Furthermore, ex-
periments were carried out to investigate the potential advantage of a
hierarchically structured classi er, from which we could not obtain ben-

e ts in terms of classi cation performance.

In [P2], we studied the importance of different features for musi-
cal instrument recognition in detail. Warped linear prediction based
features proved to be successful in the automatic recognition of musi-
cal instrument solo tones, and resulted in better accuracy than what
was obtained with corresponding conventional LP based features. The
mel-frequency cepstral coef cients gave the best accuracy in instrument
family classi cation, and would be the selection also for the sake of
computational complexity. The best overall accuracy was obtained by
augmenting the mel-cepstral coef cients with features describing the
type of excitation, brightness, modulations, synchronity and fundamen-
tal frequency of tones. However, a problem remains on how to gener-
alize across instruments and recording locations: as more than one ex-
ample of an instrument are included in the evaluation the performance
of the system signi cantly drops. This effect is evident from the per-
formance evaluations in [P2] where the overall accuracy is signi cantly
lower than in [P1].

The use of left-right hidden Markov models for instrument note mod-
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eling was proposed in publication [P3]. In addition, we studied two
computationally attractive methods to improve the performance of the
system: using linear transforms to transform catenated MFCC and
¢ MFCC coef cients and discriminative training of the HMMs. Trans-
forming the features to a base with maximal statistical independence
using independent component analysis can give an improvement of 9
percentage points in recognition accuracy in musical instrument classi-
cation. Discriminative training of HMMs can improve the performance
when using models with a small number of states and component den-
sities.

The audio classi cation system proposed in [P3] is generic and was
applied to audio-based context recognition in [P4]. Contrary to musi-
cal instrument sounds, no clear bene t is obtained by using linear fea-
ture transforms when classifying environmental sounds. Discrimina-
tive training can be used to improve the accuracy when using very low-
order HMMs as context models, which may be necessary on resource
constrained mobile devices.

The general conclusion from [P4] is that building context aware ap-
plications using audio is feasible, especially when high-level contexts
are concerned. In comparison with the human ability, the proposed sys-
tem performs rather well (58% versus 69% for contexts and 82% versus
88% for high-level classes for the system and humans, respectively).
Both the system and humans tend to make similar confusions mainly
within the high-level categories. The recognition rate as a function of
the test sequence length appears to converge only after about 30 to 60s.
This poses a challenge for automatic systems since we would like to
minimize the amount of time the feature extractor is running to save
the battery power.

Publications [P5] to [P7] present several methods for music meter
analysis. Publication [P5] presents a complete meter analysis system
which performs the analysis jointly at three different time scales. The
probabilistic model represents primitive musical knowledge and is ca-
pable of performing joint estimation of the tatum, tactus, and measure
pulses. Several assumptions and approximations were presented to ob-
tain reasonable model parameters with limited amount of training data.
The system won the ISMIR 2004 and MIREX 2006 tempo induction con-
tests.

Publication [P6] presented a computationally ef cient method for
beat and tatum estimation. A simpli ed back-end for beat and tatum
tracking was presented. The computationally intensive bank of comb-
Iter resonators was substituted with a discrete cosine transform peri-
odicity analysis and adaptive comb ltering. The back-end incorporated
similar primitive musicological knowledge as the method presented in
cite [P5], but with signi cantly less computational load. A novel method
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based on adaptive comb- Itering was presented for beat phase estima-
tion. Complexity evaluation showed that the computational cost was
less than 1% of two reference methods. A real-time implementation of
the method for the S60 smartphone platform was written.

The regression approach for tempo estimation proposed in [P7] was
found to be superior compared to peak picking techniques applied on
the periodicity vectors as is done e.g. in [P5] and [P7]. We conclude that
most of the improvement is attributed to the regression based tempo es-
timator with a smaller contribution to the proposed FO-salience chroma
accent features and GACF periodicity estimation, as there is no statis-
tically signi cant difference in error rate when the accent features used
in [P5] are combined with the proposed tempo estimator. In addition,
the proposed regression approach is straightforward to implement and
requires no explicit prior distribution for the tempo as the prior is im-
plicitly included in the distribution of the k-NN training data vectors.
The accuracy degrades gracefully when the size of the training data is
reduced.

In publication [P8] we presented a computationally ef cient and ro-
bust method for chorus section detection. The method analyzed song
self distance by summing the self-distance matrices based on the MFCC
and chroma features. A scoring method for selecting the chorus section
from several candidates was proposed. In addition, a method utilizing
a matched lter for re ning the location of the nal chorus section was
proposed. The method provides accuracies suf cient for practical appli-
cations while being fast to compute.

A motivation for our research has been to study which music descrip-
tors can be estimated robustly enough for practical applications. Tempo
and chorus section estimation accuracies reach a level of 80% or beyond
which starts to be suf cient for practical applications, such as active lis-
tening or music search. Music tempo perception is ambiguous also for
human subjects which makes it possible that we are approaching the
practical limits of obtainable performance. The chorus detector is ap-
plicable to music preview and thumbnailing for popular and rock music
especially if a fade-in and fade-out is applied at the chorus boundaries.
For automatic ring tone segment analysis there are more strict require-
ments for the beginning and end of the segment, and the performance is
not yet suf cient. A semiautomatic annotation interface was presented
in section 4.3 as one possible solution.

In many methods special emphasis was put on keeping the meth-
ods computationally ef cient. In section 4.4 we discussed the bene ts
and disadvantages of alternative locations for running automatic music
content analyzers: these are a mobile device, a PC computer, or a ded-
icated centralized server. Irrespective of where the analyzers are run,
computational ef ciency is important. On a mobile device it is vital in
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order to keep the battery consumption low, on a PC computer an impor-
tant part of the user experience is created by the application responding
fast, and on a server we need to analyze catalogues of several million
les. Publications [P3] and [P4] proposed the linear feature transforms
and discriminative training of HMMs as potential sources for improve-
ment in non-speech audio classi cation tasks with negligible additional
computational cost in the on-line classi cation stage. Publication [P6]
demonstrated how the performance of a beat tracking system can be
kept at a good level while making a drastic reduction in computational
cost. Publication [P8] presents a method for chorus detection which per-
formed well and runs fast enough for processing catalogues of music of
the size of several million tracks.

5.2 Future work

The music content analysis methods presented in this thesis, as most
other methods developed to date, operate only on the audio signal. We
expect that subdomain speci c music content descriptors, e.g. special
methods for jazz, classical, pop and rock genres may be necessary to
further boost the performance to a level needed by practical applica-
tions. On a general level, we should study ways to leverage existing
textual metadata such as genre, style, or textual information from e.g.
record reviews to obtain more robust analysis of music content. In ad-
dition, automatic synchronization of MIDI les to corresponding audio
les may be an interesting approach to e.g. perform tempo analysis for
classical music.

Context-awareness using audio is a challenging topic but automatic
systems can approach the human ability as was demonstrated in [P4].
Future research will need to answer the question on whether audio-
based context sensing is useful in more general use cases and appli-
cation scenarios, implementing the methods in power-ef cient ways on
mobile devices, and combining the various sensory information in an
optimal manner. In addition, we need to solve the problems related to
frictional noises when the device is being carried in bags and purses.
So far the research has been done on clean recordings, next we need to
analyze the performance on audio collected in realistic usage scenarios.

In musical instrument recognition, the challenge is to perform reli-
able recognition or instrument labeling in polyphonic mixtures. We be-
lieve that one of the most potential research directions is using partially
labeled data as suggested by [114]. This stems mainly from the practi-
cal dif culty of obtaining fully segmented and labeled training material.

An interesting approach would be to test this approach on really large
databases where the presence of a certain instrument is indicated in the
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title of the track or album, or collect this information as user tags from a
music service. In addition, considering practical applications being able
to label the most dominant instrument may be suf cient, without hav-
ing to identify all the instruments in a mixture. This would facilitate
nding music with piano, or music with blues guitar and so on.

In music meter analysis, algorithm accuracy in tempo estimation
starts to be suf cient for practical applications. Remaining main chal-
lenges are in beat phase estimation, and especially measure phase es-
timation. Estimation of the phase is important in applications where
something needs to be synchronized to the tempo. One approach to im-
prove phase estimation is the utilization of harmonic information in an
ef cient manner. The regression approach proposed in [P7] might be
applicable to phase estimation as well.
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Errata and Clari cations
for the Publications

5.3 Publication [P1]

In Chapter 3: "Traditionally, the features provided by the timbre re-
search can be divided into spectral and temporal ones. In instrument
recognition systems reported so far, only features of either type have
been used.” The latter sentence is not correct. At that point, earlier re-
search had used both spectral and temporal features, see e.g. [85, 103].
But to our knowledge, none of the systems had combined cepstral coef-
cients with other spectral and temporal features, which is proposed in
the paper.

In Figure 3, the saxophones are erroneously depicted as brass in-
struments. Although nowadays made of brass, the saxophones are sin-
gle reed instruments with a conical bore. The family classi cation re-
sults in Table 2 are also done with saxophones in the brass family. This
does not change the conclusions based on the paper.

5.4 Publication [P6]

In the Abstract, the sentence "Complexity evaluation showed that the
computational cost is less than 1% of earlier methods.” should be changed
to "Complexity evaluation showed that the computational cost is less
than 1% of two earlier methods.”.

5.5 Publication [P8]

In the Introduction, the sentence "Similarity-matrix based approaches
include the ones by Wellhausen & Crysandt [5] and Cooper & Foote [6].”
should be changed to "An example of a similarity-matrix based approach
is the one by Wellhausen & Crysandt [5]”. The Cooper & Foote method
should be categorized as "state” approach, see 3.2.
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ABSTRACT ant. However, even the recent systems are characterized either by

a limited application context or by a rather unsatisfactory per-
In this paper, a system for pitch independent musical instrumentfgrmance.

recognition is presented. A wide set of features covering both hi . iz ) £ h
spectral and temporal properties of sounds was investigated, andn t IS paper, we aim at uti 1zing a widest range oi eature_s char-
their extraction algorithms were designed. The usefulness of the@cterizing the dlffferent propertles of s_ounds. This is done in or_der
features was validated using test data that consisted of 1498 sam!© handie a certain defect in the earlier proposed systems: failure
ples covering the full pitch ranges of 30 orchestral instruments '© Make simultaneous and effective use of both spectral and tem-
from the string, brass and woodwind families, played with differ- POral features, which is suggested by the work in psychoacous-
ent techniques. The correct instrument family was recognized tics. Signal processing methods were implemented that attempt to

with 94% accuracy and individual instruments in 80% of cases. extract cues about the temporal development, modulation proper-
ties, irregularities, formant structure, brightness, and spectral syn-

These results are compared to those reported in other work. Also, o ;
utilization of a hierarchical classibcation framework is consid- chronicity of sounds. Although all the factors in sound source
ered. identipcation, and especially their interrelations are not known, a
large number of them have been proposed. Thus it looked particu-
larly attractive for us to utilize as much as possible of that infor-
1. INTRODUCTION mation simultaneously in a recognition system, and to see if that

Music content analysis in general has many practical applications,WOUId allow us _to bu.”d amore robust instrument recognition sys-
tem than described in experiments so far.

including e.g. structured coding, database retrieval systems, auto-
matic musical signal annotation, and musiciansO tools. A subtaslOur current implementation handles the isolated tone condition
of this, automatic musical instrument identibcation, is of signib- well, and we are hoping that it will generalize to still more realis-
cant importance in solving these problems, and is likely to pro- tic contexts. A practical goal of our research is to build an instru-
vide useful information also in other sound source identibcation ment recognition module that can be integrated to an automatic
applications, such as speaker recognition. However, musical sig-transcription system [6].

nal analysis has has not been able to attain as much commercia.ll.

interest as, for instance, speaker and speech recognition. This is his paper is organized as follows. In Section 2, we shortly
' » SP P 9 ) .teview the literature in sound source identibcation and perception.

commercially applicable, although both areas are considered as}/n Sect!c_)n 3, we brst take a look atthe features used in ins_trument

being highly Complicated recognition sys_tems and discuss the _approach taken in th|s_paper.
: Then we describe our feature extraction algorithms. In Section 4,

First attempts in musical instrument recognition operated with a the selected features are validated with thorough simulations and

very limited number of instruments and note ranges. De Poli and the classibcation results are compared to those of earlier studies.

Prandoni used mel-frequency cepstrum coefbcients calculated

from isolated tones as an inputs to a Kohonen self-organizing 2. DIMENSIONS OF TIMBRE

map, in order to construct timbre spaces [2]. Kaminsky and ) )

Materka used features derived from an rms-energy envelope and® considerable amount of effort has been done in order to Pnd the

used a neural network or a k-nearest neighbour classiber to clasPerceptual dimensions aimbre, the OcolourO of a sound. Often

sify guitar, piano, marimba and accordion tones over a one-octavethese studies have involved multidimensional scaling experi-
band [5]. ments, where a set of sound stimuli is presented to subjects, who

) then give a rating to their similarity or dissimilarity. On the basis
The recent systems have already shown a considerable level ofy ihese judgements a low-dimensional space, which best accom-
performance, but have still been able to cope with only a quite yogates the similarity ratings, is constructed and a perceptual or
limited amount of test data. In [7], Martin reported a system that 4.0stic interpretation is searched for these dimensions.
operates on single isolated tones played over the full pitch ranges

of 15 orchestral instruments and uses a hierarchical classibcation™0 Of the main dimensions described in these experiments have
framework. Brown [1] and Martin [8] have managed to build clas- Usually been spectral centroid and rise time [3][9]. The brst meas-
sibers that are able to operate on test data that include sample¥res the spectral energy distribution in the steady state portion of
played by several different instruments of a particular instrument @ tone, which corresponds to perceived brightness. The second is
class, and recorded in environments which are noisy and reverberine time between the onset and the instant of maximal amplitude.



Table 1: Feature descriptions -
1 [Risetime, i.e., the duration of attack ©
2 |Slope of line pbtted into rms-energy curve after attack
3 |Mean square error of line bt in 2
4
5

Decay time

Time between the end of attack and the maximum of
rms-energy

6 |Crest factor, i.emax / rmsof amplitude
7 | Maximum of normalized spectral centroid
8 |Mean of normalized spectral centroid
9

Intensity [dB]

0.2

Bark frequency o

Mean of spectral centroid Time [sec]
10 | Standard deviation of spectra_l centroid _ Figure 1.Flute tone: intensities as a function of Bark fre-
11 | Standard deviation of normalized spectral centroid quency. Especially amplitude modulation can be seen clearly.
12 |Frequency of amplitude modulation, range 4-8Hz

13 | Strength of amplitude modulation, range 4-8Hz
14 | Heuristic strength of the amplitude modulation in

40

range 4-8Hz s
15 | Frequency of amplitude modulation, range 10-4pHz @zz
16 | Strength of amplitude modulation, range 10-40Hiz 2
17 | Standard deviation of rise times at each Bark band %15

c 10

18 | Mean error of the bt between each of steady state
intensities and mean steady state intensity

19 | Mean error of bt between each of onset intensitjes
and mean onset intensity

20 | Overall variation of intensities at each band

21 | Fundamental frequency

22 | Standard deviation of fundamental frequency
23-33| Average cepstral coefbcients during onset
34-44] Average cepstral coefbcients after onset

The psychophysical meaning of the third dimension has varied, extra discriminating power needed for instrument recognition

but |t haS Often related to tempora| Val’iations or irregularity in the with a wider set of instruments. The feature set we used is pre_
spectral envelope. A good review over the enormous body of tim- sented in Table 1.

bre perception literature can be found in [4]. These available .
results provide a good starting point for the search of features to3.1 Feature extraction methods
be used in musical instrument recognition systems.

@

oo

20
Bark frequency 0

Time [sec]

Figure 2. Clarinet tone: intensities as a function of Bark fre-
quency plot. At the low end of clarinet playing range the
odd partials are much stronger than the even partials.

The short-time rms-energy envelope contains information espe-
cially about the duration of excitation. We estimated rise-time,
3. CALCULATION OF FEATURES decay-time, strenght and frequency of amplitude modulation,
crest factor and detected exponential decay from the rms-energy

Traditionally, the features provided by the timbre research can be X .
curve calculated in 50% overlapping 10ms frames.

divided into spectral and temporal ones. In instrument recognition
systems reported so far, only features of either type have beenThe spectral centroid of the signal is calculated over time in 20ms
used. For instance, Kaminsky and Materka used temporal featuresvindows. At each window, the rms-energy of the spectrum is esti-
derived from a short time rms-energy envelope [5]. In the researchmated using logarithmic frequency resolution. After that, the
of Martin [7][8], a selection of temporal features calculated from spectral centroid is calculated. We use both the absolute value of
the outputs of a log-lag correllogram was used, but the spectralspectral centroid and a normalized value, which is the absolute
shape was not considered at all. Brown reports good results beervalue divided by the fundamental frequency. The fundamental
achieved with cepstral coefbcients calculated from oboe and sax{requency estimation method used here is the one presented by
ophone samples [1]. She used mel-frequency cepstrum coefbKlapuri in [6].

cients from 23 ms frames, which were then grouped into one or

Sinusoid track representation provides many useful temporal fea-
three clusters.

tures. We brst calculate the harmonic amplitude on each of Bark
We wanted to test if combining the two types of features, cepstral scale bands, which resemble the frequency resolution of the coch-
coefbcients and temporal features, would yield the necessarylea. Knowledge about the fundamental frequency is applied in



order to resolve whether any harmonics are found on each band. Table 2: Classibcation results
The amplitude envelopes of single harmonic frequencies can be
calculated efbciently with a®(n) algorithm, wheren is the sam- Hierarchy 1 |Hierarchy 2 | . No
ple length. If more than one harmonic frequencies are found, then hierarchy
amplitude envelopes are calculated separately and the resultingPizzicato / sustained 99.0% 99.0% 99.09
band-amplitude is the mean of these. The band-wise intensity is [|nstrament families 93.0% 94.0% 94.7%
calculated by multiplying the amplitude by the center frequency individual 74.9% 75 8% 80.6%
of the band. .

instruments

The intensities are decimated by a factor of about 5ms to ease the
following computations and smoothed by convolving with a 40ms In our system, at each node a Gaussian or a k-NN classiPer was
half-hanning (raised-cosine) window. This window preserves sud- used with a bxed set of features. The Gaussian classiber turned
den changes, but masks rapid modulation. Figures 1 and 2 displayout to yield the best results at the highest level, where the number
intensity versus Bark frequency plots for 261Hz tones produced of classes is two. At the lower levels, k-NN classiber was used.
by Bute and clarinet, respectively. Bad features are likely to decrease classifying performance,
. . o which makes evaluating the salience of each feature essential. The
When the intensity matrix is calculated, a number of features can .

. T -  features used at a node were selected manually by monitoring fea-
be easily extracted. The similarity of shape between intensity . .
envelobes is measured by btting the envelopes into a mean enVeture values of possible subclasses. This was done one feature at a

P . y 9 P . time, and only the features making clear distinction were included
lope and calculating the mean of mean squre errors. This is done

. into the feature set of the node.

separately for the onset period and the rest of the waveform. The
error value of the onset period, accompanied with the standardWe implemented a classiPcation hierarchy similar to that pre-
deviation of bandwise rise times, can be considered as a measuréented by Martin in [7], with the exception that his samples and
of onset asynchrony. Another measure that can be extracted frontaxonomy did not include piano. In our system the piano was
the intensity envelope curves is the overall variation of intensities assigned to an own family node because of having a unique set of
at each band. some features, especially cepstral coefbcients. According to Mar-
tin, classibcation performance was better if the reeds and the
brass were brst processed as one family and separated at the next
stage. We wanted to test this with our own feature set and test data
and tried the taxonomy with and without the Brass or Reeds node,
twhich is marked with a ©*0 in Figure 3.

The spectral shape of tones is modelled with cepstral coefbcients
which are calculated with a method adapted from an automatic
speech recognition system described in [11]. Calculation proce-
dure is done in 25% overlapping windowed frames of size
approximately 20ms. Autocorrelation sequence is calculated brs
and then used for LPC coefpcient calculation with Levinson-

Durbin algorithm. LPC coefbcients are then converted into ceps- 5. RESULTS

tral coefpcients, which have been found to be a robust feature seOur validation database consisted of 1498 solo tones covering the
for use in speech and instrument recognition [1]. We used two setsentire pitch ranges of 30 orchestral instruments with several artic-
of 11 CoeprientS, averaged over the onset and the rest of the SaMglation Sty|es (eg pizzicatol martele, bowed, muted, Butter), as
ple. illustrated in Figure 3. All tones were from the McGill Master
Samples collection [10], except the piano and quitar tones which

4. CLASSIFICATION were played by amateur musicians and recorded with a DAT
recorder. In order to achieve comparable results to those described
by Martin in [7], similar way of cross validation with 70% / 30%
splits of train and test data was used. A difference to the method
of Martin was to estimate the fundamental frequency of the test
gample before classibcation, which was then compared to the
pitch ranges of different instruments, taking only the possible
ones into classibcation.

Musical instruments form a natural hierarchy, which includes dif-
ferent instrument families. In many applications, classibcation
down to the level of instrument families is sufbcient for practical
needs. For example, searching a database to bnd string musi
would make sense. In addition to that, a classiber may utilize a
hierarchical structure algorithmically while assigning a sound into
a lowest level class, individual instrument. This has been pro-
posed and used by Martin in [7][8]. In the following, we give a In Table 2, we present the classibcation results made in the three
short review of his principles. At the top level of the taxonomy, different ways. Hierarchy 1 is the taxonomy of Figure 6 without
instruments are divided into pizzicato and sustained. Second levelthe Brass or Reeds node. In the No-hierarchy experiment classiP-
comprises instrument families, and the bottom level individual cation was made separately for each classibcation level. The Hier-
instruments. ClassibPcation occurs at each node, applying knowl-archy 2 proved out to yield slightly better results, like Martin
edge of the best features to distinguish between possible sub+eported in [7]. But interestingly, in our experiments, the direct
classes. This way of processing is suggested to have someclassibcation at each level performed best at both tasks, which
advantages over direct classipcation at the lowest end of the taxwas not the case in MartinOs experiments where the Hierarchy 2
onomy, because the decision process may be simplibed to take/ielded the best results. At the current implementation, classibca-
into account only the small number of possible subclasses. tion result at the lower level of hierarchy is totally dependent on
the results of the higher levels, and the error cumulates as the clas-
sibcation proceeds.



