
Tampere University of Technology

Model-Driven Development of Control Applications

Citation
Vepsäläinen, T. (2015). Model-Driven Development of Control Applications: On Modeling Tools, Simulations and
Safety. (Tampere University of Technology. Publication; Vol. 1303). Tampere University of Technology.

Year
2015

Version
Publisher's PDF (version of record)

Link to publication
TUTCRIS Portal (http://www.tut.fi/tutcris)

Take down policy
If you believe that this document breaches copyright, please contact cris.tau@tuni.fi, and we will remove access
to the work immediately and investigate your claim.

Download date:18.11.2019

https://tutcris.tut.fi/portal/en/publications/modeldriven-development-of-control-applications(80fc4597-e40f-4569-911f-733dbcd6022e).html
https://tutcris.tut.fi/portal/en/publications/modeldriven-development-of-control-applications(80fc4597-e40f-4569-911f-733dbcd6022e).html
https://tutcris.tut.fi/portal/en/publications/modeldriven-development-of-control-applications(80fc4597-e40f-4569-911f-733dbcd6022e).html

Tampereen teknillinen yliopisto. Julkaisu 1303
Tampere University of Technology. Publication 1303

Timo Vepsäläinen

Model-Driven Development of Control Applications:
On Modeling Tools, Simulations and Safety

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Festia Building, Auditorium Pieni Sali 1,
at Tampere University of Technology, on the 5th of June 2015, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2015

ISBN 978-952-15-3528-4 (printed)
ISBN 978-952-15-3536-9 (PDF)
ISSN 1459-2045

iii

Abstract

Control systems are required in various industrial applications varying from individual
machines to manufacturing plants and enterprises. Software applications have an
important role as an implementation technology in such systems, which can be based on
Distributed Control System (DCS) or Programmable Control System (PLC) platforms,
for example. Control applications are computer programs that, with control system
hardware, perform control tasks. Control applications are efficient and flexible by
nature; however, their development is a complex task that requires the collaboration of
experts and information from various domains of expertise.

This thesis studies the use of Model-Driven Development (MDD) techniques in control
application development. MDD is a software development methodology in which
models are used as primary engineering artefacts and processed with both manual work
and automated model transformations. The objective of the thesis is to explore whether
or not control application development can benefit from MDD and selected
technologies enabled by it. The research methodology followed in the thesis is the
constructive approach of design science.

To answer the research questions, tools are developed for modeling and developing
control applications using UML Automation Profile (UML AP) in a model-driven
development process. The modeling approach is developed based on open source tools
on Eclipse platform. In the approach, modeling concepts are kept extendable. Models
can be processed with model transformation techniques that plug in to the tool. The
approach takes into account domain requirements related to, for example, re-use of
design. According to assessment of industrial applicability of the approach and tools as
part of it, they could be used for developing industrial DCS based control applications.

Simulation approaches that can be used in conjunction to model-driven development of
control applications are presented and compared. Development of a model-in-the-loop
simulation support is rationalized to enable the use of simulations early while taking
into account the special characteristics of the domain. A simulator integration is
developed that transforms UML AP control application models to Modelica Modeling
Language (ModelicaML) models, thus enabling closed-loop simulations with
ModelicaML models of plants to be controlled. The simulation approach is applied
successfully in simulations of machinery applications and process industry processes.

Model-driven development of safety applications, which are parts of safety systems,
would require taking into account safety standard requirements related to modeling

iv

techniques and documentation, for example. Related to this aspect, the thesis focuses on
extending the information content of models with aspects that are required for safety
applications. The modeling of hazards and their associated risks is supported with fault
tree notation. The risk and hazard information is integrated into the development
process in order to improve traceability. Automated functions enable generating
documentation and performing consistency checks related to the use of standard
solutions, for example. When applicable, techniques and notations, such as logic
diagrams, have been chosen so that they are intuitive to developers but also comply with
recommendations of safety standards.

Keywords: control application, model-driven development, modeling, simulation,
safety

v

Preface

The research, on which this thesis builds upon, has been carried out at the Department
of Automation Science and Engineering at the Tampere University of Technology
(TUT). The research work was conducted between 2008 and 2014 as part of several
joint-funded research projects in collaboration with Tekes the Finnish Funding Agency
for Innovation, other research institutes as well as both Finnish and international
companies. During the years 2012-2015, the funding of TUT President’s Doctoral
Program made it possible to focus on the thesis work with less project pressure.