Instrument
Pizzicato Sustained
Brass or *
Reeds
Piano Strings Strings Flute or Reeds Brass

A A A A

French Horn

Piano Guitar Violin Bass Flute Contra Bassoon Bass Trombone
Violin Viola Alto Flute Bassoon Alto Trombone
Viola Cello Flute Contrabass Clarinet Tenor Trombone
Cello Double Piccolo Bass Clarinet Trumpet
Double Bb Clarinet Bach Trumpet
Eb Clarinet Tuba
Oboe Bass Sax

Baritone Sax
Figure 3. The taxonomy presented by Martin in [7] with the exception that the Piano node is added.  Tenor Sax

Instrument families are bolded, and individual instruments are listed at the bottom level. Alto Sax
Soprano Sax
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COMPARISON OF FEATURES FOR MUSICAL INSTRUMENT RECOGNITION
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ABSTRACT . .
ments. The performance of the system and the confusions it

Several features were compared with regard to recognition per-makes are compared to the results reported in a human perception
formance in a musical instrument recognition system. Both mel- experiment, which used a subset of the same data as stimuli [2].
frequency and linear prediction cepstral and delta cepstral coefp-
cients were calculated. Linear prediction analysis was carried out 2. FEATURE EXTRACTION
both on a uniform and a warped frequency scale, and reectionp 1. Cepstral features
coefpcients were also used as features. The performance of earlier

. . For isolated musical tones, the onset has been found to be
described features relating to the temporal development, modula-, o : .
. . . . important for recognition by human subjects [4]. Motivated by
tion properties, brightness, and spectral synchronity of sounds

was also analysed. The data base consisted of 5286 acoustic antcg"S’ the cepstral analyses are made separately for the onset and

. : . Steady state segments of a tone. Based on the root mean square
synthetic solo tones from 29 different Western orchestral instru- ) . )
. . ; . (RMS) -energy level of the signal, each tone is segmented into
ments, out of which 16 instruments were included in the test set. onset and steady state seaments. The steadv state beains when the
The best performance for solo tone recognition, 35% for individ- y 9 . y 9

ual instruments and 77% for families, was obtained with a feature signal achieves its average RMS-engrgy level for the. brst time,
L . and the onset segment is the 10 dB rise before this point.
set consisting of two sets of mel-frequency cepstral coefpcients

: For the onset portion of tones, both LP and blterbank analyses
and a subset of the other analysed features. The confusions made ; . i :
were performed in approximately 20 ms length hamming win-

by the system were anal;_/sed and compared o results reported in %owed frames with 25% overlap. In the steady state segment

human perception experiment. frame length of 40 ms was used. If the onset was shorter than 80
1. INTRODUCTION ms, the beginning of steady state was moved forward so that at

least 80 ms was analysed. Prior to the analyses, each acoustic sig-

Autt_o:natlg mubsllcal Pnstrumentcrlecpgnltlotn]s alfasc:jnatl?g antq nal was preemphasized with the high pass PlteB0.977" to
essential subproblem in music indexing, retrieval, and automatic ;10 the spectrum.

transcription. It is closely related to computational auditory scene The LP coefbcients were obtained from an all-pole approxi-

a”a'}’s's- However, mu3|caI. instrument  recognition h"_’l_s not mation of the windowed waveform, and were computed using the
received as much research interest as speaker recognition, foElutocorrelation method. In the calculation of the WLP coefb-

instance. cients, the frequency warping transformation was obtained by

t_”'lr']he |F1p_lfrgente(3_ mlusmﬁ.l.'tnsgumen:] recognl?o; syst<tems replacing the unit delays of the predicting Plter with Prst-order
still have imited practical usabriity. Brown has reported a system all-pass elements. In thedomain this can be interpreted by the
that is able to recognize four woodwind instruments from mono-

: . . mappin
phonic recordings with a performance comparable to that of pping -
humanOs [1]. MartinOs system recognized a wider set of instru- Ao =2 12] _ (1)
ments, although it did not perform as well as human subjects in a 19 A&

similar task [2]. _ _ In the implementation this means replacing the autocorrela-
This paper continues the work presented in [3] by using new (i, network with a warped autocorrelation network [5]. The
cepstral features and introducing a signibcant extension to theparametef is selected in such a way that the resulting frequency

evaluation data. The research focuses on comparing different fea‘mapping approximates the desired frequency scale. By selecting

tures with regard of recognition accuracy in a solo tone recogni- | -g 7564 for 44.1 kHz samples, a Bark scale approximation was
tion task. First, we analyse different cepstral features that are jpiained [6]. Finally, the obtained linear prediction coefbciepts

based either on linear prediction (LP) or Plterbank analysis. Both .« transformed into cepstral coefbciensvith the recursion [7,
conventional LP having uniform frequency resolution and more pp. 163]

psychoacoustically motivated warped linear prediction (WLP) are
used. WLP based features have not been used for musical instru-
ment recognition before. Second, other features are analysed that

are related to the temporal development, modulation properties, . .
P P prop The number of cepstral coefbcients was equal to the analysis

brightness, and spectral synchronity of sounds. ; D .
9 ! . P Y . y . order after the zeroth coefbcient, which is a function of the chan-
The evaluation database is extended to include several exam-

ples of a particular instrument. Both acoustic and synthetic iso- nel gain, was discarded. .
: For the mel-frequency cepstral coefbcient (MFCC) calcula-
lated notes of 16 Western orchestral instruments are used for,. . . )
. e ) . tions, a discrete Fourier transform was brst calculated for the win-
testing, whereas the training data includes examples of 29 instru-

nbl

1
¢, = Pa, Dﬁ é K@, p - (2)
k=1
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dowed waveform. The length of the transform was 1024 or 2048

point for 20 ms and 40 ms frames, respectively. 40 triangular — WLP cepstra
. . — — Refl. coeffs. (WLP)

bandpass blters having equal bandwith on the mel-frequency 70+ LP cepstra
scale were simulated, and the MFCCs were calculated from the Refl. coeffs. (LP)
log blterbank amplitudes using a shifted discrete cosine transform - 60r —
(7, p.189]. . . § Sl I P 't~ _Family recognition

In all cases, the median values of cepstral coefbcients were 5 wl Tl
stored for the onset and steady state segments. Delta cepstral 2
coefbcients were calculated by btting a brst order polynomial § 30
over the cepstral trajectories. For the delta-cepstral coefpcients, & ,ql = = === -~ =~ Instrument recognition
the median of their absolute value was calculated. We also experi- o IR A A A
mented with coefbcient standard deviations in the case of the 10f
MFCCs. 0

0 5 10 15 20 25 30 35 40 45
LP analysis order

Calculation of the other features analysed in this study has fig e 1 Classipcation performance as a function of analysis
been des_,crlbed in [3] and W|_II bg only sh_ortly summarized here.  j4ar for different LP based features.

Amplitude envelopeontains information e.g. about the type
of excitation; i.e. whether a violin has been bowed or plucked. samples are recorded in studios with different acoustic character-
Tight coupling between the excitation and the resonance structureistics and recording equipment, and the samples from lowa Uni-
is indicated by a short onset duration. To measure the slope of theversity are recorded in an anechoic chamber. The samples from
amplitude decay after the onset, a line was btted over the ampli-the Roland synthesizer were played on the keyboard and recorded
tude envelope on a dB scale. Also, the mean square error of the pthrough analog lines into a Silicon Graphics Octane workstation.
was used as a feature. Crest factor, i.e. maximum / RMS value The synthesizer has a dynamic keyboard, thus these samples have
was also used to characterize the shape of the amplitude envelope/arying dynamics. The samples from SOL include only the brst

Strength and frequency of amplitude modulation (AMgs 1.5 seconds of the played note.
measured at two frequency ranges: from 4_8 HZ to measure trem- CrOSS Validation aimed at as realistic Conditions as pOSSible
olo, i.e. AM in conjunction with vibrato, and 10-40 Hz for graini-  With this data set. On each trial, the training data consisted of all
ness or roughness of tones. the samples except those of the particular performer and instru-

Spectral centroid (SCrorresponds to perceived brightness ment being tested. In this way, the training data is maximally uti-
and has been one of the interpretations for the dissimilarity rat- lized, but the system has never heard the samples from that
ings in many multidimensional scaling studies [4]. SC was calcu- Particular instrument in those circumstances before. There were
lated from a short time power spectrum of the signal using 16 instruments that had at least three independent recordings, so
logarithmic frequency resolution. The normalized value of SC is these instruments were used for testing. The instruments can be

the absolute value in Hz divided by the fundamental frequency. S€en in Figure 4. A total of 5286 samples of 29 Western orchestral
The mean, maximum and standard deviation values of SC Wereinstruments were included in the data set, out of which 3337 sam-

used as features. ples were used for testing. The classiper made its choice among
Onset asynchronyefers to the differences in the rate of the the 29 instruments. In these tests, a random guesser would score
energy development of different frequency components. A sinu- 3.5% in the individual instrument recognition task, and 16.7% in
soid envelope representation was used to calculate the intensityfamily classibcation.
envelopes for different harmonics, and the standard deviation of ~ In each test, classiPcations were performed separately for the
onset durations for different harmonics was used as a one featureinstrument family and individual instrument cases kAearest
Another feature measuring this property is obtained by btting the neighbours (kNN) classiPer was used, where the valuksvefre
intensity envelopes of individual harmonics into the overall inten- 11 for instrument family and for 5 individual instrument classip-

sity evelope during the onset period, and the average mean squargation. The distance metric was Mahalanobis with equal covari-
error of those bts was used as a feature. ance matrix for all classes, which was implemented by using the

Fundamental frequency (f@)f tones is measured using the discrete form of the Karhunen-Loeve transform to uncorrelate the
algorithm from [8], and used as a feature. Also, its standard devi- features and normalize the variances, and then by using the eucli-

2.2. Spectral and temporal features

ation was used as measure for vibrato. dean distance metric in the normalized space.
3. EXPERIMENTAL SETUP 4. RESULTS
Samples from bve different sources were included in the vali- Different orders of the linear prediction Plter were used to see

dation database. First, the samples used in [3] consisted of thethe effect of that on the performance of several LP and WLP
Samp|es from the McGill University Master Samp|es Collection based features. The results for instrument famlly and individual
(MUMS) [9], as well as recordings of an acoustic guitar made at instrument recognition are shown in Figure 1. The feature vector
Tampere University of Technology. The other sources of Samp|esat all points consisted of two sets of coefbcients: medians over the
were the University of lowa website, IRCAM Studio Online ©onset period and medians over the steady state. The optimal anal-
(SOL), and a Roland XP-30 synthesizer. The MUMS and SOL Ysis order was between 9 and 14, above and below which per-
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[ Individual instrument 100
Bl Instrument family
Random guess (instrument) k3] 80
Random guess (family) i
23 : std of MFCCs of steady state g 60
== std of MFCCs of onset IS
2] DMFCCs of steady state 8 40
L DMFCCs of onset &
19 = MFCCs of steady 20 [ Individual instrument
1 MECCs of onset Il Instrument family
17 = std of f0 0 1 3 5 - o m
== fundamental frequency (f0)
o O
€15 *_, onset duration Note sequence length
§ = error of fit between onset intensities Figure 3.Classibcation performance as a function of note
13 == std of component onset durations
L= strength of AM, range 10-40Hz sequence length.
11 feme gzgﬁ:t'l‘ccit‘:;:é‘t"h range 1&':;!‘2 ohis backward select algorithm. If the MFCCs were replaced with
o= strength of AM, range 4-8Hz order 13 W!_PC(;s, the accuracy was 35% (72%). _
= frequency of AM, range 4-8Hz In practical situations, a recognition system is likely to have
7 == szo;g‘gma"zedsc more than one note to use for classipcation. A simulation was
T ~ . . . . .
5 ,  ean of SC made to test the systemOs behaviour in this situation. Random
== mean of normalized SC sequences of notes were generated and each note was classibed
3= crest factor individually. The Pnal classibcation result was pooled across the
£ mean square error of line fit : [y s :
1 slope of line fit (post onset decay) sequence by using the majority rule. The r(_ecognltlon accuracies
i i i i ‘ were averaged over 50 runs for each instrument and note

L
0 10 20 30 40 50 60

sequence length. Figure 3 shows the average accuracies for indi-
Percent correct

vidual instrument and family classibcation. With 11 random
Figure 2.Classibcation performance as a function of features. notes, the average accuracy increased to 51% (96%). In instru-
The features printed in italics were included in the best per- ment family classibcation, the recognition accuracy for the tenor
forming conbguration. saxophone was the worst (55% with 11 notes), whereas the accu-

i 0,
formance degrades. The number of cepstral coefbcients was onéac.y _for th_e all other instruments was over 90%. In the case of
individual instruments, the accuracy for the tenor trombone, tuba,

less than the analysis order. WLP cepstral and ref3ection coefp- llo. violin. viol 4 quit th ith e th
cients outperformed LP cepstral and ref3ection coefbcients at alC€'0, Violin, vioia and guitar was poorer than with one note, the

analysis orders calculated. The best accuracy with LP based fegdccuracy for th? _other instruments was higher. . .
The recognition accuracy depends on the recording circum-

tures was 33% for individual instruments (66% for instrument L : .
stances, as may be expected. The individual instrument recogni-

families), and was obtained with WLP cepstral coefbcients . 0 o 0 o
(WLPCC) of order 13. tion accuracies were 32%, 87%, 21% and 37% for the samples

from MUMS, lowa, Roland and SOL sources, respectively. The
lowa samples included only the woodwinds and the French horn,
which were on the average recognized with 49% accuracy. Thus,
the recognition accuracy is clearly better for the lowa samples
recorded in an anechoic chamber. The samples from the other
three sources are comparable with the exception that the samples

In Figure 2, the classibcation accuracy is presented as a func
tion of features. The cepstral parameters are mel-frequency ceps
tral coefbcients or their derivatives. The optimal number of
MFCCs was 12, above and below which the performance slowly
degraded. However, optimization of the blter bank parameters

should be done for the MFCCs, but was left for future research.f SOL did not include t With thesized
By using the MFCCs both from the onset and steady state, the rom Id hot Include tenor or soprano sax. WIth synthesize
samples the performance is clearly worse, which is probably due

accuracies were 32% (69%). Because of computational cost con- . - . .
siderations the MFCC were selected as the cepstrum features fo}0 both the varying quality of the synthetic tones and the varying

the remaining experiments. Adding the mel-frequency delta cep- dynamics.

str_um coefbcients (DMFCC) slightly improved the performance', 5 DISCUSSION

using the MFCCs and DMFCCs of the steady state resulted in ) ) o

34% (72%) accuracy. The confusion matrix for the feature set giving the best accu-

The other features did not alone prove out very successful. "acy is presented in Figure 4. There are large differences in the
Onset duration was the most successful with 35% accuracy inecognition accuracies of different instruments. The soprano sax
instrument family classibcation. In individual instruments, spec- IS recognized correctly in 72% of the cases, while the classibca-
tral centroid gave the best accuracy, 10%. Both were clearly infe- tion accuracies for the violin and guitar are only 4%. French horn
rior to the MFCCs and DMFCCs. It should be noted, however, 1S the most common target for misclassibcations.
that the MFCC features are vectors of coefbcients, and the other It is interesting to compare the behaviour of the system to
features consist of a single number each. human subjects. Martin [2] has reported a listening experiment

The best accuracy 35% (77%) was obtained by using a featureWhere .fourteen subjects recognized 137 samples from the Mf:GiII
vector consisting of the features printed in italics in Figure 2. The collection, a subset of the data used in our evaluations. The differ-

feature set was found by using a subset of the data and a simpleé€Nces in the instrument sets are small, MartinOs samples did not
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Figure 4.Confusion matrix for the best performing feature set. Entries are expressed as percentages and are rounded to the nearest
integer. The boxes indicate instrument families.

include any sax or guitar samples, but had the piccolo and the 7. ACKNOWLEDGEMENT

English horn, which were not present in our test data. In his test, The available samples in the web by the University of lowa
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ABSTRACT

In this paper, we describe a system for the recognition of
musical instruments from isolated notes or drum samples.
We first describe a baseline system that uses uses mel-
frequency cepstral coefficients and their first derivatives as
features, and continuous-density hidden Markov models
(HMMs). Two improvements are proposed to increase the
performance of this baseline system. Firgt, transforming
the features to a base with maximal statistical
independence using independent component analysis can
give an improvement of 9 percentage points in recognition
accuracy. Secondly, discriminative training is shown to
further improve the recognition accuracy of the system.
The evaluation material consists of 5895 isolated notes of
Western orchestral instruments, and 1798 drum hits.

1 INTRODUCTION

Earlier work on musical instrument recognition has mainly
used classifiers that are not able to effectively model the
temporal evolution of spectra features. The Gaussian
mixture model (GMM) ([1]) is able to effectively
parameterize the distribution of observations. However, it
does not explicitly model the dynamic evolution of feature
values within a played note. One approach is to extract
features that explicitly try to measure the tempora
characteristics of isolated notes [2], or to manually
segment the notes and use averages of cepstral coefficients
during the onset (the beginning of a note) and steady state
as features [3]. However, this has only a limited ability to
model the temporal evolution even if feature variances
were also used as features. Moreover, often the extraction
of temporal features is computationally rather demanding
and the effect is even greater if this is combined with the
use of a nearest-neighbour classifier, for instance.

Hidden Markov models (HMM) are the mainstream
dtatistical model used in the speech recognition
community, and are now becoming increasingly popular
also in non-speech applications. To our knowledge, Casey
is the only researcher who has used HMMs to model
musical instrument samples [4]. As a pat of the
development of the generalized audio descriptors for the
MPEG-7 standard, he has evaluated the proposed methods
using a database consisting of a wide variety of audio,
including music, speech, environmental sounds, and
different musical instrument sounds.

However, Casey's evaluation data has included
examples of only a few instruments. In addition, little
detail has been given on the difficulty of the evaluation

material, making assessing the accuracy of his method in
instrument recognition difficult. Moreover, no details were
given on the topology of the resulting models, since their
algorithm attempts to force some of the transition
probabilitiesto zero during training [4].

In this paper, we take a different approach. Based on
the knowledge of physical properties of musica
instruments, and on the other hand the psychological
studies on timbre perception, there is a clear motivation for
using HMMs with a left-right topology to model isolated
notes. Most musical instruments have a distinctive onset
period, followed by a steady state, and finally decay (or
release). For instance, some instruments are characterized
by onset asynchrony, which means that the energy of
certain harmonics rises more quickly than the energy at
some other frequencies. Also the decay is often
characterised by the prominence of certain frequencies
with respect to others. This causes the features relating to
the spectral shape to have different value distributions
during the onset, steady state, and decay. Thus, aleft-right
HMM with three states might well model this temporal
evolution.

This paper first describes the development of a
baseline instrument recognizer that uses mel-frequency
cepstrum (MFCC) and delta cepstrum ( MFCC)
coefficients as features, and HMMs to model the feature
distributions. The system is evaluated using a database
consisting of isolated notes of 27 Western orchestra
instruments, and a smaller database of drum hits. We
propose two improvements to improve the performance of
the system. First, we use the independent component
analysis (ICA) to transform the feature vector consisting of
catenated MFCC and MFCC features to a basis with
maximal statistical independence. This transform is shown
to give an amost consistent improvement in recognition
accuracy over the baseline with no rotation. Second, we
propose using discriminative training of the HMMs.
Especialy with computationally attractive models with
low number of components in state densities,
discriminative training gives an improvement over the
baseline maximum likelihood (ML) training using the
Baum-Welch re-estimation a gorithm.

2 FEATURE EXTRACTION

2.1 Feature extraction

Mel-frequency cepstral coefficients (MFCC) were found
to be a well-performing feature set in musical instrument
recognition [3], and are used as the front-end parametersin



our system. The input signal is first pre-emphasized with

an FIR filter having the transfer function 1- az” 1, where a
was between 0.97 and 0.99 in our simulations. MFCC
analysisis performed in 30 ms windowed frames advanced
every 15 ms for the orchestral instruments. For the
analysis of short drum sounds, the frame length was
reduced into 20 ms, and the hop size was 4 ms. The
number of triangular filters was 40, and they occupied the
band from 30Hz to half the sampling rate. For the drum
sounds, the lowest frequency was 20Hz. The number of
cepstral  coefficients was 12 after the zeroth coefficient
was discarded, and appending the first time derivatives
approximated with a 3-point first-order polynomia fit
resulted in a feature vector size of n = 24. The resulting
features were both mean and variance normalized.

2.2 Transforming features using independent
component analysis (ICA)

Independent component anaysis (ICA) has recently
emerged as an interesting method for finding decorrelating
feature transformations [4][5][6]. The more well-known
methods for include the principal component analysis and
linear discriminant analysis. The goal of ICA is to find
directions of minimum mutual information, i.e. to extract a
set of statistically independent vectors from the training
data X. The use of an ICA transformation has been
reported to improve the recognition accuracy in speech
recognition [5]. In the MPEG-7 generalized audio
descriptors, ICA is proposed as an optiona transformation
on the spectrum basis obtained with singular value
decomposition [4], and Casey’'s results have shown the
success of this method on a wide variety of sounds. Our
approach is dightly different from all these studies. We
perform ICA on concatenated MFCC and MFCC
features. In [4] and [5] only static features were used, and
in [6] logarithmic energies and their derivatives were used.

In order to construct the m-by-n ICA transform matrix
W, the extracted MFCC and MFCC coefficients from the
training data samples are gathered into a matrix
X = [xl,xz,...,xT] where each column represents the

catenated MFCC (s) and MFCC (d) features from the

. , (
analysis frame t, i.e xt=[xsl,x52 ..... Xs(ni2y» Xd1 -1 Xd(nrz) | -

The total amount of feature vectors from all recordings of
all the classes in the training set is denoted by T. The class
and recording indices are omitted here since ICA does not
utilize class information. The ICA demixing matrix W is
applied on X producing the transformed observation space
O = WX, which is of dimenson mby-T, wherem£n.
The inequality is due to possible dimensionality reduction
in the preprocessing step, which consists of a whitening
transform.

The efficient FastiCA agorithm was used for finding
the ICA basis transformation [7]. It should be noted that
the extra computational load caused by applying the ICA
transformation occurs mainly in the off-line training phase.
The test phase consists of computing the MFCC and

MFCC features in the usual way plus an additional

multiplication with the m-by-n matrix W derived off-line
using the training data.

3 CLASSIFICATION
3.1 Thehidden Markov model

Hidden Markov models with a left-right topology are used
to model the distribution of feature vectors from each
instrument category, and the classification is made with
the maximum-a-posteriori rule. A continuous density
hidden Markov model (HMM) with N states consists of a
set of parameters g that comprises the N-by-N transition
matrix, the initia state probabilities, and the parameters of
the state densities. We use diagonal-covariance Gaussian-
mixture state densities which are parameterized by the
weights, means, and diagona variances. The model
parameters are estimated using a training set that consists

of the recordings :[Ol,...,OR] and their associated

denotes the sequence of feature vectors measured from the

recording r. The length of the observation sequence O" is
T, . In this paper, each recording represents a single note
played by an orchestral instrument, or a drum hit.

In our baseline system, the HMM parameters are
iteratively optimized using the Baum-Welch re-estimation
that finds a local maximum of the maximum likelihood
(ML) objective function

C
F(Q=  logp(O'|c),

c=1rl A
where Q denotes the entire parameter set of all the classes
cl {1...,C}, and A, denotes the recordings from the class

c. In the recognition phase, an unknown recording Y is
classified using the maximum a posteriori rule:

¢=argmax p(Y |c)

which is due to the Bayes' rule and assuming equal priors
for al classes c. In this paper, the Viterbi-algorithm was
used to approximate the above likelihoods.

3.2 Discriminativetraining

In the case that a statistical model fits poorly the data,
training methods other than ML may lead into better-
performing models. Discriminative training methods such
as the maximum mutual information (MMI) am at
maximizing the ability to distinguish between the
observation sequences generated by the model of the
correct class and those generated by models of other
classes[8]. The MMI objective function is given as

M(Q)=logp(L|O)= logp('|O")

r=1

= loglp(")p(@" [1N)- log  p(©)p(O" |0)

r=1 c=1
where p(') and p(c) are prior probabilities.
Unfortunately, this requires rather  complicated



optimization involving the entire model set even if
observations from a single class were used.

In this paper, a recently-proposed discriminative
training algorithm is used. The algorithm was proposed by
Ben-Yishai and Burshtein, and is based on an
approximation of the maximum mutual information [9].
Their approximated maximum mutual information
(AMMI) criterionis:

JQ)= ‘ AAEIog[p(c)p(O'|c)]- /rT BClog[p(c)p(0'|c)] :

c=1 1l
where B, is the set of indices of training recordings that
were recognized as c. B, is obtained by maximum a

posteriori classification performed on the training set,
using initid models trained with the Baum-Welch
algorithm. The “discrimination rate” is controlled using
the parameter O£/ £1.

The prior probabilities p(c) do not affect the
maximization of J(Q), thus the maximization is
equivalent to maximizing for all the classes 1£ c£C the
following objective functions:

3.(Q)= log p(o"le)- / ~ log p(0'[c).

A rl By
Thus, the parameter set of each class can be estimated
separately, which leads to a dsraightforward

implementation. Ben-Yishai and Burshtein have derived
the re-estimation equations for HMM parameters [9]. Due
to space restrictions, we present only the re-estimation
equation for the transition probability from state i to state

IE
in axli)-/ e Gx)
in wal)-1 .o Dal)
where x(i,1)= p(@ =1, =110°,0) and g = (.0
The state &t time t is denoted by ¢, , and the length of the

ij

observation sequence O" is T,. In a genera form, for
each parameter 17 the re-estimation procedureis

L2 N@) - INo ()

D(n)- /Dp(n)
where N(7) and D(7) are the accumulated statistics
computed according to the set A, and Np(7) and Dp(n)
are the dtatistics computed according to the set B,

obtained by recognition on the training set. Thus, in a
typical situation the set B, includes examples from the

class ¢ and some other confusing classes. This
discriminative re-estimation can be iterated in a manner
similar to the standard expectation-maximisation. We
typically used 5 iterations, athough using just one
iteration seemed to be sufficient in many situations, since
the recognition accuracy did not improve much after the
first iteration.

4 VALIDATION EXPERIMENTS
4.1 Validation database

Our experimental setup aimed at testing the system’'s
generalization ability across significant variations in
recording setup and instrument instances. Samples from
five different sources were used in the validation database.
The sources were the McGill University Master Samples
collection (MUMS) [10], the University of lowa
Electronic Music Studios website [11], IRCAM Studio
Online [12], a Roland XP-30 synthesizer, and recordings
arranged by Keith Martin at MIT MediaLab [2]. A total of
5895 samples of 27 Western orchestral instruments were
included in the database, of which 4940 were included in
the training set and 955 were tested. The division into
training and test sets was done so that all the samples from
a particular instrument instance in a certain recording
session were either in the training or test set, i.e. the
recognition was done across recordings and different
instrument pieces. The recognition was performed at an
intermediate level of abstraction using seven classes,
which were the brass, saxophones, single reed clarinets,
double reed oboes, flutes, bowed strings, and plucked
strings. A random guesser would score 14% correct in
these conditions. The drum database consisted of samples
from 8 different synthesizer sound banks and the MUMS
collection [10]. Samples of two sound banks were used in
the training set (total of 1123 drum hits), and the samples
of the seven remaining sources were used for testing (a
total of 675). The five possible categories were bass drum,
cymbal, hi hat, snare, and tom-tom.

4.2 Results

The Baum-Welch algorithm was used to train the baseline
HMMs. The number of states (NS) and component
densities per state (NC) was varied. Increasing the number
of components in each state was obtained by gradually
increasing the model order until the desired order NC was
obtained by splitting the component with the largest
weight. The state means and variances were initialized
using a heuristic segmentation scheme, where each sound
was segmented into as many adjacent segments as there
were states in the model. The initial mean and variance for
each state were estimated from the statistics accumulated
from the different segments of al samples. During
training, a straightforward form of regularization was
applied by adding a small constant to the variance
elements falling below a predetermined threshold.

Table 1 presents the results obtained using the baseline
system using MFCC plus MFCC features and HMMs
trained using the Baum-Welch algorithm. In Table 2, the
features have been ICA transformed; the HMM training is
similar to the baseline. Table 3 shows the results using the
MFCC plus MFCC front-end, but using discriminative
training of HMMs. In Table 4, both enhancements have
been combined and the ICA transformed input is modelled
with discriminatively trained HMMs. It can be observed



Table 1. Percentage correct in instrument identification,
baseline system with MFCC plus MFCC features and ML
training.

% correct | NC=1 | NC=2 | NC=4 | NC=6 | NC=8
NS=2 44 47 57 60 59
NS=3 53 59 60 58 58
NS=4 59 57 60 62 62
NS=5 56 60 60 60 62

Table 2. Percentage correct in instrument identification, ICA-
based transformation applied and ML training of HMMs.

% correct | NC=1 | NC=2 | NC=4 | NC=6 | NC=8
NS=2 48 56 60 63 66
NS=3 57 62 63 65 67
NS=4 58 61 66 60 61
NS=5 63 66 64 66 62

Table 3. Percentage correct in instrument identification,
baseline features and discriminative training of HMMs.

% correct | NC=1 | NC=2 | NC=4 | NC=6 | NC=8
NS=2 45 51 59 61 62
NS=3 58 63 59 59 58
NS=4 58 61 60 61 64
NS=5 58 62 62 61 62

Table 4. ICA-based transformation applied and discriminative
training of HMMs.

% correct | NC=1 | NC=2 | NC=4 | NC=6 | NC=8
NS=2 51 57 61 65 66
NS=3 57 64 64 66 68
NS=4 60 60 65 61 61
NS=5 65 67 63 65 62

that using the ICA transform gives an amost consistent
improvement in recognition accuracy across the set of
model orders tested. Using discriminative training
improves the accuracy mainly with models having low
number of components in state densties. This is
understandable since low-order models give relatively low
recognition accuracy in the training set, and there is not so
much danger of over-fitting due to discriminative training
as with higher order models. Different values of / were
tested, and the results are shown for / =0.3.

Tables 5 and 6 show the results for the drum database
using the baseline system and the ICA transformation.
Here the improvement is not consistent across the different
model orders evaluated, which may be partly due to the
larger mismatch in training and testing conditions in this
database, and the relatively smaller size of training data
where examples from only two sound banks are included.

5 CONCLUSION

A system for the recognition of musica instrument
samples was described. Applying an ICA-based transform
of features gave an amost consistent improvement in
recognition accuracy compared to the baseline. The

Table 5. Percentage correct in drum recognition, MFCC plus
MFCC features.

NC=1 | NC=2 | NC=3 | NC=4
NS=2 79 79 80 78
NS=3 76 77 79 81

Table 6. Percentage correct in drum recognition, |CA-based
transformation applied.

NC=1 | NC=2 | NC=3 | NC=4

NS=2 80 80 78 78
NS=3 78 81 85 85
accuracy could be further improved by using

discriminative training of the hidden Markov models.
Future work will consider the extension of these methods
for monophonic phrases.
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Audio-Based Context Recognition

Antti J. Eronen, Vesa T. Peltonen, Juha T. Tuomi, Anssi P. Klapuri, Seppo Fagerlund, Timo Sorsa, Gaétan Lorho, an
Jyri Huopaniemi Member, IEEE

Abstract—The aim of this paper is to investigate the feasibility provides arich source of context-related information, and recog-
of an audio-based context recognition system. Here, context nition of a context based on sound is possible for humans to

recognition refers to the automatic classiPcation of the context ggme extent. Moreover. there already exist suitable sensors, i.e
or an environment around a device. A system is developed and __. . ! . Y
Y P microphones, in many portable devices.

compared to the accuracy of human listeners in the same task. . . . . .
Particular emphasis is placed on the computational complexity N this paper, we consider context recognition using acoustic
of the methods, since the application is of particular interest in information only. Within this scope, a context denotes a loca-

resource-constrained portable devices. Simplistic low-dimensional tion with different acoustic characteristics, such as a restaurant,
feature vectors are evaluated against more standard spectral marketplace, or a quiet room. Differences in the acoustic char-
features. Using discriminative training, competitive recognition - 5 waristics can be due either to the physical environment or the
accuracies are achieved with very low-order hidden Markov = - .
models (193 Gaussian components). Slight improvement in recog_act|V|ty.of humans and nz?\ture. We describe the collection of
nition accuracy is observed when linear data-driven feature evaluation data representing the common everyday sound en-
transformations are applied to mel-cepstral features. The recog- vironment of urban people, allowing us to assess the feasibility
nition rate of the system as a function of the test sequence length of building context aware applications using audio. Using this
gggsgcs t‘é;r?”t:’:rgfhgvé’ dafé\e/; r?t:/(\?il:rt\ ?gstsotﬁgns-1i°$§td:§rﬁzn%fdata, a comprehensive evaluation is made of different features
Iengths.yThe average reaction time of the human Iistenersqwas gnd classi ers. The main foc!‘ls IS o.n nding methods suitable
14 s, i.e., somewhat smaller, but of the same order as that of the fOr implementation on a mobile device. Therefore, we evaluate
system. The average recognition accuracy of the system was 58%linear feature transforms and discriminative training to improve
against 69%, obtained in the listening tests in recognizing between the accuracy obtained with very low-order HMMs.
24 everyday contexts. The accuracies in recognizing six high-level  An experiment was conducted to facilitate the direct compar-
classes were 82% for the system and 88% for the subjects. ison of the system’s performance with that of human subjects.
Index Terms—Audio classibcation, context awareness, feature A forced-choice test with identical test samples and reference
extraction, hidden Markov models (HMMs). classes for the subjects and the system was used. We also made
a qualitative test to assess the information on which the human
subjects base their decision. To our knowledge, this study is the
rst attempt to present a comprehensive evaluation of a com-
ONTEXT recognition is de ned as the process of autopyter and human performance in audio-based context recog-
matically determining the context around a device. Infokjtion. Some preliminary results on context recognition using
mation about the context would enable wearable devices to pgRrdio have been described in 121, [3].
vide better service to users’ needs, e.g., by adjusting the moderhijs paper is organized as follows. Section Il reviews
of operation accordingly. A mobile phone can automatically gerevious work. Section Il presents the feature extraction al-
into an appropriate pro le while in a meeting, refuse to receivgorithms used in this study. In Section 1V, the classi cation
calls, or a portable digital assistant can provide information cusrethods are described. Section V presents an assessment of the
tomized to the location of the user [1]. computer system. In Section VI, a test on human perception
Many sources of information for sensing the context are avadf audio contexts is described. Finally, in Section VII, these
able, such as luminance, acceleration, or temperature. Augi@its are compared to the performance of the system.

. INTRODUCTION

Il. PREVIOUS WORK

Mkanuscript recei\éeg DecE_mber 31, Zr?(():?’; reviseO(lj Jaguafé 231 2002- ghiST he research on context awareness is still at its early stages
work was supported by Nokia Research Center and TISE Graduate Sc ; . .

The associate editor coordinating the review of this manuscript and approv(f)f\ d very few appl_lcatlons _have been ConStrUCt_e_d that make use
it for publication was Dr. Shoji Makino. of other context information than global positioning system
hA. ’\]l.k_ErorFLen, T.hSocr:sa, G. Fﬁﬁrg%,malndTJ- Huopa'r;_ielmi daf? wittGPS) location [4]. One of the earliest prototypes of a con-
the oKla esearc enter, - ampere, nlan e-madl, +_

antti.eronen@nokia.com; timo.sorsa@nokia.com; gaetan.lorho@nokia.caof );(t aware system was the ParcTab developed at the Xerox
jyri.huopaniemi@nokia.com). Palo Alto Research Center [5]. The ParcTab featured, e.g.,

V. T. Peltonen is with the Nokia Mobile Phones, FIN-33721 Tampere, Finlargbntextual information and commands, automatic contextual
(e-mail: vesa.peltonen@nokia.com). ; tri ;
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raw input into a low-dimensional representation using principalll. A COUSTICMEASUREMENTS ANDFEATURE EXTRACTION

component analysis (PCA) or independent component analygis
(ICA) [7], [8]. '
In general, the process of context recognition is very similar
regardless of the sensors or data sources used for the reco 0
tion. The feature vectors obtained from sensors are fed to clagafs
ers that try to identify the context the particular feature vecto%:a
present. As classers, e.g., hidden Markov models (HMMs) [9],T
or a combination of a self-organizing map and a Markov chai
have been used [6].

acoustic information. Clarkson has clagsil seven contexts
using spectral energies from the output ofleer bank and a
HMM classi er [9]. In [10], Sawhney describes preliminar
experiments with different features and clagss in classifying
between voice, trat, subway, people, and others. The mo
successful system utilized frequency-band energies as featdrs
and a nearest-neighbor classi. rea

Recording Procedure

To obtain a realistic estimate of the feasibility of building
ntext-aware applications using audio input, we paid special
ention to gathering a data set that would be representing of
everyday sound environment encountered by urban people.
e recording procedure has been described in [19] and is
ﬁl’Jmmarized here. A total of 225 real-world recordings from
a variety of different contexts were made using two different
.rﬁecording congurations. The rst con guration has been
o%veloped by Zacharov and Koivuniemi [20]. It consists of a
head-and-torso simulator with multiple microphones and is
capable of storing multiple audio formats simultaneously. For
Yhe purpose of this study, we only utilized the binaural record-
é'?gs (two channels) and stereo recordings (two channels). The
icrophones mounted in the ears of the dummy head enable a
istic binaural reproduction of an auditory scene. The stereo
setup consisted of two omnidirectional microphones (AKG

El-Malehet al. classi ed ve environmental noise classes ("1134608), separated by a distance of one meter. This construction

car, street, babble, factory, and bus) using line spectral feat
and a Gaussian classgr [11]. Couvreuret al. used HMMs to e
recognize ve types of environmental noise events: car, truc%
moped, aircraft, and train, using linear prediction cepstral cogf
cients as features and discrete HMMs [12]. The authors al
described an informal listening test, which showed that, on the
average, humans were inferior in classifying these categories
compared to the system.

Was attached to the dummy head. The acoustic material was
corded into a digital multitrack recorder in 16-bit and 48-kHz
mpling rate format. A total of 55 recordings were made with
Is setup. The remaining measurements were made with an
gsily portable stereo setup using AKG C460B microphones.
The recording of spatial sound material was done for sub-
JECtive evaluations. In computer simulations, we only used the
left channel from the stereo setup. Table | shows the division of

The features we are using are similar to those used in diﬁer‘?BEordings into different categories.

audio information retrieval tasks [13]. Scheirer and Slaney de-

scribed a speech/music discrimination system, which usegga Feature Extraction

combination of several features [14]. More recent studies in-
clude that of Luet al.[15] and Liet al.[16] who also included

A wide set of feature extractors was implemented for this

environmental noise as one of the categories. Zhang and 1&tydy in order to evaluate the accuracy obtained with each, and

[17] classi ed between harmonic environmental sound, nonh
monic environmental sound, environmental sound with music,
pure music, song, speech with music, and pure speech.

Casey has used a front-end where log-spectral ener
are transformed into a low-dimensional representation wi
singular-value decomposition and ICA [18]. The classiuses
single-Gaussian continuous-density HMMs with full covari-
ance matrices trained with Bayesian maximanposteriori
(MAP) estimation. Caseg system was evaluated on a database
consisting e.g., of musical instrument sounds, sound effects,
and animal sounds.

To our knowledge, context recognition using audio has not
been studied to this extent before. The results existing in the
literature have used only a limited number of categories, often
focusing into a certain noise type such as vehicle sounds.
In this paper, we present results using comprehensive data
measured from several everyday contexts. The most promising
features presented in the literature are compared on this data.
We propose a linear transformation of the concatenated cepstral
and delta cepstral coefients using PCA or ICA and show that
this slightly improves the classtation accuracy. Moreover,
we demonstrate that compact diagonal-covariance Gaussian
HMMs and discriminative training are an effective clagsifor
this task. To our knowledge, discriminatively trained HMMs
have not been used for audio-based context recognition before.

es

4p select a suitable feature set for the system.

All features are measured in short analysis frames. A typ-
ical analysis frame length in this study was 30 ms with 15-ms
overlap. The hanning window function was used. The following
ﬁatures were evaluated in this study.

Zero-crossing rate (ZCR$ de ned as the number of zero-
voltage crossings within a frame.

Short-time aveage energyis the energy of a frame and

is computed as the sum of squared amplitudes within a
frame.

Mel-frequency cepstral coefbcients (MFGXE@ a percep-
tually motivated representation of the coarse shape of the
spectrum [21]. We used 11 or 12 MFCC coeients cal-
culated from the outputs of a 40-channdéierbank.
Mel-frequency delta cepstral coefpcientsMFCC) are
used to describe the dynamic properties of the cepstrum.
We used a three-point lineat to approximate the rst
time derivative of each cepstral coefent.
Band-energyrefers to the energies of subbands normal-
ized with the total energy of the signal/e experimented
with four and ten logarithmically-distributed subbands.
Spectral centroidrepresents the balancing point of the
spectral power distribution.

Bandwidthis de ned as the estimated bandwidth of the
input signal [16].
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TABLE | to be estimated in the clasgir training stage, and uncorrelated
STATISTICS OF THEAUDIO MEASUREMENTS features are etiently modeled with diagonal-covariance
Gaussians.

The goal of ICA is to nd directions of minimum mutual in-
formation, i.e., to extract a set of statistically independent vec-
tors from the training data. Here, the FastICA algorithm was
used for nding the ICA basis transformation [23].

Himberget al. have used PCA and ICA to project multidi-
mensional sensor data from different contexts into a lower di-
mensional representation, but reported only qualitative results
[4]. In speech recognition, the use of an ICA transformation
has been reported to improve the recognition accuracy [24]. In
the MPEG-7 generalized audio descriptors, ICA is proposed as
an optional transformation for the spectrum basis obtained with
singular value decomposition, and Casesesults have shown
the success of this method on a wide variety of sounds [18]. Our
approach is different from all these studies, since we perform
ICA on concatenated MFCC andMFCC features. Including
the delta coefcients is a way to include information on tem-
poral dependencies of features, which is ignored if the transform
is applied on static coetients only. In [18] and [24], delta co-
ef cients were not considered.

The third feature transform technique tested here, LDA, dif-
fers from PCA and ICA by utilizing class information. The goal
isto nd basis vectors that maximize the ratio of between-class
variance to within-class variance.

It should be noted that the extra computational load caused
by applying any of these transformations occurs mainly in the

~ off-line training phase. The test phase consists of computing the
Spectralroll-off 16] measures the frequency below whicheatyres in the usual way plus an additional multiplication once

a certain amount of spectral energy resides. It measufgg analysis frame with the transform matrix derived off-line
the“skewness of the spectral shape. using the training data.

SpectralRux (SF)is de ned as the difference between the
magnitude spectra of successive frames [14].