For being able to finish this thesis, I must thank several people. First and foremost, I
would like to thank the supervisor of my studies, Professor Seppo Kuikka, for the
possibility to work in the Automation Software research group and for all the guidance
during the work. Without the support and trust, completing this thesis would not have
been possible.

I want to thank Professor Georg Frey from Saarland University and Research Professor
Tommi Karhela from the VTT Technical Research Centre of Finland for the preliminary
examination of the thesis and for the remarks and feedback. I want to thank Professor
Georg Frey and Professor Kauko Leiviskä from the University of Oulu for acting as
opponents in the public examination.

I would like to thank the professors, colleagues and the personnel of the Department of
Automation Science and Engineering for the pleasant and motivating working
environment. Especially I would like to thank the members of the Automation Software
research group with whom I have had the pleasure to work. I want to thank Dr. David
Hästbacka, Lic.Sc. Outi Rask, Jari Rauhamäki and Petri Kannisto but also the former
members of the group. I would also like to thank the colleagues and friends from Aalto
University and VTT Technical Research Centre of Finland. With many of these people,
I have also had the honor to co-author publications.

Thanks also to my friends for helping me forget the work and studies every once in a
while. Finally, I am grateful to my parents for their support and encouragement during
my M.Sc. and doctoral studies that turned out to take quite some time.

Lempäälä, 4th May 2015

Timo Vepsäläinen

vii

Contents

Abstract .. iii
Preface ... v
Contents... vii
List of Included Publications ... xi
List of Abbreviations ... xiii
List of Figures ... xv
1 Introduction .. 1

1.1 Background ... 1
1.2 Research Questions ... 3
1.3 Scope of the Thesis .. 3
1.4 Research Methodology .. 4
1.5 Contributions of the Thesis .. 6
1.6 Organization of the Thesis ... 7

2 Technological Background ... 9
2.1 Modeling and Model-Driven Development .. 9

2.1.1 Model-Driven Development .. 9
2.1.2 UML and SysML ... 10
2.1.3 Metamodels and Meta Object Facility .. 10
2.1.4 Model Transformations and QVT .. 11

2.2 Simulations ... 12
2.2.1 Overview ... 12
2.2.2 XiL Simulations... 12
2.2.3 Modelica and ModelicaML .. 13

2.3 Safety .. 13
2.3.1 Overview ... 13
2.3.2 IEC 61508 ... 14
2.3.3 Systematic Safety System Development and Patterns 14

3 Tool Support for Model-Driven Development of Control Applications 17
3.1 AUKOTON Development Process .. 18
3.2 Requirements for Modeling and Model Processing Support in MDD of

Control Applications ... 21
3.2.1 Modeling Concepts and implementations ... 21
3.2.2 Graphical Support .. 22
3.2.3 Model Transformations .. 23
3.2.4 Design Patterns .. 24
3.2.5 Platform Specific Implementations .. 25

viii

3.3 Considerations on Implementation Techniques .. 25
3.3.1 Extension Mechanisms of UML and MOF Based Languages 25
3.3.2 Graphical Diagram Development on Eclipse Platform 27
3.3.3 Model Transformation Techniques .. 28

3.4 UML AP Tool Implementation .. 28
3.4.1 Metamodel Implementation ... 29
3.4.2 Graphical Support for UML AP Diagram Types 30
3.4.3 Finding, Using and Controlling Model Transformations 32
3.4.4 Design Patterns in Modeling .. 34
3.4.5 Platform Specific Implementation Blocks .. 38

3.5 Discussion ... 41
4 Simulations in Model-Driven Development of Control Applications 45

4.1 Requirements for Simulations in Control Application Development 47
4.1.1 Benefits of Simulations in Control Application Development 47
4.1.2 Required Properties for Simulations ... 48

4.2 Considerations on Implementation Techniques .. 50
4.2.1 XiL Simulation Approaches ... 50
4.2.2 Number of Simulation Engines .. 51
4.2.3 On Creating Closed-Loop MiL Simulations 51