Linear prediction codfcients (LPCs)were extracted
using the autocorrelation method [22, p. 103]. Th&. -Nearest Neighbors

number of LPC coefcients extracted was 12. The most straightforward classiation method is nearest
Linear prediction cepstral cobtientsare obtained using neighbor classication. The -nearest-neighbors (-NN) clas-

a direct recursion from the LPC coefients [22, p. 115]. sj er performs a class vote among theearest training-data
The number of cepstral coefients was 12 after dis- feature vectors to a point to be classil [25, p. 182]. In our

IV. CLASSIFICATION METHODS

carding the zeroth coetient. implementation, the feature vectors werest decorrelated
All the features were mean and variance normalized usinging PCA and the Euclidean distance metric was used in the
global estimates measured over the training data. transformed space. Averaging over 1-s-long segments was used

to reduce the amount of calculations and required storage space.
C. Feature Transforms

The main idea of linear data-driven feature-transformatios HMM
is to project the original feature space into a space with a lowerl) Description of the Model:A HMM [22, pp. 321-386] is
dimensionality and more feasible statistical properties, suchaseffective parametric representation for a time-series of obser-
uncorrelatedness. In this work, three different techniques wesations, such as feature vectors measured from natural sounds.
used. The PCAnNds a decorrelating transform [25, p. 115], ICAN this work, HMMs are used for classiation by training a
results in a base with statistical independence [25, p. 570], aAl¥iM for each class, and by selecting the class with the largest
the linear discriminant analysis (LDA) tries to maximize clasa posterioriprobability.
separability [25, p. 120]. 2) Model Initialization: We used the maximum-likelihood

PCA projects the original data into a lower dimensionddased BaurWelch algorithm to train thébaseliné HMMs
space such that the reconstruction error is as small as possifile each class separately. The number of states (NS) and the
measured as the mean-square error between the data vectonsimber of component densities per state (NC) was varied. The
the original space and in the projection space. Projection ommdels were initialized with a single Gaussian at each state, and
a lower dimensional space reduces the amount of paramethiescomponent with the largest weight was then split until the
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Fig. 1. Recognition accuracy obtained with different features using the GMM and 1-NN @esaind 30 s of each test signal.

desired value of NC was obtained. Each component split wasA higher level of abstraction may be sefent for some
followed by 15 BaumWelch iterations, or until the likelihood applications. Hence, the recordings were also categorized
converged. into six high-level classes that are more general according to
3) Discriminative Training of HMMs:In applications some common characteristics. These classes are: 1) outdoors,
where computational resources are limited, we are forced 2pvehicles, 3) public/social, 4) ofes/meetings/quiet, 5) home,
use models with as few Gaussians as possible, since ttaid 6) reverberant places. It should be noted that the allocation
evaluation poses the computationally most demanding stepoinindividual contexts into high-level classes is ambiguous;
the recognition phase. In these cases the HMM is not ablert@any contexts can be associated with more than one high-level
fully represent the feature statistics and other approaches tlotass.
maximum likelihood parameter estimation may lead into better
recognition results. Discriminative training methods such g8 Results
the maximum mutual information (MMI) aim at maximizing
the ability to distinguish between the observation sequencesl) Comparison of Featuresinthe rstexperiment, we com-
generated by the model of the correct class and those gener&@@d the accuracy obtained with different features. In this ex-
by models of other classes [22, p. 363]. periment, classication performance was evaluated using leave-
We used a discriminative training algorithm recently prgene-out cross-validation on all the recorded data. The clessi
posed by BenYishai and Burshtein [26]. The algorithmWere trained with all recordings except the one that was left out
is based on an approximation of the MMI. It starts from for classi cation. In this way, the training data is maximally uti-
“baseliné model set trained with the Bauelch algorithm, lized but the system has never heard the test recording before.
followed by an iterative discriminative training phase. At eachne overall recognition rate was calculated as the sample mean
discriminative training iteration, new statistics for the modélf the recognition rates of the individual contexts.
parameters are accumulated not only from the observationd e recognition rates obtained at the context level using in-
of the correct class, but also from a set of confusing class@iidual features with two different classrs, the 1-NN and
The set of confusing classes is obtained by MAP classtion @ one-state HMM (a GMM), are shown in Fig. 1. The test se-
performed on the training set. An interested reader should refdfence duration was 30 s taken from the beginning of each test

to [26] for more details of the algorithm. recording and the duration of each training recording was 160 s.
The random guess rate for 24 classes is shown with the dashed
V. EVALUATION line in Fig. 1. The 1-NN classer performs on the average better

than the GMM. This is indicative of complicated distributions
of many features, which are not well modeled with a GMM with
Two training and testing setups were formed from the samve diagonal-covariance Gaussians. The MFCC aaehts are
ples. Setup 1 consisted of 155 recordings of 24 contexts thetll modeled with a GMM. With 12 MFCC features, we ob-
were used for training and 70 recordings of 16 contexts weti@ned a recognition accuracy of 63% using the GMM classi
tested. Random division of recordings into the training and testsd with ten band-energy features the recognition accuracy was
sets was done 100 times. The contexts selected into the testdéb using the 1-NN classer.
had to have at leastve recordings from different locations at 2) Discriminative Training: The second experiment studied
different times. Setup 2 was used in the listening test and in ttree HMM and the MFCC features in more detail. The MFCC
direct comparison, and had two nonoverlapping sets of 45 samoef cients were augmented with the delta cadénts. We
ples from 18 different contexts in the test set. trained models with different NSs and NCs, and varied the

A. Experimental Setup
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TABLE 1l TABLE V
RECOGNITION ACCURACY USING ONE-STATE HMMs RECOGNITION ACCURACY USING LINEAR FEATURE TRANSFORMS
WITH VARYING NUMBER OF COMPONENT DENSITIES

TABLE Il
RECOGNITION ACCURACY (%) AND STANDARD DEVIATION USING
HMMs WITH VARYING TOPOLOGIES ANDNUMBER OF STATES

TABLE IV
RECOGNITION ACCURACY (%) AND STANDARD DEVIATION WHEN
CONFUSIONSWITHIN THE SIX HIGHER LEVEL CLASSESALLOWED

Fig. 2. Recognition accuracy as a function of test sequence length for the
individual contexts and the six high-level classes. The left panel shows details
of a test sequence length less than 1 s; the shortest length 0.03 corresponds to a
single frame.

average, applying the ICA or PCA transforms gives a slight im-
provement in recognition accuracy (Table V). In these experi-
model topology. The second aim was to compare the baselinents, we used a two-state HMM with one component density
maximum-likelihood training using the BauwWelch algo- per state.
rithm and discriminative training. The division into training In[24], the authors reported improvements in speech recogni-
and test data was done according to Setup 1. The amountioh over the baseline using MFCC coefents without a trans-
training data used from each recording was 160 s. In orderftom when these same transforms were applied either to the
obtain reliable accuracy estimates and to utilize the test dédg-energy outputs of the MFCdQter bank, or the static MFCC
ef ciently, the recognition was performed in adjacent 30€0ef cients. We made experiments also with these methods but
windows with 25% overlap, and thenal recognition result has improvement over the baseline was observed only when the con-
been averaged over the different train/test divisions, recognitioatenated MFCCs and deltas were transformed.
windows, recordings, and classes. 4) Effect of Test Sequence Lengtim Fig. 2, the recognition
Tables IHV show the results from this experiment. The baseates obtained using the ICA transformed MFCC features and
line models were obtained after 15 Batielch iterations. two-state HMMs are presented when the length of the test se-
Three iterations of discriminative training were then applied aquence was varied. The results for the six high-level classes have
the models obtained from BawWelch re-estimation. Using been derived from the results at the context level when confu-
an HMM with two or three states, or a one-state HMM wittsions within the higher level categories are allowed.
two or three component densities gives acceptable accuracie8s expected, increasing the length of test sequence improves
especially when discriminative training is used, taking intthe overall recognition rate. However, it takes rather long for
account the low computational demand of having to evaluatee result to converge (around 60 s). With less than 20 s of test
just a few diagonal covariance Gaussians. data, the recognition accuracy drops fast. Thus, this amount can
3) Linear Feature Transformsin the next experiment, we be regarded as the lower limit for reliable recognition. The left
evaluated the use of the three linear feature transforms: P@@anel shows the details with very short recognition sequence
ICA, and LDA. Table IV shows the recognition accuracies whelengths ranging from just a single frame (30 ms) to 1 s. Even
the different transforms were applied on a feature vector conith these very short analysis segments some degree of accuracy
sisting of concatenated MFCCs and their derivatives. On than be obtained.
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Fig. 3. Confusion matrix of the listening test experiment using stereo samples. The boxes indicate the high-level classes, which are (froht,l&fpttorig
bottom) outdoors, vehicles, public/social, oés/meetings/quiet, home, and reverberant.

VI. HUMAN PERCEPTION OFAUDIO CONTEXTS the recognition process. After each stimulus, listendlegl in a
form in which they were asked to evaluate and rate on a six-point
discrete scale, how important different cues were in recognition
We also carried out an experiment on human recognition (f accounted for a cue not used and 5 for a cue considered very
audio contexts in order to obtain a performance baseline forportant).
the assessment of the system. This experiment was organizelth the three tests, subjects were instructed to try to recognize
in three listening tests. the context as fast as possible. A list of possible contexts was
1) Stimuli, Reproduction System, and Listening Conditiongiven to the test subjects. The listincluded also contexts not pre-
The stimuli for the listening tests were the recordings from tigented during the test. Recognition time was measured from the
Setup 2 as described in Section V-A. All stimuli employed istarting time of the stimulus presentation to thet keyboard
this experiment were 1-min-long samples and werenge press, after which the subject could select the context recog-
using two levels of categorization: context and high-levelized by an additional keyboard press.
context. Eighteen subjects participated in the test, which was designed
All tests were performed in an ITU-R BS.1116-1 compliarfior two groups, each including the same number of stimuli and
listening room [27]. Audio samples were reproduced at a nagentical contexts. This permitted the use of more samples from
ural sound level over a stereophonic setup using Genelec 103ha database, still keeping the total duration of the test within
loudspeakers placed at  in front of the listener. The test de-1 h. The listening test started with a training session including
sign and administration were performed using the Presentatitne samples not included in the actual test to familiarize the
software [28]. This system allows very accurate monitoring subjects with the user interface and the test setup.
the reaction time between sample replay and subject responses. . _
2) Description of the Three Listening Testhe focus of B- Results of the Listening Test
the main test was in studying the accuracy and reaction timeTwo measures were analyzed from this listening test, the
of humans in audio context recognition. The second test comecognition rate and the reaction time for each stimulus. Sta-
pared the human ability in recognition with three different sourtéstical methods employed were different due to the different
con gurations, namely, the monophonic, stereophonic, and bimature of the two measures. First, recognition rate was analyzed
aural reproduction techniques, in an assumed order of increasiisga set of right or wrong answers using a nonparametric sta-
degree of spaciousness. A subset of 18 samples from nine ttical procedure, i.e., the Friedman and Krusk@llis tests.
ferent contexts was selected for each aguration in this part For the reaction time, the statistical analysis was performed
of the experiment. For the binaural samples, crosstalk cancelth a classical parametric statistical procedure (ANOVA),
lation lters were designed based on the MIT KEMAR HRTRfter discarding data considered as outliers.
measurements [29] in order to obtain appropriate reproductionl) Stereo Test:Rate was calculated for both context and
of the signal over loudspeakers (i.e., a binaural to transauhdgh-level context recognition. As a result, the average recog-
conversion). nition rate was 69% for contexts and 88% for the high-level
The aim of the third test was to obtain a qualitative descrigontexts. Fig. 3. presents the confusion matrix for this experi-
tion of the recognition of auditory scenes. Subjects were askednt averaged over all listeners (differences between the two
to listen to nine samples and rate the information they usedgroups are not signcant). Context and high-level context with

A. Setup of the Experiment
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Fig. 4. Confusion matrix when the system was tested on the samples from the listening test. Compare this to Fig. 3. The boxes indicate the tigeslevel cla
which are (from left to right, top to bottom): Outdoors, vehicles, public/sociaed/meetings/quiet, home, and reverberant.

TABLE VI TABLE ViII
RECOGNITION ACCURACY (%) FOR THE DIFFERENT CUES USED FORAUDIO CONTEXT RECOGNITION
PRESENTATION TECHNIQUES

the highest recognition rate were respectivedyure(96%) and
outdoorg(97%), whereas those with the lowest rate wimeary

(35%) andoffce/other quiet place76%). Reaction time was of cases), with a lower importance for spatial information, how-

also compared for the 18 contexts. Overall, the average reac r (1.88 rating against 2.55 for human activity). Prominent

time was 13 s, rangir_lg from 5 B4turg to 21 s _(ibrary). events were also mentioned as an important cue for recognition
2) Mono/Stereo/Binaural Testtn the analysis of the Seco”dwith a rate of 2.50.

test, recognition rates were compared for monophonic, stereo-

phonic, an(_j_binal_JraI presentations. Th_e average rate for cen- conclusion of the Subjective Test

text recognition with the three presentation techniques is shown =~ ] )

in Table VI. The recognition rate averaged over the three tech-1his listening test showed that humans are able to recognize

niques was 66% for context and it increased to 88% for highontexts in 69% of cases. The recognition rate increases to

level contexts. Differences in recognition accuracy can be o876 When considering high-level categorization of contexts

served between the different presentation techniques, especi@ilify: Récognition time was 13 s on average. It should be noted,

with the stereo corguration in the case of context recognition/'OWeVer, that reaction time for high-level context detection

but this is not statistically signtant overall. An average recog-&lone would probably be signtantly faster. Indeed, some of

nition time of 14 s was found for all stimuli. Comparing now thdn€ Subjects reported that they could exclude most of the con-

three presentation techniques, a sigaint difference was found t€Xts fast, but the nal decision between speci contexts from

with lower average recognition time for the stereo and binau/®€ Same high-level context class took more time. Differences

presentation (13 s) than the mono one (15 ). between the different rep_roducnon_tec_hmques were also found,
3) Qualitative Test:In the last test, data on the qualitative®Ut these were not statistically sigeant. The presentation

assessment of recognition cues was collected and analyZ8ghnique was only found to be sigeant for the reaction time.

The two measures computed from the questionnaire were a per- i

centage of spect cues used in recognition (i.e., cue not used: Performance Comparison Between the System

for a O rating and cue used otherwise) and its importance fafd Human Listeners

the recognition process (i.e., an average of rates over subjectsA direct comparison between the system and the human

as shown in Table VII. As a result, it was found that humaability was made using exactly the same test samples and

activity and spatial information cues are most often used (678ference classes as in the listening test. Figs. 3 and 4 show the
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Analysis of the Meter of Acoustic Musical Signals

Anssi P. Klapuri, Antti J. Eronen, and Jaakko T. Astdtallow, IEEE

Abstract—A method is decribed which analyzes the basic pat-
tern of beats in a piece of music, the musical meter. The analysis
is performed jointly at three different time scales: at the tempo-
rally atomic tatum pulse level, at the tactus pulse level which cor-
responds to the tempo of a piece, and at the musical measure level.
Acoustic signals from arbitrary musical genres are considered. For
the initial time-frequency analysis, a new technique is proposed
which measures the degree of musical accent as a function of time
at four different frequency ranges. This is followed by a bank of Fig. 1. Music signal with three metrical levels illustrated.
comb blter resonators which extracts features for estimating the
periods and phases of the three pulses. The features are processed . i
by a probabilistic model which represents primitive musical knowl- ~ stemming from Otemporal atomO [3]. The period of this pulse

edge and uses the low-level observations to perform joint estima- corresponds to the shortest durational values in music that are

tion of the tatum, tactus, and measure pulses. The model takes info g4y mqre than incidentally encountered. The other durational
account the temporal dependencies between successive estimates

and enables both causal and noncausal analysis. The method is val-Values, with few exceptions, are integer multiples of the tatum

idated using a manually annotated database of 474 music signalsperiod and the onsets of musical events occur approximately at

from various genres. The method works robustly for differenttypes a tatum beat. Thenusical measurpulse is typically related to

of music and improves over two state-of-the-art reference methods the harmonic change rate or to the length of a rhythmic pattern.

in simulations. Although sometimes ambiguous, these three metrical levels are
Index Terms—Acoustic signal analysis, music, musical meter relatively well-debPned and span the metrical hierarchy at the au-

analysis, music transcription. rally most important levels. Theempoof a piece is debned as
the rate of the tactus pulse. In order that a meter would make
I. INTRODUCTION sense musically, the pulse periods must be slowly varying and,

] ) o moreover, each beat at the larger levels must coincide with a
ETER analysis, here also calleaythmic parsingis an  paat at all the smaller levels.
essential part of understanding music signals and an in—rhe concepphenomenal accei important for meter anal-
nate cognitive ability of humans even without musical educgsis phenomenal accents are events that give emphasis to a
tion. P.erce|V|ng the meter can be characterized asa procesmg@nem in music. Among these are the beginnings of all dis-
detecting moments of musical stress (accents) in an acousgfigie sound events, especially the onsets of long pitched events,
signal and Pltering them so that underlying periodicities are digsgden changes in loudness or timbre, and harmonic changes.
covered [1], [2]. For example, tapping a foot to music indicat§Syrganl and Jackendoff depne the role of phenomenal accents
that the listener has abstracted metrical information about mugiGneter perception compactly by saying that Othe moments of
and is able to predict when the next beat will occur. musical stress in the raw signal serve as cues from which the
Musical meter is a hierarchical structure, consisting of pul$giener attempts to extrapolate a regular patternO [1, p. 17].
sensations at different levels (time scales). Here, three metricah ,1omatic rhythmic parsing has several applications. A met-
levels are considered. The most prominent level istdotus 4| structure facilitates cut-and-paste operations and editing
often referred to as the foot tapping rate or the beat. Followigg mysic signals. It enables synchronization with light effects,
the terminology of [1], we use the wotgkatto refer to the in- \igeq, or electronic instruments, such as a drum machine. In
dividual elements that make up a pulse. A musical meter cgngisc jockey application, metrical information can be used
be illustrated as in Fig. 1, where the dot_s denote beats and egflhark the boundaries of a rhythmic loop or to synchronize
sequence of dots corresponds to a particular pulse level. By fg#, audio tracks. Provided that a time-stretching algorithm is
period of a pulse we mean the time duration between succggzajlable, rhythmic modibcations can be made to audio signals
sive beats and bphasethe time when a beat occurs with reé14] Rhythmic parsing for musical instrument digital interface
spect to the beginning of the piece. Theumpulse has its name (\jpj)1 data is required foime quantizationan indispensable
subtask of score typesetting from keyboard input [5]. The
Manuscript received January 15, 2004; revised September 28, 2004. Theparticular motivation for the present work is to utilize metrical

sociate editor Coordinating the review of this manUSCript and approving it fqﬁformatlon in further Slgnal anaIySIS and in music transcrlptlon
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A. Previous Work

The work on automatic meter analysis originated from algo-
rithmic models that attempted to explain how a human listener
arrives at a particular metrical interpretation of a piece. An ex-
tensive analysis of the early models has been given by Lee in [9]
and later augmented by Desain and Honing in [10]. In brief, the
early models performed meter analysis for symbolic data (im-
pulse patterns) and can be seen as being basedetoérules _ ) I . .

. Fig. 2. Overview of the meter estimation method. The two intermediate data
that were used to d®e what makes a musical accent and Qpresentations are bandwise accent signd(is) and metrical pulse saliences
infer the most natural meter. (weights)s( ;n ).

More recently, Rosenthal proposed a system to emulate the
human rhythm perception for piano performances, preseni@stecting the tatum pulse in percussive audio tracks of constant
as MIDI Ples [11]. Parncutt developed a detailed algorithmigampo [24].
model of meter perception based on systematic listening test$n summary, most of the earlier work on meter analysis has
[12]. Brown analyzed the meter of musical scores by processig@ncentrated on symbolic (MIDI) data and typically analyzed
the onset times and durations of note events using the autocofie-tactus pulse only. Some of the systems [5], [14], [16], [17]
lation function [13]. Large and Kolen used adaptive oscillatogan be immediately extended to process audio signals by em-
which adjust their period and phase to an incoming pattern glbying an onset detector which extracts the beginnings of dis-
impulses, located at the onsets of musical events [14]. crete acoustic events from an audio signal. Indeed, the authors
Temperley and Sleator [15] proposed a meter analysis algd{16] and [17] have introduced an onset detector themselves.
rithm for arbitrary MIDI bles by implementing the preferenceElsewhere, onset detection methods have been proposed that are
rules that were described in verbal terms by Lerdahl and Ja@ased on using subband energies [25], an auditory model [26],
endoff in [1]. Dixon proposed a rule-based system to track t@pport vector machines [27], independent component analysis
tactus pulse of expressive MIDI performances and introduced28], or a complex-domain distance measure [29]. However,
simple onset detector to make the system applicable for augfi@ rhythmic parser has been originally developed for sym-
signals [16]. The source codes of both TempeéBend Dixoi3  bolic data, the extended system is usually not robust to diverse
systems are publicly available for testing. acoustic material (e.g., classical versus rock music) and cannot
Cemgil and Kappen developed a probabilistic generatifelly utilize the acoustic cues that indicate phenomenal accents
model for the timing deviations in expressive musical perfom music signals.
mances [5]. Then, the authors used Monte Carlo methods tdrhere are a few basic problems that need to be addressed in
infer a hidden continuous tempo variable and quantized ideasuccessful meter analysis system. First, the degree of musical
note onset times from observed noisy onset times in a MIBtcentuation as a function of time has to be measured. Some sys-
Ple. A similar Bayesian model was independently proposed bgms do this in a continuous manner [20], [21] whereas others
Raphael [17]. extract discrete onsets from an audio signal [18], [22], [24].
Goto and Muraoka were therst to achieve a reasonableSecond, the periods and phases of the underlying metrical pulses
meter analysis accuracy for audio signals [18], [19]. Thelrave to be estimated. The methods which detect discrete events
system operated in real time and was based on an architecag@ middle-step have often used inter-onset-interval histograms
where multiple agents tracked competing meter hypothest¥.estimating the periods [16], [18], [19], [24]. Third, a system
Beat positions at the larger levels were inferred by detectifi@s to choose the metrical level which corresponds to the tactus
certain drum sounds [18] or chord changes [19]. or some other specially designated pulse level. This may take
Scheirer proposed an approach to tactus tracking wherefiace implicitly, or by using a prior distribution for pulse pe-
discrete onsets or sound events are detected as a middle-stegi®@$ [12] or by rhythmic pattern matching [18].
periodicity analysis is performed directly on the half-wave recti-
ped (HWR) differentials of subband power envelopes [20]. TH& Proposed Method
source code of Schei@rsystem is publicly available. Sethares The aim of this paper is to describe a method which analyzes
and Staley took a similar approach, but used a periodicity transe meter of acoustic musical signals at the tactus, tatum, and
form for periodicity analysis instead of a bank of cofAbers measure pulse levels. The target signals are not limited to any
[21]. Laroche proposed a noncausal algorithm where specipalticular music type but all the main Western genres, including
change was measured as a function of time, the resulting sigelalssical music, are represented in the validation database.
was correlated with impulse trains of different periods, and dy- An overview of the method is shown in Fig. 2. For the
namic programming was usedibad a continuous time-varying time-frequency analysis part, a technique is proposed which
tactus pulse [22]. aims at measuring the degree of accentuation in a music signal.
Hainsworth and Macleod [23] developed a method which Ehe technique is robust to diverse acoustic material and can be
loosely related to that of Cemgglt al. [5]. They extracted dis- loosely seen as a synthesis and generalization of two earlier
crete onsets from an audio signal and then used paHigless to  state-of-the-art methods [18] and [20]. Feature extraction for
associate the onsets to a time-varying tempo process dmito estimating the pulse periods and phases is performed using
the locations of the beats. Gouyenhal. proposed a system for combpPlter resonators very similar to those used by Scheirer in
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[20]. This is followed by a probabilistic model where the peperiods or even to show periodicity at all, because individual
riod-lengths of the tactus, tatum, and measure pulses are joirglents may occupy different frequency bands.
estimated and temporal continuity of the estimates is modeledTo overcome the previous problem, consider another state-of-
At each time instant, the periods of the pulses are estimatbé-art system, that of Goto and Muraoka [18]. They detect
brst and act as inputs to the phase model. The probabilistiarrow-band frequency components and sum their power dif-
models encode prior musical knowledge and lead to a mderentials across preteed frequency rangeaseforeonset de-
reliable and temporally stable meter tracking. Both causal atettion and periodicity analysis takes place. This has the advan-
noncausal algorithms are presented. tage that harmonic changes are detected, yet periodicity analysis
This paper is organized as follows. Section Il will describe thakes place at wider bands.
different elements of the system shown in Fig. 2. Section lll will There is a continuum between the previous two approaches.
present experimental results and compare the proposed methbd tradeoff is: how many adjacent subbands are combined be-
with two reference methods. The main conclusions will be surfere the periodicity analysis and how many at the later stage

marized in Section IV. when the bandwise periodicity analysis results are combined.
In the following, we propose a method which can be seen as a
1. METERANALYSIS MODEL synthesis of the approaches of Scheirer and @b#.

| Acoustic input signals are sampled at 44.1-kHz rate and 16-b
. X L . . . esolution and then normalized to have zero mean and unity
ysis method illustrated in Fig. 2. Section II-A will describe th?/ariance. Discrete Fourier transforms (DFTs) are calculated in

tlme-frequen(_:y angly5|s part. In Se_ct|0n II-8, the comt_er successive 23-ms time frames which are Hanning-windowed
resonators will be introduced. Sections II-C and 1I-D will de-

ibe th babilisti dels which dt timat nd overlap 50%. In each frame, 36 triangular-response band-
scribe the probabiliSic models which are used to estimate tﬁgssplters are simulated that are uniformly distributed on a crit-
periods and phases of the three pulse levels.

ical-band scale between 50 Hz and 20 kHz [31, p. 176]. The
power at each band is calculated and stored to , where
is the frame index and is the band index, with
All the phenomenal accent types mentioned in the introduc-  36. The exact number of subbands is not critical.
tion can be observed in the time-frequency representation of arhere are many potential ways of measuring the degree of
signal. Although an analysis using a model of the human audhange in the power envelopes at critical bands. For humans,
tory system might seem theoretically advantageous (since metey smallest detectable change in intensityis approximately
is basically a cognitive phenomenon), we did not manage to glroportional to the intensity of the signal, the same amount of
tain a performance advantage using a model similar to [26] aimtrease being more prominent in a quiet signal. That s, ,
[30]. Also, the computational complexity of such models makahe Weber fraction, is approximately constant perceptually
them rather impractical. [31, p. 134]. This relationship holds for intensities from about
In a time-frequency plane representation, some data red@¢-dB to about 100 dB above the absolute hearing threshold.
tion must take place to discard information which is irrelevarithus, it is reasonable to normalize the differential of power
for meter analysis. A big step forward in this respect was takevith power, leading to which is equal to
by Scheirer who demonstrated that the perceived rhythmic con- . This measures spectral change and can be
tent of many music types remains the same if only the power eseen to approximate the differential &fudness since the
velopes of a few subbands are preserved and then used to npzfeeption of loudness for steady sounds is rougly proportional
ulate a white noise signal [20]. Approximatdhve subbands to the sum of log-powers at critical bands.
were reported to sbte. Scheirer proposed a method where pe- The logarithm and differentiation operations are both repre-
riodicity analysis was carried out within the subbands and tisented in a mor&exible form. A numerically robust way of
results were then combined across bands. calculating the logarithm is the-law compression
Although Scheire® method was indeed very successful,
a problem with it is that it applies primarily to music with a
Gtrong bea®Harmonic changes for example in classical or - 1)
vocal music go easily unnoticed using only a few subbands.
In order to detect harmonic changes and note beginningswifiich performs a logarithmic-like transformation for ~ as
legat@ passages, approximately 40 logarithmically-distributegiotivated above but behaves linearly near zero. The constant
subbands would be needetowever, this leads to a dilemma:determines the degree of compression and can be used to adjust
the resolution is strcient to distinguish harmonic changesgetween a close-to-linear ( 0.1) and a close-to-logarithmic
but measuring periodicity at each narrow band separately(is ) transformation. The value 100 is employed, but
no longer appropriate. The power envelopes of individuall values in the range [10, ] were found to perform almost
narrow bands are not guaranteed to reveal the correct metrigqbany well.
To achieve a better time resolution, the compressed power en-
velopes are interpolated by factor two by adding zeros be-
left between notes. AWeen the samples. This leads to the sampling rate 172 Hz.

3In this case, the center frequencies are approximatelywiode toneapart, A sixth-order Bu_tterworth IO\_N-pasBIter with 10 Hz
which is the distance between, e.g., the natasdd. cutoff frequency is then applied to smooth the compressed and

This section will describe the different parts of the meter angl

A. Calculation of Bandwise Accent Signals

2A smooth and connected style of playing in which no perceptible gaps
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bands (channels). We use 36 and 9, leading to
4,

It should be noted that combining each adjacent bands at
this stage is not primarily an issue of computational complexity,
but improves the analysis accuracy. Again, a prototypical meter
analysis system was used to investigate the effect of different
values of . It turned out that neither of the extreme values

or 1is optimal, but using a large number of ini-

tial bands 20 and three or fougaccent band3(channels)

leads to the most reliable meter analysis. Other parameters
were re-estimated in each case to ensure that this was not merely
a symptom of parameter couplings. Elsewhere, at least Scheirer
[20] and Laroche [22] have noted that a single accent signal (the
case ) appears not to be dedient as an intermediate

Fig. 3. lllustration of the dynamic compression and weighted differentiatiorepresentation for rhythmic parsing.

ste(ps)foran articial signal. Upper panel shows (k) and the lower panel shows The presented form of Calculating the bandwise accent sig-
u (n).

nals is veryRexible when varying, , ,and . A repre-
sentation similar to that used by Scheirer in [20] is obtained by
interpolated power envelopes. The resulting smoothed signasisiting 0.1, 1, 6, 1. A representation
denoted by . roughly similar to that used by Goto in [18] is obtained by set-
Differentiation of is performed as follows. First, anting 0.1, 1, 36, 6. In the following, the
HWR differential of is calculated as bxed values 100, 0.8, 36, 9 are used.
HWR (2) B. Bank of Comb Filter Resonators

) ) Periodicity of the bandwise accent signals is analyzed
where the function HWR _sets negative values, gstimate thealience(weight) of different pulse period can-
to zero and is essential to make the differentiation useful. ThgRyates. Four different period estimation algorithms were eval-
aweighted average of  and its differential isformed ;ated: a method based on autocorrelation, another based on the
as method of de Cheveighand Kawahara [33], different types
of combblter resonators [20], and banks of phase-locking res-
— (3) onators [14].
As an important observation, three of the four period estima-
where determines the balance between and tion methods performed equally well after a thorough optimiza-

, and the factor compensates for the fact that thdion. This suggests that the key problems in meter analysis are in
differential of a low-pas$ltered signal is small in amplitude. A measuring the degree of musical accentuation and in modeling
prototypical meter analysis system and a subset of our acou$iigher level musical knowledge, not Pnding exactly the cor-
database (see Section 1) were used to thoroughly investigé@&t period estimator. The period estimation method presented in
the effect of . Values between 0.6 and 1.0 performed well ande following was selected because itis by far the least complex

0.8 was taken into use. Using this value instead of 1anong the three best-performing algorithms, requiring only few
makes a slight but consistent improvement in the analysis ac&@rameters and no additional postprocessing steps.
racy. Using a bank of comlipiter resonators with a constant

Fig. 3 illustrates the described dynamic compression ahalf-time was originally proposed for tactus tracking by
weighted differentiation steps for an datial subband-power Scheirer [20]. The comblters that we use have an exponen-
signal . Although the present work is motivated purelyially-decaying impulse response where thalf-time refers
from a practical application point of view, it is interesting td0 the delay during which the response decays to a half of its
note that the graphs in Fig. 3 bear considerable resemblaffdiial value. The output of a combiter with delay  for input
to the response of Meddss auditory-nerve model to acoustic is given by
stimulation [32].

Finally, each  adjacent bands are linearly summed to get ()

accent signals at different frequency ranges ) )
where the feedback gain is calculated based on a

selected half-time in samples. We used a half-time equivalent
(4) to3s,i.e., 3.0s ,whichisshortenoughtoreacttotempo
changes but long enough to reliably estimate pulse-periods of up
to 4 s in length.
The accentsignals  serve as an intermediate data repre- The combplters implement a frequency response where the
sentation for musical meter analysis. They represent the degireguencies , have a unity response and
of musical accent as a function of time at the wider frequentlyge maximum attenuation between the peaks is
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This step is not needed for corfstier resonators where the con-
ceptual complexity and the number of free parameters, thus, re-
mains smaller.

Finally, a function which represents the overall
saliences of different metrical pulses at timés obtained as

9)

This function acts as thebservationfor the probabilistic
model that estimates the pulse periods.
For tatum period estimation, the discrete power spectrum
of is calculated as

Fig. 4. Resonator energies for an impulse train with a period-length of 24
samples (left) and for white noise (right). Upper panels show the energies (10)

f (i) and the lower panels normalized energieg; n ). where the emphasis withcompensates for a spectral trend and

the window function is half-Hanning
. The overall power of a combbiter with feedback

gain  can be calculated by integrating over the squared im- (11)
pulse response, which yields

The rationale behind calculating the DFT in (10) is that, by
(6)  debnition, other pulse periods are integer multiples of the tatum

period. Thus, the overall function contains information
A bank of such resonators was applied, witetting values about the tatum and this is conveniently gathered for each
from 1 to , where 688 corresponds to 4 s. Thetatum-frequency candidate using the DFT as in (10). For

computational complexity of one resonator is  per input comparison, Gouyoret al. [24] used an inter-onset-interval
sample, and the overall resonaliterbank requires of the order histogram and Mah& two-way mismatch procedure [34]
operations per second, which is not too demanding feerved the same purpose. Their idea walsro a tatum period

real-time applications. which best explained the multiple harmonically related peaks in
Instantaneous energies of each combplter in channel the histogram. Frequencies above 20 Hz can be discarded from
at time are calculated as , since tatum frequencies faster than this are very rare.
It should be noted that the observation and its spec-
_ (7) trum are zero-phase, meaning that the phases of the

pulses at different metrical levels have to be estimated using
some other source of information. As will be discussed in Sec-
tion 1I-D, the phases are estimated based on the states of the
combplters, after the periods have been decitbest.

These are then normalized to obtain

(8)
C. Probabilistic Model for Pulse Periods
where isthe energy of the accent signal , calculated  period-lengths of the metrical pulses can be estimated inde-
by squaring and by applying a leaky integrator, i.e., a respendently of their phases and it is reasonable to compute the

onator which has 1 and the same three-second hah‘-timghase only for the few winning periodsThus, the proposed

as the other resonators. Normalization with ~ compensates methodbnds periodsrst and then the phases (see Fig. 2). Al-

for the differences in the _ove_rall_power responses for diffe_remough estimating the phases is not trivial, the search problem
- The proposed normalization is advantageous because it Rggargely completed when the period-lengths have been found.

serves a unity response at the peak frequencies and at the sam;sical meter cannot be assumed to remain static over the

time removes a-dependent trend for a white-noise input.  \yhole duration of a piece. It has to be estimated causally at suc-
Fig. 4 shows the resonator energies and the cessive time instants and there must be some tying between the

normalized energies for two types of artecial input g ccessive estimates. Also, the dependencies between different

- an impulse train and a white-noise signal. Itis importametrical pulse levels have to be taken into account. These re-

to notice that all resonators that are in rational-number relatioegire prior musical knowledge which is encoded in the proba-

to the period of the impulse train (24 samples) show responsgstic model to be presented.

to it. In the case of the autocorrelation function, for example,

0n|y integer muItipIes of 24 come up and an explicit postpro- 4For comparison, Laroche [22] estimates periods and phases simultaneously,
the expense of a larger search space. Here three pulse levels are being esti-

. t
cess_lng step was necessary to generate reSponS_eS to the SuﬁQ@B’jointly and estimating periods and phases separately serves the purpose
monic lags and to achieve the same meter analysis performange:taining a moderately-sized search space.
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For period estimation, a hidden Markov model that describes
the simultaneous evolution of four processes is constructed. The
observable variable is the vector of instantaneous energies of the
resonators, , denoted in the following. The unobserv-
able processes and the corresponding hidden variables are the
tatum period , tactus period , and measure period . As
a mnemonic for this notation, recall that the tatum is the tem-
porally atomic (A) pulse level, the tactus pulse is often called
hea®(B), and the musical measure pulse is related to the har-
monic (i.e., chord) change rate (C). For convenience, we use

to denote &neter stat®equivalent to ,

,and I. The hidden state process is a time-homoge-
nousbrst-order Markov model which has an initial state distri-
bution and transition probabilities . The
observable variable is conditioned only on the current state, i.e.,
we have the state-conditional observation densities

The joint probability density of a state sequence

and observation sequence can
be written as

Fig. 5. Hidden Markov model for the temporal evolution of the tatum, beat,
and measure pulse periods.

73br4]. The assumption in (14) is not valid if the variables are
permuted.

1) Estimation of the State-Conditional Observation Likeli-
hoods: The remaining problem is tbnd reasonable estimates
for the model parameters, i.e., for the probabilities that appear
in (12)E16). In the following, we ignore the time indexes for
a while for simplicity. The state-conditional observation likeli-

(13) hoods are estimated from a database of musical record-
ings where the musical meter has been hand-labeled (see Sec-
It is musically meaningful to assume that tion II). However, the data is very limited in size compared to
the number of parameters to be estimated. Estimation of the state
(14) densities for each different is impossible since each
of the three discrete hidden variables can take on several hun-

i.e., given the tactus period, the tatum period does not give ﬁgds of different v_alues. By mak‘f‘g a series of assumptions we
ditional information regarding the measure period. We furth&f1ve at the following approximation for
assume that given , the other two hidden variables at time

give no additional information regarding . For the tatum
and measure periods, , We assume that given _ (17)
and , the other two hidden variables at time give no
additional information regarding . It follows that (13) can be
written as

12)
where the term can be decomposed as

where and are as dened in (91(10), omitting the
time indexes. The Appendix presents the derivation of (17) and
the underlying assumptions in detail. An intuitive rationale of
(17) is that a truly existing tactus or measure pulse appears as a
(15) peakin atthe lag that corresponds to the pulse period. Anal-
ogously, the tatum period appears as a peak in at the fre-
Using the same assumptions,  is decomposed and simpli- quency that corresponds to the inverse of the period. The product
bed as of these three values correlates approximately linearly with the
likelihood of the observation given the meter.
(16) 2) Estimation of the Transition and Initial Probabilitiedn
(15), the term can be decomposed as

The described modeling assumptions lead to a structure
which is represented as a directed acyclic graph in Fig. 5.
The arrows in the graph represent conditional dependencies
between the variables. The circles denote hidden variables and
the observed variable is marked with boxes. The tactus pulse (18)
has a central role in meter perception and it is not by chanaere theorst factor represents transition probabilities between
that the other two variables are drawn to depend on it [1, pguccessive period estimates and the second term represents the
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Fig. 6. Likelihood functionf ( = ) which describes the tendency that
the periods are slowly-varying.

relation dependencies of simultaneous periodsand , in-
dependent of their actual frequencies of occurrence (in practice
tends to be integer multiple of ). Similarly

(19) Fig. 7. Period-length histograms and the corresponding lognormal
The transition probabilities , distributions for tatum, tactus, and measure pulses.

between successive period estimates are obtained as follows.
Again, the number of possible transitions is too large for any rea-
sonable estimates to be obtained by counting occurrences. The
transition probability is modeled as a product of the prior proba-
bility for a certain period, ,and aterm which
describes the tendency that the periods are slowly-varying

Fig. 8. Distribution g(x) which models the relation dependencies of
simultaneous periods [see (25)].

(20)
where . The function and tatum periods. The scale and shape parameters for the tatum
and measure periods are 0.18, 0.39, 2.1,
S o 21) and 0.26, respectively. These were estimated from the

hand-labeled data in the same way.
The relation dependencies of simultaneous periods are mod-

implements a normal distribution as a function of the logarithigled as follows. We model the latter terms in @@P) as
of the ratio of successive period values. It follows that the like-

lihood of large changes in period is higher for long periods, and
that period doubling and halving are equally probable. The pa-
rameter 0.2 was found by monitoring the performance of
the system in simulations. The distribution (21) is illustrated in — (24)
Fig. 65

Prior probabilities for tactus period lengths, , have where is a Gaussian mixture density of the form
been measured from actual data by several authors [12], [35],
[36]. As suggested by Parncutt [12], we apply the two-param- (25)
eter lognormal distribution

— (23)

where  are the component weights and sum to unitgre
the component means, and 0.3 is the common variance.
The function models the relation dependencies of simultaneous
where and are the scale and shape parameters, respperiods, independent of their actual frequencies of occurrence.
tively. For the tactus period, the values 0.55 and The exact weight values are not critical, but are designed to re-
0.28 were estimated by counting the occurrences of differaize a tendency toward binary or ternary integer relationships
period lengths in our hand-labeled database (see Section bi€tween concurrent pulses. For example, it happens quite often
and bybptting the lognormal distribution to the histogram datathat one tactus period consists of two, four, or six tatum periods,
The parameters depend somewhat on genre [35], [36] but siteg multiplesbve and seven are much less likely in music and,
the genre is generally not known, common parameter values tres, have lower weights. The distribution is shown in Fig. 8.
used here. Fig. 7 shows the period-length histograms and ftee Gaussian mixture model was employed to allow some de-
corresponding lognormal distributions for the tactus, measuxggtion from strictly integral ratios. In theory, the period-lengths

s . . should be precisely in integral ratios but, in practice, there are in-

For comparison, Laroche uses a cost function where tempo changes ex- . . . . .
ceeding a certain threshold are assigneded cost and smaller tempo chamgesaccuracIeS since the pel’IOd candidates are chosen from discrete
cause no cost at all [22]. vectors and . These inaccuracies are conveniently handled

— — — (22)
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by choosing an appropriate value for in the previous model.
The weights  were obtained byprst assigning them values
according to a musical intuition. Then the dynamic range of the
weights was found by raising them to a common power which
was varied between 0.1 and 10. The value which performed best
in small-scale simulations was selected. Finally, small adjust-
ments to the values were made.

It should be noted that here the model parameters were spec-
ibed in part by hand, considering one probability distribution &ig. 9. Rectangle indicates the observation mafx for tactus phase
atime. It seems possible to devise an algorithm that would |e£ﬁ§ima§ionh§t timen (here period is 0.51 s.). Dashed line shows the correct
the model parameters jointly by Bayesian optimization, that i%,ase in this case.
by maximizing the posterior probability of training data given
the prior distributions. However, even after all the describdd. Phase Estimation
modeling assumptions and siniptations, deriving an expecta-  The phases of the three pulses are estimated at successive time
tion-maximization algorithm [37] for the described model, fofnstants, after the periods have been decided at these points. We
example, is not easy and such an algorithm does not exist at e | to refer to the estimated periods of the
present time. tatum, tactus, and measure pulses at timeespectively. The

3) Finding the Optimal Sequence of Period Estimatd®w  corresponding phases of the three pulses,are expressed as
we must obtain an estimate for the unobserved state Variam‘nporeﬂ ancho[@j_e_' time values when the nearest beat unit
giventhe observed resonator energies and the model parametgfigurs with respect to the beginning of a piece. The periods and
We do this byPnding the most likely sequence of state variablgshases and  completely déne the meter at time.

given the observed data : In principle, the phase of the measure pulse, determines

This can be straighforwardly computed using the Viterbi algeéhe phases of all the three levels. This is because in a well-
rithm widely applied in speech recognition [38]. Thus, we segrmed meter each measure-level beat must coincide with a
the sequence of period estimates beat at all the lower metrical levels. However, determining the
phase of the measure pulse ig®ifilt and turned out to require
rhythmic pattern matching techniques, whereas tactus phase es-
timation is more straightforward and robust. We therefore pro-
pose a model where the tactus and measure phases are estimated

(26) separately using two parallel models. For the tatum pulse, phase
estimation is not needed but the tactus phase can be used.
where denotes the joint probability density of the Scheirer proposed using the state vectors of ciitdrs to
hidden and observed variables (see (12)). determine the phase of the tactus pulse [20]. This is equivalent

In a causal model, the meter estimateat time is deter- to using the latest outputs of a resonator with delayWe have
mined according to the end-state of the best partial path at theéonators at several channeland, consequently, an output
point in time. A noncausal estimate after seeing a complete seatrix where is the channel index and
quence of observations can be computed using backward the phase indextakes on values between and when
coding. estimation is taking place at time For convenience, we use

Evaluating all the possible path candidates would be compo-denote the output matrix of a found pulse period
tationally very demanding. Therefore, we apply a suboptimahd the notation to refer to the individual elements of
beam-search strategy and evaluate only a [fmeel@ number of . The matrix  acts as the observation for phase estimation
the most promising path candidates at each time instant. Theaetime .
lection of the most promising candidates is made using a greedyig. 9 shows an example of the observation matrixwhen
selection strategy. Once in a second, we selecbest can- tactus phase estimation is taking place 20 s after the beginning of
didates independently for the tatum, tactus, and measure pgiece. The four signals at different channels are the outputs of
riods. The number of candidates 5 was found to be safe the combblter which corresponds to the estimated tactus period
and was used in simulations. The selection is made by maxi- 0.51 s. The output matrix contains the latest 0.51 s of
mizing for . The probabilities the output signals, as indicated with the rectangle. The correct
in (23)E(24) could be included to ensure that the selected cgshase is marked with a dashed line.
didates are consistent with each other, but in practice this isTwo separate hidden Markov models are evaluated in parallel,
unnecessary. After selecting the best candidates for each, ame for the tactus phase and another for the measure phase. No
need only to compute the observation likelihoods for joint estimation is attempted. The two models are very similar
125 meter candidates, i.e., for the different combinations of thed differ only in how the state-conditional observation densi-
tatum, tactus, and measure periods. This is done accordindi¢s are dened. In both models, the observable variable is the
(17) and the results are stored into a data vector. The trarmitput matrix  of the resonator which corresponds to the
tion probabilities are computed using (15) and stored intofaund pulse period. The hidden variable is the phase of the pulse,
125-by-125 matrix. These data structures are then used in the taking on values between and . The hidden state
Viterbi algorithm. process is a time-homogenoast-order Markov model which
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has an initial state distribution and transition probabili-  Two rhythmic patterns were found that generalized quite well
ties . The observable variable is conditional onlyover our database. The weight matrices and of these
on the current state, thus, we have the state-conditional obsgatterns are given in the Appendix and lead to the corresponding
vation densities : and . The patterns were found by trial and error,
Again, the remaining problem is tend reasonable estimatestrying out various arrangements of simple atomic events and
for the model parameters. State-conditional observation liketionitoring the behavior of against manually annotated
hoods for the tactus pulse are approximated as phase values. Both of the two patterns can be characterized as a
pendulous motion between a low-frequency event and a high-in-
@7) tensity event. Thérst pattern can be sumrr]arize(ﬂuw, loud,
B loudOand the second a@ow, B, loud, POThe two patterns
are combined into a single vector to perform phase estimation
where 1 corresponds to the lowest frequency channel. Thatcording to whichever pattern matches better to the data
is, the likelihood is proportional to a weighted sum of the res-
onator outputs across the channels. Across-band summing is in- (32)
tuitively meaningful and earlier used in [20] and [30]. Empha-
sizing the low frequencies is motivated by able bassrule The state-conditional observation likelihoods are thelrneel
as stated in[1], and improved the robustness of phase estima#én
in simulations. The exact weight values are not critical.
For the purpose of estimating the phase of the measure pulse, (32)

a formula for the state-conditional observation likelihoods anaé)'bviously the two patterns implykinary time signaturethey
ogous to that in (27) is derived, but so that different channels A&sume tr;at one measure period consists of two or four tactus

\t/r\:eltgmtet?] ar_ld d(i:ayed mtahr_norefcomplelz()_( n;r_;mner. It turne:-[d Lgriods. Analysis results for ternary meters will be separately
at rhythmic pattern matching of some kind is necessary to &{)c . < in Section IlI-C.

alyze music at this time scale and to estimate the measure phas&her pattern-matching approaches were evaluated, too. In

based on th? output matrix . That IS, ho simple form_ula articular, we attempted to sample at the times of the tactus
such as (27) exists. The drawback of this is that rhythmic pat-

I . eats and to train a statistical cld®si to choose the beat which
tern matching is more genre-specthan for example the stable

; . . rresponds to the measure beat (see [36] for further elaboration
bass rule which appears to be quite universal. Inthe case thatgﬁ?his idea). However, the methods were basically equivalent to
system would have access to the pitch content of an incomi '

) X . . t described previously, yet less straightforward to implement
piece, the points of harmonic change might serve as cues for P Y. ¥ 9 P

L . ; &na performed slightly worse.
timating the measure phase in a more straightforward manner.