4.3 Model-in-the-Loop Simulating UML AP Models .. 55
4.3.1 ModelicaML as a Target Simulation Language 55
4.3.2 General Simulation Approach .. 56
4.3.2.1. Processing of Logic Diagrams ... 58
4.3.2.2. Processing of Automation Sequence Diagrams 61
4.3.3 Observations from Applying the Simulation Approach 64
4.3.3.1. Binary and Feedback Control ... 65
4.3.3.2. Interlocks and Safety Functions ... 65
4.3.3.3. Control Sequences ... 66

4.4 Discussion ... 67
5 Safety in Model-Driven Development of Control Applications 71

5.1 Requirements for Modeling Safety Features .. 72
5.1.1 Hazard and Risk Information ... 74
5.1.2 Traceability, Correctness and Completeness 75
5.1.3 Use of Standard Solutions .. 75

5.2 Considerations on Implementation Techniques .. 76
5.2.1 Modeling of Hazards and Risks ... 76
5.2.2 Requirements and Traceability ... 77
5.2.3 Standard Solutions in Models .. 78

ix

5.3 Safety Related Extensions to UML AP .. 79
5.3.1 Hazard and Risk Information ... 79
5.3.2 Requirements Modeling ... 82
5.3.3 Traceability and Documentation Support ... 84
5.3.4 Patterns of Safety Systems ... 85

5.4 Discussion ... 90
6 Summary of the Included Publications .. 93
7 Conclusions ... 97

7.1 Thesis Summary .. 97
7.2 Research Questions Revisited .. 99
7.3 Limitations and Future Work ... 102

Bibliography .. 105
Publications ... 115

xi

List of Included Publications

The thesis is based on the following publications referred to as [P1] to [P8].

[P1] Vepsäläinen, T., Hästbacka, D., Kuikka, S. (2008) Tool Support for the UML
Automation Profile - for Domain-Specific Software Development in
Manufacturing. Proceedings of the 3rd International Conference on Software
Engineering Advances. Sliema, Malta, October 26-31, 2008, pp. 43-50. DOI:
10.1109/ICSEA.2008.22

[P2] Vepsäläinen, T., Sierla, S., Peltola, J., Kuikka S. (2010) Assessing the
Industrial Applicability and Adoption Potential of the AUKOTON Model
Driven Control Application Engineering Approach. Proceedings of the 8th
IEEE International Conference on Industrial Informatics. Osaka, Japan, July
13-17, 2010, pp. 883-889. DOI: 10.1109/INDIN.2010.5549626

[P3] Vepsäläinen, T., Kuikka, S. (2014) Integrating Model-In-the-Loop
Simulations to Model-Driven Development in Industrial Control.
SIMULATION: Transactions of the Society for Modeling and Simulation
International. DOI: 10.1177/0037549714553229

[P4] Vepsäläinen, T., Kuikka, S. (2014) Model-Driven Development of
Automation and Control Applications - Modeling and Simulation of Control
Sequences. Advances in Software Engineering, Vol. 2014. DOI:
10.1155/2014/470201

[P5] Vepsäläinen, T., Kuikka, S. (2013) Benefit From Simulating Early in MDE of
Industrial Control. Proceeding of the 18th IEEE International Conference on
Emerging Technologies and Factory Automation. Cagliari, Italy, September
10-13, 2013, pp. 1-8. DOI: 10.1109/ETFA.2013.6647961

[P6] Vepsäläinen, T., Kuikka, S. (2011) Towards Model-Based Development of
Safety-Related Control Applications. Proceeding of the 16th IEEE
International Conference on Emerging Technologies and Factory
Automation. Toulouse, France, September 5-9, 2011, pp. 1-9. DOI:
10.1109/ETFA.2011.6058979

[P7] Vepsäläinen, T., Kuikka, S. (2014) Design Pattern Support for Model-Driven
Development. Proceedings of the 9th International Conference on Software
Engineering and Applications. Vienna, Austria, August 29-31, 2014, pp. 277-
286. DOI: 10.5220/0004990002770286

[P8] Vepsäläinen, T., Kuikka, S. (2014) Safety Patterns in Model-Driven
Development. Proceedings of the 9th International Conference on Software
Engineering Advances. Nice, France, October 12-16. 2014, pp. 233-239.