However. this remains to be proved. Estimation of the high Transition probabilities between successive
owever, this remains to be proved. Estimation of the NYNRE ase estimates are modeled as follows. Given two phase esti-
level metrical pulses in audio data has been earlier attempte

. Htes (i.e., beat occurrence times), the conditional probability
Goto and Muracka who resorted to pattern matching [18] Or\ti\(/)hich ties the successive estimates is assumed to be normally

stra;ggtfortvr\]/ar;j I(I:holrd ghat;]]ge dettectllp rg)l[l?g' ;I'he fmeth(;)d P§istributed as a function offrediction error which measures
seget n eto owing 1S etmOf (;e 'able that we tound. - e deviation of ~ from the predicted next beat occurence time
Irst, a vector IS constructed as given the previous beat time  and the period

(28) —_— — (33)

where where
(29) — — — (34)

- (30) and 0.1 is common for . In (34), it should be
noted that any integer number of periodamay elapse between
and denotes modulus after division. The scalars and . Since estimates are produced quite frequently
are weights for the resonator outputs at channelsd with de- compared to the pulse rates, in many cases . The
lays . The weights are used to encode a typical patterinitial state distributions are assumed to be uniform.
of energyRuctuations within one measure period, so that the Using (27), (32), and (33), causal and noncausal computation
maximum of indicates the measure phase. The delé&y of phase is performed using the Viterbi algorithm as described
expressed in quarter-measure units so thatrresponds to the in Section II-C. Fifteen phase candidates for both the winning
delay . For example, a simple pattern consisting of twtactus and the winning measure period are generated once in
events, a low-frequency event (at channel 1) in the begin- a second. The candidates are selected in a greedy manner by
ning of a measure ( 0) and a loud event in the middle of thepicking local maxima in . The corresponding
measure ( 2), could be represented byfteng the weights probability values are stored into a vector and transition proba-
3 (low), 1forall (loud),and 0 otherwise. bilities between successive estimates are computed using (33).
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TABLE |
STATISTICS OF THEEVALUATION DATABASE

E. Sound Onset Detection and Extrametrical Events

Detecting the beginnings of discrete acoustic events
one-by-one has many uses. It is often of interest whether
an event occurs at a metrical beat or not, and what is the exact
timing of an event with respect to its ideal metrical position.
Also, in some musical pieces there are extrametrical events,
such adriplets, where an entity of, e.g., four tatum periods is
exceptionally divided into three parts, grace noteswhich
are pitched events that occur shortly before a metrically stable
event.

In this paper, we used an onset detector as a front-end to one
of the reference systems (designed for MIDI input) to enable

it to process acoustic signals. Rather robust onset detection is ted by th the | i "
achieved by using aaverall accent signal which is com- Sudgested by them, we use he ongesttinuouscorrectly an-

puted by setting in (4). Local maximain represent alyzed segment as a basis for measuring the performance. This

onset candidates and the value of atthese points fiects the means that one inaccuracy in the middle of a piece leads to
0 .

likelihood that a discrete event occurred. A simple peak—pickir? IA) perft(_)rm?nc_e. Therl10n_gest f:ontmucr);:s szquence ofdc?rri::t

algorithm with abxed threshold level can then be used to dig- S€ estimales In each piece IS sought and compared 1o the

tinguish genuine onsets from the changes and modulations th of the segment which was given to be analyzed. The

take place during the ringing of a sound. Automatic adaptati Ao gf these two lengths determines the performance rate for
ne piece and these are then averaged over all pieces. However,

of the threshold would presumably further improve the dete@” . . )
tion accuracy. prior to the_meter an‘aly_3|s, all thg a]gorlthms under c9n3|dera—
tion were given a 4-&build-up perio®in order to make it the-
oretically possible to estimate the correct period already from
the beginning of the evaluation segment. Also, it was taken care
This section looks at the performance of the proposed methggt none of the input material involved tempo discontinuities.
in simulations and compares the results with two reference s¥sore spedpcally, the interval between two tapped reference
tems. Also, the importance of different processing elements Wilgat times (pulse period) does not change more than 40% at a
be validated. time, between two successive beats. Other tefymiuations
were naturally allowed.
A correct period estimate is Beed to deviate less than 17.5%
Table | shows the statistics of the datalfabat was used to from the annotated reference and a correct phase to deviate from
evaluate the accuracy of the proposed meter analysis metlaodannotated beat time less than 0.175 times the annotated pe-
and the two reference methods. Musical pieces were collectétl length. This precision requirement has been suggested in
from CD recordings, downsampled to a single channel, afi8P] and was found perfectly appropriate here since inaccuracies
stored to a hard disc using 44.1-kHz sampling rate and 1@rithe manually tapped beat times allow meaningful comparison
resolution. The database was created for the purpose of musafainly up to that precision. However, for the measure pulse, the
signal clasdpcation in general and the balance between genrperiod and phase requirements were tightened to 10% and 0.1,
is according to an informal estimate of what people listen to. respectively, because the measure-period lengths are large and
The metrical pulses were manually annotated for approxalow the creation of a more accurate reference signal. For the
mately one-minute long excerpts which were selected to reptum pulse, tactus phase is used and, thus, the phase is correct
resent each piece. Tactus and measure-pulse annotations &bvays when the tactus phase is correct, and only the period has
made by a musician who tapped along with the pieces. The tap-be considered separately.
ping signal was recorded and the tapped beat times were theRerformance rates are given for three different criteria [39].

Ill. RESULTS

A. Experimental Setup

detected semiautomatically using signal level thresholding. They
tactus pulse could be annotated for 474 of a total of 505 pieces.
The measure pulse could be reliably marked by listening for 320y
pieces. In particular, annotation of the measure pulse was not at-
tempted for classical music without the musical scores. Tatum
pulse was annotated by thest author by listening to the pieces
together with the annotated tactus pulse and by determining the
integer ratio between the tactus and the tatum period lengths.
The integer ratio was then used to interpolate the tatum beats
between the tapped tactus beats. ¥
Evaluating a meter analysis system is not trivial. The issue
has been addressed in depth by Goto and Muraoka in [39]. As

6Details of the database can be found online at

http://www.cs.tute/~klap/iiro/meter.

Correct: A pulse estimate at timeis accepted if both its
period and phase are correct.

Accept d/h: Consistent period doubling or halving is
accepted. More exactly, a pulse estimate is accepted if
its phase is correct, the period matches either 0.5, 1.0, or
2.0 times the annotated reference, and the factor does not
change within the continuous sequence. Correct meter
analysis is taking place but a wrong metrical level is
chosen to be, e.g., the tactus pulse.

Period correct: A pulse estimate is accepted if its period
is correct. Phase is ignored. For the tactus pulse, this can
be interpreted as thiempo estimatioaccuracy.

urL Which is the single best number to characterize the perfor-
mance of a pulse estimator? This was investigated by auralizing
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TABLE 1l TABLE Il
TACTUS ANALYSIS PERFORMANCE(%) OF DIFFERENTMETHODS METER ANALYSIS PERFORMANCE OF THEPROPOSEDMETHOD

meter analysis resulidt was observed that temporal Conthityestimating the phase is Bifult. A reason for this is that in a

of correct meter estimates is indeed very important aurally [I%crge part of the material, a drum pattern recurs twice within
pp. 74,104]. Second, phase errors are very disturbing. Third, R8s measure period and the system hascdities in choosing

riod doubling or halving is not very disturbing; tappiognsis- \yhich one is thérst. In the case that-phase errors (each beatis
tentlytwice too fgst or slovy d_oes not matter much and SeleCt"b@splaced by a half-period) would be accepted, the performance
the correct metrical level is in some cases ambiguous even fgfe \ould be essentially the same as for the tactus pulse. How-

a human listener [12]. In summary, it appears thatGhecept eyer, -phase errorare disturbing and should not be accepted.
d/hCcriterion gives a single best number to characterize the perq; the tatum pulse, in turn, deciding the period isdifl:.

formance of a system. This is because the temporally atomic pulse rate typically comes

up only occasionally, making temporally stable analysis hard

B. Reference Systems to attain. The method often has to halve its period hypothesis

To put the results in perspective, two reference methods &ven thebrst rapid event sequence occurs. This appears in the
used as a baseline in simulations. This is essential becausep@iormance rates so that the method is not able to produce a
principle of using a continuous sequence of correct estimates ¢@nsistent tatum period over time but alternates between, e.g.,
evaluation gives a somewhat pessimistic picture of the absoltité reference and double the reference. This degrades the tem-
performance. porally continuous rate, although tlaccept d/Prate is very

The methods of Scheirer [20] and Dixon [16] are very difgood for individual estimates. The produced errors are not very
ferent, but both systems represent the state-of-the-art in tagiigfurbing when listening to the results.
pulse estimation and their source codes are publicly availableAs mentioned in Section 1I-D, the phase analysis of the mea-
Here, the used implementations and parameter values wae pulse using rhythmic patterns assumes a binary time signa-
those of the original authors. However, for SchéBenethod, ture. Nine percent of the pieces in our database have a ternary
some parameter tuning was made which slightly improved tk&4) meter but, unfortunately, most of these represent the clas-
results. Dixon developed his system primarily for MIDI-inputsical genre where the measure pulse was not annotated. Among
and provided only a simple front-end for analyzing acousttbe other genres, there wesely Pvepieces with ternary meter.
signals. Therefore, a third system deno@+DixonOwas For these, the measure-level analysis was approximately twice
developed where an independent onset detector (descrits$ accurate than for the rest of the database. For the tactus and
in Section II-E) was used prior to Dix@ tactus analysis. tatum, there were 41 and 30 annotated ternary pieces, respec-

Systematic phase errors were compensated for. tively, and no sigrficant degradation in performance was ob-
served. On the contrary, the ternary pieces were rhythmically
C. Experimental Results easier than the others within the same genre.

Fig. 10 shows thé&accept d/®(continuity required) perfor-

ance rates for the proposed causal system within different

In Table II, the tactus tracking performance of the proposeﬁﬁ
e

tcvigSrzlf:rrg:]2:Tﬁ:&iﬂ;gﬂgiiggg&%ﬁdirvx:‘;r:]%iig; usical genres. For classical music, the proposed method is
' ' only moderately successful, although, e.g., the tactus estima-

the.‘t the reference metr_\ods did not m_alntaln the temporal COQlt(')'n error rate still outperforms the performance of the reference
nuity of acceptable estimates. For this reason, the performa

. N Mi&thods for the whole material (31% and 26% for Schérer
rates are also given as percentages of individual acceptable

estly ~. = . .
mates (right half of Table II). Dixo® method has difculties in & Dixorts methods, respectively). However, this may suggest

: : that pitch analysis would be needed to analyze the meter of clas-
choosing the correct metrical level for tactus, but performs well o music. In jazz music, the complexity of musical rhythms

according to th&accept d/Bcriterion when equipped with the is higher on the average and the task, thus, harder.
new onset detector. The proposed method outperforms the pre-

vious systems in both accuracy and temporal stability. D. Importance of the Different Parts of the Probability Model

Table Il shows the meter analysis performance of the pro- .
posed causal and noncausal algorithms. As for human listenersiaPl€ 1V shows the performance rates for different system

meter analysis seems to be easiest at the tactus pulse level GégPaurations. Different elements of the proposed model were

the measure pulse, period estimation can be done robustly fligabled in order to evalu_ate their importan_ce. In each case, the
system was kept otherwidexed. The baseline method is the

7Samples are available at URL http://www.csitklap/iiro/meter. noncausal system.
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or pitch analysis seems to be needed to analyze music at this
time scale. For the tatum pulse, in turn, phase estimation is not
difbcult at all, but deciding the period is very Bdult for both
humans and a computational algorithm. This is because the tem-
porally atomic pulse rate typically comes up only occasionally.
Thus, causal processing isldifult and it is often necessary to
halve the tatum hypothesis when thiest rapid event sequence
occurs.
The critical elements of a meter analysis system appear to
be the initial time-frequency analysis part which measures mu-
sical accentuation as a function of time and the (often implicit)
internal model which represents primitive musical knowledge.
The former is needed to provide robustness for diverse instru-
mentations in classical, rock, or electronic music, for example.
The latter is needed to achieve temporally stable meter tracking
and toPll in parts where the meter is only faintly implied by the
Fig. 10. Performance of the proposed causal system within different musigausical surface. A challenge in this part is to develop a model
genres. Theccept d/D(continuity required) percentages are shown for th%vhlch is generic for jazz and classical music, for example. The
tatum (white), tactus (gray), and measure pulses (black). . ) .

proposed model describes baiently low-level musical knowl-

edge to generalize over different genres.
TABLE IV

METER ANALYSIS PERFORMANCE (%) FOR DIFFERENT
SYSTEM CONFIGURATIONS APPENDIX

This appendix presents the derivation and underlying as-
sumptions in the estimation of the state-conditional observation

likelihoods . We brst assume that the realizations of
are independent of the realizations of and , that is,
. This violates

the dependencies of our model but skpantly simplbes
the computations and makes it possible to obtain reasonable
estimates. Using the assumption, we can write
In the brst test, the dependencies between the different pulse

levels were broken by using a noninformatiia{) distribution

for in (25). This slightly degrades the performance in all

cases. In the second test, the dependencies between temporally (35)

successive estimates were broken by using a noninformative dis-

tribution for the transition probabilities between successive plgl]rthermore tatum information is most clearly visible in the

riod and phase estimates, and ectrum of the resonator outputs. Thus, we use
spectively. This degrades the temporal stability of the estlmatseo P

considerably and, hence, collapses the performance rates which

use the longest continuous correct segment for evaluation. In (36)

the third case, the both types of dependencies were broken.

The system still performs moderately, indicating that the initiglhere is the spectrum of, according to (10). We further as-
time-frequency analysis method and the colrtler resonators sume the components oind to be conditionally independent
provide a high level of robustness. of each other given the state, and write the nominator of (35) as

IV. CONCLUSION

A method has been described which can successfully analyze
the meter of acoustic musical signals. Musical genres of very di-
verse types can be processed with a common systebygooa-
tion and parameter values. For most musical material, relatively @37
low-level acoustic information can be used, without the need to
model the higher level auditory functions such as sound sourcéNMe make two more simplifying assumptions. First, we as-
separation or multipitch analysis. sume that the value of and at the lags corresponding to a

Similarly to human listeners, computational meter analysigeriod actually present in the signal depends only on the par-
is easiest at the tactus pulse level. For the measure pulse,tgedar period, not on other periods. Second, the value at lags
riod estimation can be done equally robustly but estimating there there is no period present in the signal is independent of
phase is less straightforward. Either rhythmic pattern matchitftg true periods , ,and , and is dominated by the fact
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that no period corresponds to that particular lag. Hence, (35) caiNumerical values of the matrices used in Section II-D

be written as

Here channel determines the row and delaythe column. The
brst row corresponds to the lowest-frequency channel.

- - (38)
where denotes the probability of value (1]
given that is a tactus pulse period and de- 2]

notes the probability of value  given that is not a tactus
pulse period. These conditional probability distributions (tactus, [3!
measure, and tatum each have two distributions) were approxi-
mated by discretizing the value range of , ,and
by calculating a histogram of  values in the cases thatis 4]
or is not an annotated metrical pulse period.

Then, by déning [5]

6]
7

- ]
39 g

Equation (38) can be written as [10]

(11]

(12]

- (13]
(40)
- [14]

(15]
where the scalar  is a function of but does not depend on [1¢;

By using the two approximated histograms for the tactus/”]

measure, and tatum pulses, each of the three terms of the forjy,
in (40) can be repre-

sented by a single discrete histogram. These were modeled wi}
brst-order polynomials. Therst two terms depend linearly on

the value and the last term depends linearly on the value

. Thus, we can write [20]

[21]

_ (41) [22
[23]
The histograms could be more accurately modeled with third-

order polynomials, but this did not bring performance advantagg4]
over the simple linear model in (41).
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Abstract
This paper presents a method for extracting two key met-
rical properties, the beat and the tatum, from acoustic sig-
nals of popular music. The method is computationally very
ef cient while performing comparably to earlier methods.
High ef ciency is achieved through multirate accent analy-

g@nokia.com

The technical approaches for meter estimation are vari-
ous, includinge.g.autocorrelation based methods [6], inter-
onset interval histogrammin@![5], or banks of comb Iter
resonators [4], possibly followed by a probabilistic model [3].
See|[2] for a review on rhythm analysis systems.

2. Algorithm Description

sis, discrete cosine transform periodicity analysis, and phase
estimation by adaptive comb lItering. During analysis, the ~ The algorithm overview is presented in Fig. 1: the input is
music signals are rst represented in terms of accentuation audio signals of polyphonic music, and the output consists
on four frequency subbands, and then the accent signals are of the times of beats and tatums. The implementation of the
transformed into periodicity domain. Beat and tatum peri- beat and tatum tracker has been done in C++ programming
ods and phases are estimated in a probabilistic setting, incor- language in the S60 smartphone platform. The algorithm
porating primitive musicological knowledge of beat—tatum design is causal and the implementation works in real time.
relations, the prior distributions, and the temporal continu- The operation of the system can be described in six stages
ities of beats and tatums. In an evaluation with 192 songs, (see Fig[L):

the beat tracking accuracy of the proposed method was found

comparable to the state of the art. Complexity evaluation 1. Resampling stage,

showed that the computational cost s less than 1% of earlier 5 Accent Iter bank stage,
methods. The authors have written a real-time implementa-
tion of the method for the S60 smartphone platform. 3. Bulffering stage,
Keywords: Beat tracking, music meter estimation, rhythm 4. Periodicity estimation stage,
analysis. . o

5. Period estimation stage, and
1. Introduction 6

. Phase estimation stage.

Recent years have brought signi cant advances in the eld
of automatic music signal analysis, and music meter estima-
tion is no exception. In general, the music meter contains
a nested grouping of pulses calletktrical levels where
pulses on higher levels are subsets of the lower level pulses
the most salient level is known as theat and the lowest
level is termed théatum][1), p. 21].

Metrical analysis of music signals has many applications

ranging from browsing and visualization to classi cation Then, the accent signals are accumulated into four-second
and recommendation of music. The state of the art has ad- fames. Periodicity estimation looks for repeating accents

vanced high in performance, but the computational require- o each subband. The subband periodicities are then com-
ments have also remained restrictively high. The proposed bined, and summary periodicity is computed.

method signi cantly improves computational ef ciency while
maintaining satisfactory performance.

First, the signal is resampled to a xed sample rate, to
support arbitrary input sample rates. Second, the accent
Iter bank transforms the acoustic signal of music into a

_form that is suitable for beat and tatum analysis. In this

' stage, subband accent signals are generated, which consti-
tute an estimate of the perceived accentuation on each sub-
band. The accent Iter bank stage signi cantly reduces the
amount of data.

Next, the most likely beat and tatum periods are esti-
mated from each periodicity frame. This uses a probabilistic
formulation of primitive musicological knowledge, includ-
ing the relation, the prior distribution, and the temporal con-
tinuity of beats and tatums. Finally, the beat phase is found
and beat and tatum times are positioned. The accent signal
is Itered with a pair of comb lters, which adapt to different
beat period estimates.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro t or commercial advantage and that
copies bear this notice and the full citation on the rst page.
€ 2006 University of Victoria




Figure 1. Beat and tatum analyzer.

Figure 2. Accent Iter bank overview. (a) The audio signal is rst divided into subbands, then (b) power estimates on each subband
are calculated, and (c) accent computation is performed on the subband power signals.

2.1. Resampling plement the downsampling QMF analysis with just two all-

Before any audio analysis takes place, the signal is con- Pass lters, an addition, and a subtraction. This structure is
verted to a 24 kHz sample rate. This is required because depicted in Fig. 5.2-5ir |7, p. 203]. The allpass lters for
the Iter bank uses xed frequency regions. The resampling this application can be rst-order lIters, because only mod-
can be done with a relatively low-quality algorithm, linear €St separation is required between bands.

interpolation, because high delity is not required for suc- The subband power computation is shown Fjg. 2(b). The
cessful beat and tatum analysis. audio signal is squared, low-pass ltered (LPF), and dec-
imated by subband speci ¢ factdvl; to get the subband
2.2. Accent Filter Bank power signal. The low-pass lter is a digital Iter having
Figurg2 presents an overview of the accent Iter bank. The in- 10 Hz cutoff frequency. The subband decimation ratles=
coming audio signat[n]is (a) rstdivided into subband au- f48; 12; 3; 3g have been chosen so that the power signal sam-

dio signals, and (b) a power estimate signal is calculated for ple rate is 125 Hz on all subbands.
each band separately. Last, (c) an accent signal is computed  The subband accent signal computation in Fig. 2(c) is
for each subband. modelled according to Klapuet al.[3, p. 344—-345]. In the
The Iter bank divides the acoustic signal into seven fre-  process, the power signal rst is mapped with a nonlinear
quency bands by means of six cascaded decimating quadra- level compression function label&bmpin Fig.[3(c),
ture mirror Iters (QMF). The QMF subband signals are
combined pairwise into three two-octave subband signals, F(x) = 5:213In(1 + 10p X); x> 0:0001
as shown in Fig[ ]2(a). When combining two consecutive 5:213In11 otherwise.
branches, the signal from the higher branch is decimated
without Itering. However, the error caused by the alias-  Following compression, the rst-order difference signal is
ing produced in this operation is negligible for the proposed computed Diff) and half-wave recti ed Rec). In accor-
method. The sampling rate decreases by four between suc- dance with Eq. (3) in[[3], the recti ed signal is summed to
cessive bands due to the two QMF analysis stages and the the power signal after constant weighting, see[Hig. 2(c). The
extra decimation step. As a result, the frequency bands are high computational ef ciency of the proposed method lies
located at 0-190 Hz, 190-750 Hz, 750-3000 Hz, and 3— mostly in the accent Iter bank design. In addition to ef -
12 kHz, when the lter bank input is at 24 kHz. ciency, the resulting accent signals are comparable to those
There is a very ef cient structure that can be used to im-  of Klapuri et al, seee.g.Fig. 3 in [3].

@)



Figure 3. (a) Normalized autocorrelation and (b) summary pe-
riodicity, with beat (B) and tatum (T) periods shown.

2.3. Buffering

The buffering stage implements a ring buffer which accu-
mulates the signal into xed-length frames. The incoming
signal is splitinto consecutive accent signal frames of a xed
lengthN =512 (4.1 seconds). The value Nf can be mod-

i ed to choose a different performance—latency tradeoff.

2.4. Accent Periodicity Estimation

The accent signals are analyzed for intrinsic repetitions. Here,
periodicity is de ned as the combined strength of accents
that repeat with a given period. For all subband accent sig-

nals, a joint summary peri,gdicit%/ vector is computed.
Autocorrelation ['] = lo anlajn °],0
N 1,is rstcomputed from eacN -length subband accent

Figure 4. The period estimator.

Similarly to an 10l histogrami [5], accent peaks with a period
p cause high responses in the autocorrelation function at lags
" =0, = p(nearestpeaks),= 2 p(second-nearest peaks),
* = 3p(third-nearest peaks), and so on. Such response is ex-
ploited in DCT-based periodicity estimation, which matches
the autocorrelation response with zero-phase cosine func-
tions; see dashed lines in Fg. 3(a).

Only a speci ¢ periodicity window0:1s p 2sis
utilized from the DCT vectoR[k]. This window speci es
the range of beat and tatum periods for estimation. The sub-
band periodicitieR; [k] are combined into akl -point sum-
mary periodicity vectoM =128,

X4
SIK] =

i=1

i[0] Rkl 0 k M 1 (6)

whereR;[k] has interpolated values &;[k] from 0:5 Hz
to 10 Hz and the parameter = 1:2 controls weighting.

framea[n]. The accent signal reaches peak values whenever Figure[3(b) shows an example summary periodicity vector.
there are high accents in the music and remains low other- 5 5 Beat and Tatum Period Estimation

wise. Computing autocorrelation from an impulsive accent
signal is comparable to computing the inter-onset interval

(I01) histogram as described by Sepen [5], with addi-

tional robustness due to not having to discretize the accent

signal into onsets.
The accent frame powel0] is stored for later weight-

ing of subband periodicities. Offset and scale variations are

eliminated from autocorrelation frames by normalization,

[1 miny [n]

The period estimation stage nds the most likely beat pe-
riod 7B and tatum period/* for the current frame at time
based on the observed periodicByk] and primitive mu-
sicological knowledge. Likelihood functions are used for
modeling primitive musicological knowledge as proposed
by Klapuri et al. in [3, p. 344-345], although the actual
calculations of the model are different. An overview of the
period estimator are depicted in Hig. 4.

First, weights ' ( |) for the different beat and tatum pe-

[1= P : : 2 riod candidates are calculated as a product of prior distribu-
n=0 [n] N mlnn [n] . 1 i « H H H ”.
tionsp'( ') and “continuity functions”:
See Fig|. B(a) for an example normalized autocorrelation frame. _ " O L#
The gure shows also the correct beat period B, 0.5 seconds, y a1 ox 1 n , @
and tatum period T, 0.25 seconds, as vertical lines. ¢ 1,7 1|E 5 P 272 [ :

Next, accent periodicity is estimated by means offthe
point discrete cosine transform (DCT)

l’( 1
~ (n + 1)k
RK] = o L [n] COST 3)
Co = E =N (4)
& = 2=N; 1 k N L (5)

as de ned in Eqg. (21) in[3, p. 348]. Heré,= A denotes
the tatum and = B denotes the beat. The valug = 0:63

is used. The continuity function describes the tendency that
the periods are slowly varying, thus taking care of “tying”
the successive period estimates together,, is de ned as

the median of three previous period estimates. This is found
to be slightly more robust than just using the estimate from



Figure 5. Likelihood of different beat and tatum periods to
occur jointly.

the previous frame. The priors are lognormal distributions
as described in Eq. (22) inl[3, p. 348].

The output of thdJpdate beat and tatum weighdtep in
Fig.[4 are two weighting vectors containing the evaluated
values of the function§B( B) andfA( ). The values
are obtained by evaluating the continuity functions for the
set of possible periods given the previous beat and tatum
estimates, and multiplying with the priors.

The next stepCalculate nal weight matrixadds in the
modelling of the most likely relations between simultaneous

Figure 6. The phase estimation stage nds the phase of the beat
and tatum pulses, and may also re ne the beat period estimate.

S[ka])=2, where the indice&g andka correspond to the
periods B and 2, respectively. This gives an observation
matrix of the same size as our weighting matrix. The ob-

beat and tatum periods. For example, the beat and tatum are Servation matrix is multiplied pointwise with the weighting

more likely to occur at ratios of 2, 4, 6, and 8 than in ratios
of 1, 3, 5, and 7. The likelihood of possible beat and tatum
period combinations®, A is modelled with a Gaussian
mixture density, as described in Eq. (25)[in [3, p. 348]:

B
WIN (— 1 2)
=1

8)

wherel are the component means angl is the common
variance. Eq/[(8) is evaluated for the setwdf M period
combinations. The weights; were hand adjusted to give
good performance on a small set of test data. [Hig. 5 de-
picts the resulting likelihood surfaag B; #). The nal
weighting function is
r

h(s: )= fB(r?‘)q o( 75 FACH):

Taking the square root spreads the function such that the
peaks do not become too narrow. The resultis a Mal M
likelihood weighting matrixd with values oh( B; A) for

all beat and tatum period combinations.

TheCalculate weighted periodicitstep weights the sum-
mary periodicity observation with the obtained likelihood
weighting matrixH . We assume that the likelihood of ob-
serving a certain beat and tatum combination is proportional
to a sum of the corresponding values of the summary peri-
odicity, and de ne the observatiod( B; ;)= (Slks]+

9)

matrix, giving the weighted M periodicity matrixP

with valuesP( B; ) = h( B; MHo( B, M. The -

nal step is toFind the maximunfrom P. The indices of

the maximum correspond to the beat and tatum period es-
timatesnB , M. The period estimates are passed on to the
phase estimator stage.

2.6. Beat Phase Estimation

The phase estimation stage is depicted in[Hig. 6. The tatum
phase is the same as the beat phase and, thus, only the beat
phase is esp’mated. Phase estimation is based on a weighted
sumvi[n] = i4:1 (6 i)aj[n] of the observed subband ac-
centsignal[n],0 n N 1. Comparedto Eg. (27) in
[3l p. 350], the summation is done directly across the accent
subbands, instead of resonator outputs.

A bank of comb lIters with constant half tim&, and de-
lays corresponding to different period candidates have been
found to be a robust way of measuring the periodicity in ac-
centuation signals [3] [4]. Another bene t of comb Iters
is that an estimate of the phase of the beat pulse is read-
ily obtained by examining the comb lter states [4, p. 593].
However, implementing a bank of comb lIters across the
range of possible beat and tatum periods is computationally
very expensive. The proposed method utilizes the bene ts
of comb Iters with a fraction of the computational cost of
the earlier methods. The phase estimator implements two
comb Iters. The output of a comb Iter with delay and



gain  for the inputv[n] is given by

rin]= rln ]+(1 vinl:

The parameter of the two comb lters is continuously
adapted to match the currerf®() and the previous' ;)
period estimates. The feedback gain= 0:57T¢, where
the half timeT, corresponds to three seconds in samples.

The phase estimation starts by nding a predictignfor
the beat phase, in this frame, the stePhase predictiorn
Fig.[§. The prediction is calculated by adding the current
beat period estimate to the time of the last beat in the previ-
ous frame. Another source of phase prediction is the comb
Iter state, however, this is not always available since the
Iter states may be reset between frames.

The accent signal is passed through the Comb Iter 1,
giving the output 1 [n]. If there are peaks in the accent sig-
nal corresponding to the comb lIter delay, the output level
of the comb Iter will be large due to a resonance.

We then calculate a score for the different phase candi-
1in this frame. The score is

(10)

X
= =7 ] (11)

J||Jj2||

wherel, is the set of indice$l;l + "g;| + 25 ;:::g be-
longing to the current framedi 2 I, : 0 i N 1

The scores are weighted by a function which depends on the
deviation of the phase candidate from the predicted phase
value. More precisely, the weight is calculated according to
Eqg. (33) in[3, p. 350]:

d[ij?

27 (12)

1
w[l]= —p—-exp
3 2
but the distance is calculated in a simpler wajl] = (|
")=" . The phase estimate is the valuel shaximizing
plIwl].
If there are at least three beat period predictions avail-

After the beat period and phase are obtained, the beat
and tatum locations for the current audio frame are inter-
polated. Although this reduces the ability of the system to
follow rapid tempo changes, it reduces the computational
load since the back end processing is done only once for
each audio frame.

3. Implementation

The authors have written a real-time implementation of the
proposed method for the S60 smartphone platform. The im-
plementation uses xed-point arithmetic, where all signals
are represented as 32-bit integers and coef cients as 16-
bit integers. The power estimation low-pass Iter is imple-
mented simply as a rst-order IIR due to the arithmetic used.
Increasing the lter order would have a positive impact on
performance, but the given lter design causes that the co-
ef cients exceed 16-bit dynamic scale. Naturally, the accent
power compression is realized by a 200-point lookup table.
Tables are used also in the period and phase estimation for
ef ciently computing weight function values. The continu-
ity function, the priors, and the likelihood surface shown in
Fig.[§ are stored into lookup tables. Lookup tables are also
utilized for storing precalculated feedback gain values for
the comb lters. For ef ciency, both the autocorrelation and
discrete cosine transform processes are implemented on top
of a fast Fourier transform (FFT).

For low-latency real-time implementation, the algorithm
is split into two execution threads. Referring to Hi@. 1, a
high-priority “front-end” thread runs thesamplingandac-
cent lter bankstages, feeding their results into a memory
buffer. The front-end runs synchronously with other au-
dio signal processingPeriodicity estimatiorand following
stages are run in a low-priority “back-end” thread, which is
signaled when a new accent frame is available flafier-
ing stage. The lower priority allows the back-end processing
to take a longer time without interrupting the audio process-
ing, unlinking audio frame length and accent frame length.

able and the beat period estimate has changed since the last
frame, the above steps are mirrored using the previous beat 4. Evaluation

period as the delay of comb Iter 2. This is depicted by the
right hand side branch in Fig] 6. The motivation for this is
that if the prediction for the beat period in the current frame
is erroneous, the comb lIter tuned to the previous beat pe-
riod may indicate this by remaining locked to the previous

The proposed algorithm is evaluated in two aspects, beat
tracking performance and computational complexity. The
methods of Klapuret al. [3] and Scheirer [4] are used as a
comparison, using the original authors' implementat@]‘ns.

beat period and phase, and producing a more energetic out- 4 1 performance

put and thus larger score than the lter tuned to the erro-
neous current period.

Inthe nal step, the best scores delivered by both branches
are compared, and the one giving the largest score deter-

mines the nal beat period and phase. Thus, if the comb
Iter branch tuned to the previous beat period gives a larger

score, the beat period estimate is adjusted equal to the pre-

vious beat period. The state of the winning comb lter is
stored to be used in the next frame as comb lter 2.

The performance was evaluated by analyzing 192 songs in
CD audio quality. Songs with a steady beat were selected
from various genres. The majority of songs were rock/pop
(43%), soul/R&B/funk (18%), jazz/blues (16%), and elec-

tronic/dance (11%) music, and all except two songs were in
4/4 meter. The beats of approximately one minute long song

1 We wish to thank Anssi Klapuri and Eric Scheirer for making
their algorithm implementations available for the comparison.



Table 1. Beat tracking accuracy scores. Table 2. Processor usage pro les.

Continuity required  Individual estimates Method Mcycles Mcycles/s
Method Correct Accept d/h Period Correct Accept d/h Period Proposed 678 53
Proposed 60% 70% 76% 64% 76% 79% Klapuri (MATLAB) 125000 420
Klapuri 66%  76% 73% 72% 85% 81% Scheirer 136000 450
Scheirer 29% 34% 30% 53% 65% 59% Scheirer withoutnalloc etc. 119000 390

excerpts were annotated by tapping along with the song play- ryntime functions (e.gmalloc ). A second Scheirer pro-
ing. The evaluation methodology followed the one proposed  |e in Table 2 has the runtime functions subtracted. The
in [3], assessing both the period and phase estimation accu- proposed algorithm is found over 170 times more ef cient.

racy of the proposed method. A correct period estimate is e also evaluated the computational complexity of the
de ned to deviate less than 17.5% from the annotated refer- proposed method on a Nokia 6630 smartphone having a

ence, and the correct phase to deviate less than 0.175 timesp20 MHz ARM9 processor. An instruction pro ler was
the annotated beat t|me The fO”OWing scores were CalCU' con gured to Samp'e the processor program counter on a
lated and averaged over the duration of the excerpts and over 1 kHz rate, yielding 302500 data points in total. During
all 192 songs: playback, 13% of processor time was spent in the beat and
tatum tracker implementation and 8% in MP3 format de-
coding. The pro le shows the algorithm to perform very ef-
ciently, comparable to the complexity of the MP3 decoder.

Correct: Beat estimate with correct period and phase.

Accept d/h: Beat estimate with period matching either
0.5, 1.0, or 2.0 times the correct value, and correct 5. Conclusion

hase. i
P A beat and tatum tracker algorithm can be made computa-

Period: Beat estimate with correct period, phase is tionally very ef cient without compromising beat tracking
ignored. performance. We introduced a novel beat and tatum tracker
for music signals, consisting of multirate accent analysis,
We calculated the scores for both the longest continuous discrete cosine transform periodicity analysis, and phase es-
correctly analyzed segment and individual estimates without timation by adaptive comb ltering. The complexity of the
continuity requirement. For comparison, the methods pro- proposed method is less than 1% of Scheirer's method, and
posed in[[3] and[[4] were run on the same data. The results its beat tracking accuracy approaches Klapuri's method. The
are shown in Table|1. In summary, the proposed method ap- authors have created a real-time implementation of the pro-
proaches the Klapust al. method performance in all of the posed method for the S60 smartphone platform.
cases. The blggest_ dewaﬂpns are in the.Schelrer method References
scores with continuity requirement, re ecting the lack of

beat period smoothing in the Scheirer method. [1] J.A. Bilmes. “Timing is of the Essence: Perceptual and Com-

] putational Techniques for Representing, Learning, and Re-
4.2. Complexity producing Expressive Timing in Percussive Rhythm.” M.Sc.
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Music Tempo Estimation with k-NN Regression

*Antti Eronen and Anssi Klapuri

Abstract—An approach for tempo estimation from musical pieces
with near-constant tempo is proposed. The method consists of three
main steps: measuring the degree of musical accent as a function of
time, periodicity analysis, and tempo estimation. Novel accent features
based on the chroma representation are proposed. The periodicity of the
accent signal is measured using the generalized autocorrelation function,
followed by tempo estimation usingk-Nearest Neighbor regression. We
propose a resampling step applied to an unknown periodicity vector
before nding the nearest neighbors. This step improves the performance
of the method signi cantly. The tempo estimate is computed as a distance-
weighted median of the nearest neighbor tempi. Experimental results
show that the proposed method provides signicantly better tempo

Fig. 1. Overview of the proposed method

estimation accuracies than three reference methods. onset detection and then use e.g. inter onset interval (10l) histogram-
Index Terms—Music tempo estimation, chroma features,k-Nearest ming to nd the most frequent periods, see e.g. [7], [8]. However,
Neighbor regression. it has been found better to measure musical accentuation in a

continuous manner instead of performing discrete onset detection [9].
A time-frequency representation such as energies at logarithmically
distributed subbands is usually used to compute features that relate

Musical meter is a hierarchical structure, which consists of pul$¢e the accents [2], [10]. This typically involves differentiation over
sensations at different time scales. The most prominent level is tlirae within the bands. Alonset al. use a subspace analysis method
tactus often referred as the foot tapping rate or beat. Tmpo to perform harmonic+noise decomposition before accent feature
of a piece is de ned as the rate of the tactus pulse. It is typicalgnalysis [11]. Peeters proposes the use of a reassigned spectral
represented in units of beats per minute (BPM), with a typical temmmergy ux [12], and Davies and Plumbley use the complex spectral
being of the order of 100 BPM. difference [3].

Human perception of musical meter involves inferring a regular Accent feature extraction is typically followed by periodicity
pattern of pulses from moments of musical stress, adceents[1, analysis using e.g. the autocorrelation function (ACF) or a bank
p.17]. Accents are caused by various events in the musical surfagecomb- Iter resonators. The actual tempo estimation is then done
including the beginnings of all discrete sound events, especially thg picking one or more peaks from the periodicity vector, possibly
onsets of long pitched sounds, sudden changes in loudness or timlargighted with the prior distribution of beat periods [2], [13], [10].
and harmonic changes. Many automatic tempo estimators try However, peak picking steps are error prone and one of the potential
imitate this process to some extent: measuring musical accentuatiperformance bottlenecks in rhythm analysis systems.
estimating the periods and phases of the underlying pulses, andn interesting alternative to peak picking from periodicity vectors
choosing the level corresponding to the tempo or some other metrivgls proposed by Seyerlehredral, who used th&-Nearest Neighbor
level of interest [2]. algorithm for tempo estimation [14]. Using theNearest Neighbor

Tempo estimation has many applications, such as making seamigg®rithm was motivated based on the observation that songs with
"beatmixes” of consecutive music tracks with the help of beaflose tempi have similar periodicity functions. The authors searched
alignment and time stretching. In disc jockey applications metrictlie nearest neighbors of a periodicity vector and predicted the tempo
information can be used to automatically locate suitable loopiragcording to the value that appeared most often withirkthengs but
points. Visual appeal can be added to music players with beditl not report signi cant performance improvement over reference
synchronous visual effects such as virtual dancing characters. Ottrathods.
applications include nding music with certain tempo from digital It should be noted that in the tempo estimation task, the temporal
music libraries in order to match the mood of the listener or tpositions of the beats are irrelevant. In this sense, the present task dif-
provide suitable motivation for the different phases of a sporfsrs from full meter analysis systems, where the positions of the beats
exercise. In addition, automatically extracted beats can be usednged to be produced for example with dynamic programming [2],
enable musically-synchronized feature extraction for the purposes[®], [12], [15], [11] or Kalman Itering [16]. A full review of meter
structure analysis [3] or cover song identi cation [4], for example. analysis systems is outside the scope of this article due to space

restrictions. See [17] and [18] for more complete reviews.

|I. INTRODUCTION

A. Previous work

Tempo estimation methods can be divided into two main categorigs Proposed method

according to the type of input they process. The earliest onesln this paper, we study the use of tkeNearest Neighbor algorithm
processed symbolic (MIDI) input or lists of onset times and durationfgr tempo estimation further. This is referred ladNN regression as
whereas others take acoustic signals as input. Examples of systéiestempo to be predicted is continuous-valued. Several improvements
processing symbolic input include the ones by Rosenthal [5] amade proposed that signi cantly improve the tempo estimation accuracy
Dixon [6]. usingk-NN regression compared to the approach presented in [14].
One approach to analyze acoustic signals is to perform discrétiest, if the training data does not have instances with very close tempi
to the test instance, the tempo estimation is likely to fail. This is a
A. Eronen is with Nokia Research Center, Finland, P.O. Box 100, FINjyite common situation in tempo estimation because the periodicity
33721 Tampere, Finland. E-mail: antti.eronen@nokia.com. . - .
A. Klapuri is with the Department of Signal Processing, Tampere Universi%g}ectors tend to be sharply peaked at the bgat pgrlod and its multiples
of Technology, Finland. E-mail: anssi.klapuri@tut. . and because the tempo value to be predicted is continuous valued.
Manuscript received Month XX, XXXX; revised Month XX, XXXX. With distance measures such as the Euclidean distance even small
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Fig. 2. Overview of musical accent analysis. The numbers between blocks indicate the data dimensionality if larger than one.