xiii

List of Abbreviations

AF Automation Function
ASD Automation Sequence Diagram
ASE Automation Science and Engineering (a department at TUT)
AKM Architecture Knowledge Management
ALM Application Lifecycle Management
CORBA Common Object Request Broker Architecture
DCS Distributed Control system
DDS Data Distribution Service
DSL Domain Specific Language
EMF Eclipse Modeling Framework
FB Function Block
FMECA Failure Mode, Effects, and Criticality Analysis
FMI Functional Mock-up Interface
FTA Fault Tree Analysis
GEF Graphical Editing Framework
GMF Graphical Modeling Framework
HiL Hardware-in-the-loop (simulation)
HMI Human-Machine Interface
IEC International Electrotechnical Commission
I/O Input/Output (transfer of data to and from application)
MDA Model-Driven Architecture
MDE Model-Driven Engineering
MDD Model-Driven Development
MiL Model-in-the-loop (simulation)
MOF Meta Object Facility
ModelicaML Modelica Modeling Language
OCL Object Constraint Language
OMG Object Management Group
PID Proportional-Integral-Derivative
PiL Processor-in-the-loop (simulation)
PL Performance Level
PLC Programmable Logic controller
P&I Piping and Instrumentation (diagram)
QoSFT Quality of Service and Fault Tolerance Characteristics and

Mechanisms (profile)
QVT Query/View/Transformation
SiL Software-in-the-loop (simulation)
SIL Safety Integrity Level
SFC Sequential Function Chart
SysML Systems Modeling Language
UI User Interface
UML Unified Modeling Language

xiv

UML AP UML Automation Profile
TUT Tampere University of Technology
XiL Model/Software/Processor/Hardware-in-the-Loop (simulation)

xv

List of Figures

Figure 1 The relationships between metamodels, transformation definitions, models and
model transformations. .. 12

Figure 2 The AUKOTON development process proceeds from requirements to
executable applications through the requirement, functional and platform specific
development phases. ... 19

Figure 3 Graphical tooling development process with Topcased tool. (Modified from
[63]) .. 32

Figure 4 The dependencies between Topcased UML and SysML editors, UML AP tool
editor as well as UML, SysML and UML AP metamodel implementations (Modified
from [63]) ... 32

Figure 5 Java interfaces related to the extension point for import, export and intra-model
transformations. .. 34

Figure 6 A presentation of Layers pattern with UML class diagram. (from [P7]) 36

Figure 7 Metamodel of the pattern modeling concepts. (from [P7]) 37

Figure 8 A visualization of an Observer pattern instance. (from [P7]) 38

Figure 9 Stereotypes and their tagged values related to the FB collection used in [P2].
(Modified from [51]) ... 40

Figure 10 Template AFs related to LC_3 and PIDC_2 type circuits that were used in
[P2]. .. 40

Figure 11 The AUKOTON development process with the simulation extensions.
(Modified from [P4]) .. 50

Figure 12 The transformation adds the control application specific parts to an existing
plant model. (Modified from [P3]) .. 57

Figure 13 The metamodel of the Logic Diagram concepts including related UML
metamodel concepts. (Modified from [P3]) ... 59

Figure 14 An example of transforming Logic Diagram to ModelicaML. (From [P5]) .. 60

Figure 15 The simplified metamodel of the Automation Sequence Diagram concepts
including related UML metamodel concepts. (Modified from [P4])............................. 61

Figure 16 An Automation Sequence Diagram (ASD) and the corresponding Modelica
algorithm section. (From [P4) ... 63

xvi

Figure 17 Metamodel of the (FTA) modeling concepts excluding concrete logical
operation types. (The metamodel is based on the pictures and description in [P6].) 81

Figure 18 An example FTA model related to a tank system used as an example in [P6].
 ... 82

Figure 19 The safety related Refinements of UML AP that can refine
StructuredRequirements. ((Modified from [P6]) .. 83

Figure 20 An example Hazard traceability matrix from [P6]. 85

Figure 21 The metamodel of the SafetyPattern modeling concepts. (Modified from [P8])
 ... 87

Figure 22 A Safety Catalogue sheet example presenting 15 techniques and measures
that IEC 61508 recommends for architecture design. (Modified from [P8]) 88

Figure 23 A Safety Catalogue Conformibility sheet presenting the usage of
requirements specification techniques in a model and their conformability to the
recommendations of IEC 61508. (Modified from [P8]) ... 89

Figure 24 A Safety Pattern Traceability sheet presenting the traceability of the safety
requirements of an example system to implementing Packages and to SafetyPatterns
used in the Packages. .. 90

1

1 Introduction

This Chapter introduces the topics of the thesis and provides an introduction to the
background and motivation of the work. The Chapter is organized as follows. First, the
background of the thesis, the research questions and the research methodology are
presented. They are followed by the contributions, before outlining the organization of
the thesis.