differences in the locations of the peaks in the periodicity vectoFnally the octave equivalence classes are summed over the whole
can lead to a large distance. We propose here a resampling stepitch range using a resolution of three bins per semitone to produce
be applied to the unknown test vector to create a set of test vectar86 dimensional chroma vectgp(k), wherek is the frame index
with a range of possible tempi, increasing the likelihood of nding @and b = 1;2;:::;by is the pitch class index, withy = 36. The
good match from the training data. Second, to improve the quality ofatrix x,(k) is normalized by removing the mean and normalizing
the training data we propose to apply an outlier removal step. Thitthe standard deviation of each chroma coef cient over time, leading
we observe that the use of locally weightkeNN regression may to a normalized matriky (k).
further improve the performance. 2) Musical accent calculationNext, musical accent is estimated
The proposek-NN regression based tempo estimation is testdshsed on the normalized chroma matig(k), k = 1;:5K,
using ve different accent feature extractors to demonstrate the= 1;2;::;by, much in a similar manner as proposed in [2], the
effectiveness of the approach and applicability across a rangenodin difference being that frequency bands are replaced with pitch
features. Three of them are previously published and two are noesses. First, to improve the time resolution, the chroma coef cient
ones and use pitch chroma information. Periodicity is estimatethvelopes are interpolated by a factor eight by adding zeros between
using the generalized autocorrelation function which has previoushye samples. This leads to the sampling rate= 172 Hz. The
been used for pitch estimation [19], [20]. The experimental resulisterpolated envelopes are then smoothed by applying a sixth-order
demonstrate that the chroma accent features perform better tBarterworth low-pass Iter (LPF) withf » = 10 Hz cutoff. The
three of the four reference accent features. The proposed methesulting smoothed signal is denoted hy(n). This is followed by
is compared to three reference methods and is shown to perfdnalf wave recti cation and weighted differentiation steps. A half-wave
signi cantly better. recti ed (HWR) differential of z,(n) is rst calculated as
An overview of the proposed method is depicted in Figure 1. First, 0
chroma features are extracted from the input audio signal. Then, zp(n) = HWR(zo(n) i zo(n i 1)); @
accentuation is measured at different pitch classes, and averaged @ifre the function HWER) = max( x; 0) sets negative values to
the pitch classes to get a single vector representing the accentuafigfb and is essential to make the differentiation useful. Next we form
over time. Next, periodicity is analyzed from the accent signal. Theweighted average af,(n) and its differentialzd(n):
obtained periodicity vector is then either stored as training data f
to be used in estimating tempo in the future (training phase), or up(N)= (1 i ,)zo(n)+ , ——2z3(n); 2
subjected for resampling and tempo estimation (estimation phase). fie
The following sections describe the various phases in detail. where0 - | - 1 determines the balance betwemyn) and z2(n),
and the factorf, =f p compensates for the small amplitude of the
Il. METHOD differential of a low-pass- Itered signal [2].
) ) Finally, bands are linearly averaged to get a single accent signal
A. Musical accent analysis a(n) to be used for periodicity estimation. It represents the degree
1) Chroma feature extraction:The purpose of musical accentof musical accent as a function of time.
analysis is to extract features that effectively describe song onset
information_and discard information irrelevant for tempo estimatioré_ Periodicity analysis
In our earlier work [2], we proposed an accent feature extractor = o ) .
which utilizes 36 logarithmically distributed subbands for accent Periodicity analysis is carried out on the accent signal. Several
measurement and then folds the results down to four bands befBfgiodicity estimators have been proposed in the literature, such as
periodicity analysis. the inter-onset interval histogramming [7], auto_correlatlon function
In this work, a novel accent analysis front end is described whiéACF) [23], or comb lter banks [24]. In this paper, we use
further emphasizes the onsets of pitched events and harmonic chafiggsdeneralized autocorrelation function (GACF) which is compu-
in music and is based on the chroma representation used earlieri@gionally efcient and has proven to be a robust technique in
music structure analysis in [21]. Figure 2 depicts an overview of tBultipitch analysis [20]. The GACF is calculated without windowing
proposed accent analysis. The chroma features are calculated ulfirgf'ccessive frames of lengti and 16% overlap. The input vector
a multiple fundamental frequency (FO) estimator [22]. The inp@m at themth frame has the length @W after zero padding to
signal sampled at 44.1 kHz sampling rate and 16-bit resolution j4ice its length:
rst divided into 93 ms frames with 50% overlap. In each frame, the am =[a(mi HW);:na(mW i 1);0::5 00 @)
salience, or strength, of each FO candidate is calculated as a weighted
sum of the amplitudes of its harmonic partials in a spectrally whiten&here T denotes transpose. The GACF is de ned as ([19]):
signal frame. The range of fundamental frequencies used here is N\ = ; ipy.
80 — 640 Hz. Next, a transform is made into a musical frequency Y (¢) = IDFT(DFT(@m)IT); @)
scale having a resolution of 1/3rd-semitone (36 bins per octavey)here DFT stands for Discrete Fourier Transform and IDFT its
This transform is done by retaining only the maximum-saliendaverse. The coef cienp controls the frequency domain compression.
fundamental frequency component for each 1/3rd of a semitone rangg (¢) gives the strength of periodicity at period (lag) The GACF
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median of the nearest neighbor tempi. In conventidalN regres-
sion, the property value of an object is assigned to be the average
of the values of itk nearest neighbors. The distance to the nearest
neighbors is typically calculated using the Euclidean distance.
In this paper, several problem-speci c modi cations are proposed
to improve the performance of tempo estimation ustryN regres-
sion. First, a resampling step is proposed to alleviate problems caused
by mismatches of the exact tempo values in the testing and training
data. Distance measures such as the Euclidean distance or correlation
distance are sensitive to whether the peaks in the unknown periodicity
vector and the training vectors match exactly. With the resampling
step it is more likely that similarly shaped periodicity vector(s) with
a close tempi are found from the training set. Resampling is applied
to "stretch” and "shrink” the unknown test vectors to increase the
likelihood of a matching training vector to be found from the training
set. Since the tempo values are continuous, the resampling ensures
Fig. 3. Upper panel: periodicity vectors of musical excerpts in our evaluatithat we do not need to have a training instance with exactly the same
Qatf_is¢_a|t ordered in‘ascendi‘r;g Eﬁgpg;{%ﬁr.oﬁqﬁ:h2gisofchh;npienrio\cliviiﬂ]t%g;cfgfﬁpo as the test instance in order to nd a good match.
Il_soa;?rl g;r?glrzocsgrfe"sag?)i’dmg annort)ated tempi of tphe pieces. I P2Thus, given a periodicity vectas(¢) with unknown tempor, we
generate a set of resampled test vec$p(g), where subscript indi-
cates the resampling ratio. A resampled test vector will correspond to

was selected because it is straightforward to implement as usueﬁlt_ mpodofil':lr.. Weltested Vg“O‘%S pt?ssmle r;mgsi.Tr the res?(mphng
the fast Fourier transform routines are available, and it suf ces {glo, an 5 linearly spaced ratios betw@s8i7 and1:15were taken

optimize the single paramet@rto make the transform optimal for Into use. Thus, for; piece havmgfatem_pfo of 120 BPM the resampled
different accent features. The conventional ACF is obtained witff¢tors correspon to a range o t.em.pl. rom 104 to 138 BPM.

p = 2. We optimized the value op for different accent features When receiving an unknown penoo!lcny ve_ctor, we rst create the
by testing a range of different values and performing the termSSsampIed test vectoss (¢). The Euclidean distance between each

estimation on a subset of the data. The value that led to the bE&{ning vectortm (¢) and the resampled test vectors is calculated as

performance was selected for each feature. For the proposed chroma S x

accent features, the value used vpas 0 :65. d(m;r) = (tm(e)i sr(e))? (6)
At this step we have a sequence of periodicity vectors computed ¢

in adjacent frames. If the goal is to perform beat tracking where the ) . o o

tempo can vary in time, we would consider each periodicity Vect&herem =1;::; M is the index of the training vector. The minimum

separately and estimate the tempo as a function of time from eégﬁtanca_i(m) =min d(_m;r) i_s stored for each trainirlg_ instanc_re
gng with the resampling ratio that leads to the minimum distance

vector separately. In this paper, we are interested in getting a sin | . >
) = argmin , d(m;r). Thek nearest neighbors that lead to te

representative tempo value for each musical excerpt. Therefore, .
obtain a single representative periodicity vectéf (¢) for each lowest values ofi(m) are t_hen used to estlmate_the L_Jn_known tempo.
he annotated temp@ann(i) of the nearest neighbdr is now an

musical excerpt by calculating point-wise median of the periodicitil; - T
ate of the resampled test vector tempo. Multiplying the nearest

vectors over time. This assumes that the excerpt has nearly constat) " A . o
tempo and is suf cient in applications where a single representati!?t?'ghbor tempo with the ratio gives us an estimate of the original

tempo value is desired. The median periodicity vector is furth&fSt Vector tempoP(i) = Tane(i)bXi).

normalized to remove the trend due to the shrinking window for T"€ nal tempo estimate is obtained as a weighted median of
larger lags the nearest neighbor tempo estlmaﬁs), i =1;::; k. Due to the

1 weighting, training instances close to the test point have a larger
W él/aﬁed (&): (®)  effect on the nal tempo estimate. The weights for the k nearest

. . ) . . neighbors are calculated as
The nal periodicity vector is obtained by selecting the range of bins

corresponding to periods from 0.06 s to 2.2 s, and removing the mean _ p expi td(@i) . 7
and normalizing the standard deviation to unity for each periodicity e ik_l exp (i °d(i)) '
vector.

The resulting vector is denoted 8(¢). Figure 3 presents the where the parametér controls how steeply the weighting decreases
periodicity vectors for the songs in our evaluation database, ordekggh increasing distancd, andi = 1;::;k. The value® = 40 was
in ascending tempo order. Indeed, the shape of the periodicity vectgjgnd by monitoring the performance of the system with a subset
is similar across music pieces, with the position of the peaks changi®@the data. The exponential function ful Is the requirements for a
with tempo. weighting function in locally weighted learning: the maximum value
is at zero distance, and the function decays smoothly as the distance
increases [25]. The tempo estimate is then calculated as a weighted
median of the tempo estimaté%(i) using the weightsv; with the

The tempo estimation is formulated here as a regression problgmocedure described in [26]. The weighted median gives signi cantly
given the periodicity observatios(¢), we estimate the continuous better results than a weighted mean. The difference between weighted
valued tempoT . In this paper, we propose to use locally weightednedian and unweighted median is small but consistent in favor of
learning ([25]) to solve the problem. More speci cally, we uke the weighted median when the paramétes properly set.
Nearest Neighbors regression and compute the tempo as a weightdd addition, the use of an outlier removal step is evaluated to

oned (&) =

C. Tempo estimation biy-NN regression
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improve the quality of the training data. We implemented leave-
one-out outlier removal as described in [27]. It works within the
training data by removing each sample in turn from the training data,
and classifying it by all the rest. Those training samples that are
misclassi ed are removed from the training data.

Ill. RESULTS

This section looks at the performance of the proposed method in

simulations and compares the results to three reference systemsm@gds. Distribution of the annotated tempi in the evaluation database.
three accent feature extractors.

A. Experimental setup is also provided by Ellis [29]. The second reference method was
oposed by ourselves in [2] and was the best performing method

. . . . . I
i A d?tal;)astﬁ of 35,[5 mu&gatlhpnter(]:es W't? €D quallti/halédlo_rvr\l/as us%it e Music Information Retrieval Evaluation eXchange (MIREX
0 evaluate the system and the three relerence metnods. The musjagy ) evaluations [9]. The third has been described in [13] and is

plecte_s were a TUbéefb f th_e materlgl ulsed n [2].hThe ?ﬁt?psst_ ased on a computationally ef cient accent feature extraction based
contains examples ot various musical genres wnhose disributig ., tirate analysis, discrete cosine transform periodicity analysis,

is the following: 82 classical pieces, 28 electronic/dance, 12 h d . - - N . ) .
. period determination utilizing simpli ed musicological weight
hopirap, 60 jazz/blues, 118 rockipop, 42 soul/RnB/funk, and Jf nctions. The comparison against the Ellis method may not be

world/folk. Full listing of the database is available at www.cs.tutCOrnpletely fair as it has not received any parameter optimization on

/> eror_len/ttalslpOB-temptCJ-(I:iataset.htmI. -It—hf beat Was; agnotated_frg subset of the data used. However, the two other methods have
approximatély one-minute fong representative Excerpts by a musicigl, , developed on the same data and are thus good references.

who tapped along with the pieces. The grou_nd truth te_mpo for eac In addition to comparing the performance of the proposed method
excerpt is calculated based on the median inter-beat-interval of %ethe complete reference systems, we also evaluate the proposed

tapped beats. The distribution of tempi is depicted in gure 4. musical accent measurement method against four other features. This

We follow here the evaluation presented in [14]. Evaluation is dorfgdone by using the proposkeNN regression tempo estimation with

ysmg_leave-one_—out cross validation: the_tempo of the unknown SO0%ent features proposed elsewhere. Comparisons are presented to
is estimated using all the other songs in the database. The te

- . ) : . 8 auditory spectrogram based accent features: rst using a critical

estimate Is de ned to be correct if the predicted tempo estimate ja g scaie as presented in [2] (KLAP) and the second using the Mel-

within 4% (.)f the annotated te!“p": frequency scale (MEL). Another two accent features are based on the
Along with the tempo estimation accuracy, we also report adrature mirror lter bank of [13] (QMF), and a straightforward

tempo category classi cation accuracy. Three tempo categories w te f Vs IMPLE). Th in diff h
de ned: from 0 to 90 BPM, 90 to 130 BPM, and above 130 BPM(.E oma feature analysis (S ). The main difference between the

Classi cati f the t : X idered tl if tvarious methods is how the frequency decomposition is done, and
assi cation ot the tempo category IS considered successiul 1 many accent bands are used for periodicity analysis. In the
predicted tempo falls within the same category as the annota

- N ” . . . o e of the MEL features, the chroma vectgfk] is replaced with
tempo. This kind of "rough” tempo estimate is useful in applicatio e output band powers of the corresponding auditory Iterbank. In
that would only require e.g. classifying songs to slow, medium, ar

. dition, logarithmic compression is applied to the band envelopes
fast categories. E¥

The decisi hether the diff . tes is statisti efore the interpolation step, and each nine adjacent accent bands
€ decision whether the diflerences in error rates 1S StalistiCalye ¢ompined into one resulting into four accent bands. Periodicity

signi cantlls dong using McNemar's test [.28]' The test .assumeashalysis is done separately for four bands, and nal periodicity vector
that the trials are mc?epe_ndent., an assumption that hol_ds IN our CaSBhtained by summing across bands. See the details in [2]. In the
since the tempo estimation t_rlals are performed on different mu se of the QMF and KLAP front ends, the accent feature calculation
tracks. The null hypothesi, is as follows: given that only one of is as described in the original publications [13] and [2]. The method

the two algorithms makes an error, it is equally likely to be eitheélMPLE differs from the method proposed in this paper in how the

one. Thus, this test considers those trials where two systems m@h?oma features are obtained: whereas the proposed method uses

different predictions, since no information on their relative dil‘ferencg:aliences of FO estimates mapped on a musical scale, the method

rEqMPLE simply accumulates the energy of FFT bins to 12 semitone
bins. The accent feature parameters such asere optimized for
both the chroma accent features and the MEL accent features using
%4 subset of the data. The parameters for the KLAP and QMF methods
are as presented in the original publications [13] and [2]. The frame
size and frame hop for the methods MEL and SIMPLE is xed
at 92.9 ms and 46.4 ms, respectively. The KLAP feature extractor
utilizes a frame size of 23 ms with 50% overlap.

test is calculated as described in [28, Section 3], Hndis rejected
if the P-value is less than a selected signi cance le®elWe report
the results using the following signi cance levels and wording
P, 0:05, not signicant (NS);0:01 - P < 0:05, signi cant (S);
0:0001- P < 0:01, very signi cant (VS); andP < 0:0001, highly
signi cant (HS).

B. Reference methods

To put the results in perspective, the results are presenteddn Experimental results

comparison to three reference methods. The rst was described by, .
Ellis [10], and is based on an accent feature extractor using t el) Comparison to reference methodRable | shows the results of

mel-frequency lterbank, autocorrelation periodicity estimation, ant € proposed method in comparison with the reference systems. The

d : : . . . Statistical signi cance is reported under each accuracy percentage
ynamic programming to nd the beat times. The implementation ;
In comparison to the proposed method. All the reference systems

1The subset consisted of all music tracks to which the rst author ha@Utput both the period and timing of the beat time instants and the
access. output tempo is calculated based on the median inter beat interval. We
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TABLE | TABLE IV
RESULTS IN COMPARISON TO REFERENCE METHODSIHE STATISTICAL CONFUSION MATRIX IN CLASSIFYING INTO TEMPO CATEGORIES SLOWO
TESTS ARE DONE IN COMPARISON TO THE PROPOSED METHOD IN THE 70 90 BPM),MEDIUM (90 TO 130 BPM),AND FAST (OVER 130 BPM)
LEFTMOST COLUMN. FOR THE PROPOSED METHODROWS CORRESPOND TO ANNOTATED TEMPO

CATEGORIES COLUMNS TO ESTIMATED TEMPO CATEGORIES

Proposed|| Ellis [10] Sepranen Klapuri
etal.[13] || etal.[2] ] [ slow || medium || fast |
Tempo 79% 45% 64% 71% slow 76% 16% 8%
Signi cance - HS HS HS medium || 4% 96% 0%
Tempo category| 77% 52% 64% 68% fast 28% 14% 58%
Signi cance - HS HS VS
TABLE V
TABLE I CONFUSION MATRIX IN CLASSIFYING INTO TEMPO CATEGORIES FOR THE
RESULTS WITH DIFFERENT ACCENT FEATURE EXTRACTORS REFERENCE METHODKLAPURI et al.[2]. ROWS CORRESPOND TO
ANNOTATED TEMPO CATEGORIES COLUMNS TO ESTIMATED TEMPO
| Proposed]| KLAP [| SIMPLE [[ MEL [[ QMF | CATEGORIES
Tempo 79% 76% 73% || 75% || 63% [ slow || medium || fast |
Signi cance - NS S HS HS Slow 60% 30% 10%
Tempo category 7% 75% 75% 74% 72% medium 1% 99% 0%
Signi cance - NS NS VS S fast 320 24% 14%
TABLE I
RESULTS WHEN DISABLING CERTAIN STEPS COMPARE THE RESULTS TO
THE COLUMN "PROPOSED OF TABLES | AND II. periodicity vector can lead to a large distance.

The outlier removal step does not have statistically signi cant

H No resamp'H No outlier rem. H Plain median effect on the performance when using the chroma features. However,

Tempo 75% 78% 7% this is the case only with the chroma features for which the result
Signi cance S NS NS is shown here. The accuracy obtained using the chroma features
Tempo category 72% 79% 76% is already quite good and the outlier removal step is not able to
Signi cance VS NS NS improve from that. For all other features the outlier removal improves

the performance in both tempo and tempo category classi cation
by several percentage points (the results in Table Il are calculated

observe a highly signi cant or very signi cant performance differencé("Ith outl_ler removal_ ena_bled). Using distance bz_asgd Wel_ght_lng n
in comparison to all the reference methods in both tasks the median calculation gives a small but not statistically signi cant

2) Importance of different elements of the proposed metHdud Improvement in the accuracy. ) o
following experiments study the importance of different elements of 3) Performance across tempo categorigSxamining the perfor-
the proposed method in detail. Table Il presents the results obtaifB@nNce across in classifying within different tempo categories is
using different accent feature extractors. The performance of a certilitstrative of the performance of the method, showing how evenly
accent feature extractor depends on the parameters used, sucH'@gnethod performs with slow, medium, and fast tempi. Tables IV
the parameter controlling the weighted differentiation described®nd V depict the confusion matrices in tempo category classi cation
in section 1I-A2. There is also some level of dependency betwedl the proposed method and the best performing reference method,
the accent features and periodicity estimation parameters, i.e. fRéPectively. Rows correspond to presented tempo, columns to the
length of the GACF window, and the exponent used in computi timated tempo category. Errors with slow and fast tempi cause
the GACF. These parameters were optimized for all accent featuf@§ accuracy of tempo category classi cation to be generally smaller
using a subset of the database, and the results are reported for#§@ that of tempo estimation. Both methods perform very well in
best parameter setting. classifying the tempo category within the medium range of 90 to

The proposed chroma accent features based on FO salience189. BPM. However, especially fast tempi are often underestimated
timation perform best, although the difference is not statistical@’sa factor of two: the proposed method would still classify 28% of
signi cant in comparison to the accent features proposed earli t pieces as slow. Very fast tempi might deserve special treatment
in [2]. The difference in comparison to the three other front ends IR future work.
tempo estimation is statistically signi cant. The accent features based4) Effect of training data sizeThe quality and size of the training
on the QMF-decomposition are computationally very attractive armthta has an effect on the performance of the method. To test the effect
may be a good choice if the application only requires classi catioof the training data size, we ran the proposed method while varying
into rough tempo categories, or if the music consists mainly dfie size of the training data. The outlier removal step is omitted.
material with a strong beat. Figure 5 shows the result of this experiment. Uniform random

Table Il shows the results when the resampling step in temsamples with a fraction of the size of the complete training data were
regression estimation or the outlier removal step is disabled, wsed to perform classi cation. A graceful degradation in performance
when no weighting is used when computing the median of nearésbbserved. The drop in performance becomes statistically signi cant
neighbor tempo estimates. The difference in performance when #itetraining data size of 248 vectors, however, over 70% accuracy
resampling step is removed is signi cant. Our explanation for this is obtained using only 71 reference periodicity vectors. Thus, good
that without the resampling step it is quite unlikely that similarlyperformance can be obtained with small training data sizes if the
shaped example(s) with close tempi are found from the trainimgference vectors span the range of possible tempi in a uniform
set, and even small differences in the locations of the peaks in timanner.
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59. 6. Comparison of errors made by the proposed method using the chroma
accent features (solid line) and the KLAP accent features (dot). The excerpts
are ordered according to increasing error made by the proposed method, thus
the order is different than in gure 3.

Fig. 5. Effect of training data size (number of reference periodicity vector
on tempo estimation accuracy.

5) Using an artist lter: There are some artists in our database
which have more than one music piece. We made a test using the so-
called artist Iter to ensure that this does not have a positive effect on
the results. Pampalk has reported that using an artist lter is essentiaf\ robust method for music tempo estimation was presented. The
for not to overtrain a musical genre classier [30]. We reran th&nethod estimates the tempo using locally weigtkelN regression
simulations of the proposed method and, in addition to the test sod§d periodicity vector resampling. Good performance was obtained
excluded all songs from the same artist. This did not have any effét combining the proposed estimator with different accent feature
on the correctly estimated pieces. Thus, musical pieces from the s@igactors.
artist do not overtrain the system. The proposed regression approach was found to be clearly superior

6) Computational complexityTo get a rough idea of the com- compared to peak picking techniques applied on the periodicity
putational complexity of the method, a set of 50 musical excerptéctors. We conclude that most of the improvement is attributed to the
were processed with each of the methods and the total run tifigression based tempo estimator with a smaller contribution to the
was measured. From fastest to slowest, the total run times are Pgoposed FO-salience chroma accent features and GACF periodicity
seconds for Segmenet al. [13], 144 seconds for the proposedestimation, as there is no statistically signi cant difference in error
method, 187 seconds for Ellis [10], and 271 seconds for Klaguri rate when the accent features used in [2] are combined with the
al. [2]. The Klapuri et al. method was the only one that wasproposed tempo estimator.
implemented completely in C++. The Sépenet al. and Ellis In addition, the proposed regression approach is straightforward to
methods were Matlab implementations. The accent feature extractigiplement and requires no explicit prior distribution for the tempo as
of the proposed method was implemented in C++, the rest in Matldbe prior is implicitly included in the distribution of tHe-NN training

data vectors. The accuracy degrades gracefully when the size of the
training data is reduced.

V. CONCLUSION

IV. DISCUSSION AND FUTURE WORK
Several potential topics exist for future research. There is some REFERENCES
potential for further improving the accuracy by comt_nnmg dlffgrent[lé E. Lerdahl and R. Jackendofh Generative Theory of Tonal Music
types of features as suggested by one of the reviewers. Figure 6 cambridge, MA, USA: MIT Press, 1983.
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