1.1 Background

Control systems are required in various applications ranging from individual and small-
scale machines to extensive manufacturing plants and enterprises. The systems are
required to control and supervise machines and processes in a timely and efficient
manner while at the same time optimizing their productivity and guaranteeing the safety
of their environment and operating and maintenance personnel. Currently, an essential
role as an implementation technology of such systems is played by software control
applications that are often executed on Distributed Control System (DCS),
Programmable Logic Controller (PLC) or embedded platforms.

Control applications, computer programs that perform control tasks, are fairly efficient
and flexible by nature. A single processing unit with a control application can control
and supervise a number of complex processes, sub-processes and devices. Processing
units can be connected together to control ever-larger processes while their applications
exchange real-time information on the measured properties and statuses of the
processes. To adapt to changing needs and specifications, the dynamic behavior of a
controlled system can be flexibly altered by changing the parameters and operating
points of the control application or by updating it entirely or partially. However, while
the applications have become essential parts of the systems, at the same time the
efficiency of their development process has become an essential competitiveness factor
in the domain.

Development of a control system for an industrial plant, for example, is a complex
endeavour. It requires the collaboration of experts and information from various
domains of expertise. Control system development, and control application
development as part of it, requires and integrates information from process, electric,
hydraulics, safety and chemical engineering, for example. Some of these engineering
disciplines may also require information from control application development.
However, in a common case it is the control application that can and need to adapt to

2

requirements and conditions from the other disciplines. To cope with the amount of
information and requirements, the use of models – to complement or to substitute
written documents - has been studied in the domain. However, models and modeling
concepts alone are not the answer. They need appropriate, flexible tool support for
performing the required engineering activities within a model-driven development
process.

Modeling concepts developed for the needs of automation and control domain need to
be supported by a modeling tool, including their possible relations to the concepts of
more general purpose modeling languages: UML and SysML. UML and SysML based
modeling techniques that have been widely used in MDD are a sound alternative for
also control applications and enable modeling from the early stages of development.
The models need to be processed with model transformations to automate repetitive but
error-prone tasks and in order to streamline information transfer from and to the related
engineering disciplines. Especially at the early stages of adopting MDD technologies to
practical use, modeling concepts need to be implemented in a flexible manner for future
needs. Re-use of existing knowledge and design information has to be supported in
models in order to obtain the benefits of re-using application blocks, which is already
reality in control application development.

Using models as primary artefacts during development offers possibilities that are
beyond the capabilities of current control system and application development practices.
Models that are formal enough can be analyzed and studied either alone or together with
the models of the processes to be controlled. In control algorithm design, simulation is a
technique that has been traditionally used to study and experiment possible control
approaches, structures and tunings. However, traditionally the activity has been
separated from the basic control application development. Simulation studies have been
possible only after developing the applications, by executing them in conjunction to the
models of processes to be controlled.

If models are to be used as the primary engineering artefacts, they should also serve
documentation purposes for which information is currently produced mainly with
manual work. Safety related systems, especially, constitute an area of applications in
which documentation is of special importance because of the need to be able to prove
the compliance of the produced applications to standards and to convince the authority
of the correctness of the application. However, it is also an area of applications that
could especially benefit from the use of models. Models could enable automated

3

consistency checks during design and transferring the design information to a form in
which it answers the relevant questions.

The motivation of the thesis is to study how control application engineering could be
facilitated by extending a Model-Driven Development (MDD) approach. The thesis
focuses on concepts and tool support for modeling, model processing, integrated
simulations and safety-related information in models.

1.2 Research Questions

The thesis explores whether or not the control application development can benefit from
MDD and selected technologies enabled by it. To answer this general question, the
thesis focuses on a set of smaller research topics. They are related to modeling and
developing tool support for modeling the applications, ability to integrate and gain
benefit from integrating simulations into MDD and ability to document safety-related
information on control applications in models. These research topics are divided into
three groups of questions hereafter referred as RQ1-3.

1. How to develop support for domain-specific, UML based modeling in control
application development? How to develop support for and gain benefit from
applying design patterns in models? How to enable and gain benefit from re-
using platform specific blocks in modeling?

2. How can model-in-the-loop simulations be integrated into MDD of automation
and control applications with UML based modeling? What are the requirements
and constraints for selecting the simulation approach to be followed? How can
simulations with the selected approach benefit MDD?

3. How can the safety of control applications be supported in MDD? How can risk
and hazard information be integrated into modeling? How can traceability,
correctness and completeness be supported in models? How can the use of
design patterns support documenting the safety features of control applications?

1.3 Scope of the Thesis

The thesis discusses the use of MDD and techniques enabled by it in automation and
control application development. The main focus of the thesis is on whether and how
control application development could be enhanced with MDD techniques and how the
required tool support can be implemented with the use of standard techniques.

4

Related to implementing the domain specific modeling concepts and tool support for a
MDD process, the thesis studies and uses standardized modeling, metamodeling and
model processing techniques. Graphical support for the modeling concepts, which is in
current modeling tools often implemented on top of the information content layer, is not
considered in detail in the thesis.

In the thesis, simulation is considered as a means to evaluate and compare control
application designs. It is also a technique that is already in use in the domain; however,
not necessarily during basic control application development. Simulations are widely
used in control algorithm development and in, for example, control system testing after
the development. In the thesis, the use of simulations as well as techniques and
approaches to create closed-loop simulations are discussed with focus on the software
development phase. However, especially related to interlock functions the distinction
between algorithm and software development is sometimes difficult to make.

Related to safety aspects and safety related information in models, the thesis focuses on
extending the information content of models with IEC 61508 [1] as a reference. The
purpose is to develop the MDD process and concepts in a direction in which they could
fulfill more of the requirements of the safety standard. However, with discussion on
documentation, the author does not want to claim that safety systems should or should
not be developed with MDD techniques only. Nevertheless, in order to develop safety
systems with MDD techniques, it would be vital to be able to fulfill the relevant
documentation requirements with MDD.

1.4 Research Methodology

The research methodology of the thesis is the constructive approach of design science.
According to Iivari [2], design science research has been applied in computer science,
software engineering and information systems for decades producing e.g. new
architectures, languages and algorithms. It is the rigor of constructing IT artifacts that
distinguishes the design science from the practices of building IT artifacts and to
demarcate the two there are two options. The essence of information systems can lie in
the scientific evaluation of the artifacts or in a reasonable rigorous constructive research
method for building the artifacts. [2]

According to Crnkovic, the key idea of constructive research is the construction based
on the use of existing knowledge in novel ways and possibly adding new links. The
construction proceeds through design thinking to the projections of future solutions.
Conceptual and other knowledge gaps are filled with purposefully tailored building

5

blocks to support the whole construction. When a construction, theoretical or practical,
differs profoundly from pre-existing ones, it constitutes a new reality against which pre-
existing ones can be examined and understood [3].

According to Hevner and March [4], the purpose in design science is to create
innovations or artifacts that embody ideas, practices, capabilities, and products that are
required to efficiently accomplish the analysis, design, implementation and use of
information systems. According to [4], the output artifacts of research include
constructs, models, methods and instantiations. However, due to the range of output
research artefacts in reported research, a more expansive view of the artifacts can
include any designed solution that solves a problem in a given context [5].

The main research steps applied in the research are as follows:

1. Tool support for the domain specific modeling concepts of UML Automation
Profile is developed while taking into account the needs of the application
domain related to the re-use of application blocks, for example. The industrial
applicability of the model-driven development process and tools as a part of it
are assessed.

2. The use of design-time, closed-loop simulations is investigated to facilitate
control application development. Methods are developed for generating
simulation models from UML Automation Profile models and to integrate the
models in a novel manner to plant simulation models. General approaches to
closed-loop simulations in MDD in the domain are compared.

3. The use of design patterns is studied to enhance the re-use of existing design
solutions. Modeling concepts and tool support are developed for specifying
design patterns, marking and visualizing design pattern instances, applying
design patterns as well as for using patterns to produce documentation from
models.

4. The modeling concepts are extended to enable the specification of how the
hazards associated with the controlled systems may occur. Traceability,
correctness and completeness are improved within models with safety aspects in
mind.

The evaluation of the results is performed in each step with respect to the fulfillment of
requirements, comparison to the state-of-the-art as well as evaluation of improvements
in comparison to the state-of-the-art.

9

2 Technological Background

The focus of the thesis is in model-driven development (MDD) of control applications.
Control applications are software parts of control systems which perform control tasks.
In industry, the control applications are typically executed in Distributed Control
System (DCS), Programmable Logic Controller (PLC) or embedded platforms. They are
used in the real-time control of processes of various kinds ranging from mobile working
machines and platforms to, for example, chemical industry and power production plants.
In addition to real-time control, the control applications of this kind can include, among
others, monitoring and safety features. However, safety critical control functions the
sole purpose of which is to guarantee the safety of the processes to be controlled are
typically implemented in dedicated safety systems. The role of (basic) control
applications, on the other hand, is to keep the processes in their normal, profitable
operation regions. The focus of the thesis is in the basic control systems.

Following is a brief introduction to the technologies and methods that are used in the
thesis and included publications to enable or to facilitate the development of control
applications with the use of models.

2.1 Modeling and Model-Driven Development

2.1.1 Model-Driven Development

Model-Driven Development (MDD) is a software development methodology that
emphasizes the use of models as primary engineering artefacts during the development
of applications. Acronyms related to MDD include, among others, model-driven
engineering (MDE) and model-driven architecture (MDA) [6], the latter being a
registered trademark of Object Management Group (OMG). In MDD, models of
different phases and accuracy levels are used to contain the information about the
system (application) during the development of it. The models, starting from, for
example, requirement models, are developed, elaborated and refined with automated
model transformations and manual work. The role of the transformations is often in
automating the creation of later phase models based on former ones. In software
development, the goal of the development process is often an executable application,
which (or part of which) can also be possible to be produced automatically with one
type of model transformations, with code generation.

10

2.1.2 UML and SysML

Unified Modeling Language (UML) is a software modeling language that defines both
the information content of modeling elements and the graphical notation of diagrams
conforming to the language. The first official version of the language was adopted by
OMG in 1997 [7]. A major improvement to the language was version 2.0 that included
improvements and clarifications to the metamodel and semantics of the language [8].
The metamodeling technique used to specify the UML metamodel is Meta Object
Facility (MOF) [9], which has also been specified by OMG. The current officially
adopted version of UML is 2.4.1 [10], [11].

UML is currently the de-facto modeling language for the modeling of software systems
and applications including their requirements, structure and behavior. The modeling
concepts of the language are closely related to concepts in object-oriented programming
languages. However, the language can and has been used to describe the aspects of e.g.
procedural PLC applications. UML has been designed to be extendable for special
purposes and needs of specific applications domains. For example, SysML [12] has
been developed for systems engineering purposes with the use of the profile mechanism
of UML. The mechanism utilizes stereotypes to alter the semantics of the elements. In
addition to the profile mechanism, an alternative to extend UML is to apply
metamodeling, by extending the modeling elements of the language with the
metamodeling technique (MOF) that has been used to specify them in the first place.

Systems Modeling Language (SysML) [12] is another graphical modeling language
specified by OMG, for systems engineering purposes. The language has been defined as
an extension to UML, by re-using parts of UML (UML4SysML), altering parts of UML
and adding new modeling concepts and diagrams. Whereas UML is software centric,
SysML is less restrictive related to the implementation of the models. Blocks of the
language, which correspond to UML classes, are suitable for representing hardware
blocks and parts of systems, for example.

2.1.3 Metamodels and Meta Object Facility

The modeling concepts that can be used in models conforming to a modeling language
are defined in the metamodel of the language. Metamodels, thus, define the concepts
available for modeling including their properties and other information content as well
as relations to other concepts. In addition to defining modeling languages, metamodels
can be used when defining model transformations between languages.

11

Models conforming to a modeling language are instances of the metamodel of the
language similarly to metamodels being instances of metametamodels, which can be
used to define metamodeling languages. The metamodel of UML, for instance, has been
defined with MOF. MOF, on the other hand, defines itself so that a metametamodeling
language has not been needed for defining MOF. With respect to metamodeling layers,
real world objects can be described being level M0 and instances of model elements on
level M1. Models on level M1 are instances of metamodels on level M2 whereas
metamodels on level M2 are instances of metametamodels on level M3.

2.1.4 Model Transformations and QVT

Model transformations are processes that are used to ensure, by modifying one or more
models, that the models processed by the transformations are consistent with each other.
Model transformations can be further divided into model-to-model transformations,
which are used between models, and model-to-text transformations, which are used to
create text (e.g. code) based on models. Model-to-model transformations are thus
processes that create or update models or parts of models based on the same or other
models or parts of them. Model transformations can be performed automatically, by a
computer program, or manually with operations that are manually performed by a
modeler. In model-driven development, a common goal is to automate model
transformations that are repetitive, which reduces the amount of required manual work
and potential for errors.

Query/View/Transformation (QVT) [13] is a model-to-model [14] transformation
language that has been specified by OMG for defining transformations between models
that conform to modeling languages that have been defined with MOF. The language
specification defines three distinct languages: Core, Relations and Operational
Mappings. By nature, Core and Relations languages are declarative whereas Operational
Mappings language is imperative. With respect to the metamodeling layers, QVT
language can be regarded to be on layer M2, similarly to UML metamodel, for example.
Individual model transformation (specification) instances are on level M1 and utilize the
concepts of the source and target metamodels on layer M2. Executable model
transformations, which are instances of their specifications, manipulate models and
modeling elements on layer M1. The metamodeling layers as well as relationships
between metamodels, models, transformation definitions and model transformations are
illustrated in Figure 1 that has been modified from [15].

12

Figure 1 The relationships between metamodels, transformation definitions, models and model
transformations.

2.2 Simulations

2.2.1 Overview

Computer simulation is a technique that can be used to imitate the operation of a
process or system based on a model of the process or system in order to predict, study or
explain the behavior of it. In control system and application development, simulations
can be used e.g. in the design and validation of control programs, strategies and human-
machine interfaces before installing the complete systems [16]. In control application
development, a closed-loop simulation requires a simulation model of the system to be
controlled and a component acting as the control system in the simulation.

A closed-loop simulation can be executed within a single simulation engine or as a co-
operative simulation (co-simulation). In the latter approach, two or more simulation
engines are connected together and execute the parts of the simulation model. For
example, the parts can be a simulation model of the system to be controlled and the
model of the control system and/or application controlling the former one.

2.2.2 XiL Simulations

XiL simulations refer to the 4 simulation approaches that can be used in conjunction to
model-based development: model-in-the-loop (MiL), software-in-the-loop (SiL),

13

processor-in-the-loop (PiL) and hardware-in-the-loop (HiL) simulation [17]. In MDD of
control applications, these approaches differ in the control system configurations used to
control the simulation model of the process to be controlled.

In MiL, a model of the control system and or application is used whereas SiL, PiL and
HiL utilize software generated from the model, generated software with its target
processor and generated software with the entire target control system hardware,
respectively. Similar simulation approaches, except MiL, can be used to test control
applications in more conventional application development processes. HiL simulation,
for example, can be used to test a control application with its target control system
hardware regardless of the process to develop the application.

2.2.3 Modelica and ModelicaML

Modelica is a non-proprietary, object-oriented, acausal language for the modeling of
heterogeneous physical systems [18], [19]. It supports the use of libraries and multi-
domain modeling so that the modeled systems may include, among others, mechanical,
electrical and control subsystems. Modelica models are mathematically described with
differential, algebraic and discrete equations [19]. Modelica models can be defined both
textually and graphically, depending also on tool support.

ModelicaML is a UML profile that has been developed to enable creating, reading,
understanding and maintaining Modelica models with UML tools. [20] The profile uses
a subset of UML concepts and defines a set of stereotypes, with stereotype specific
tagged values, that are given semantics by the Modelica language. The profile has been
implemented on Eclipse platform based on UML2 implementation of the UML
metamodel. The profile is currently tool supported so that ModelicaML models can be
transformed to textual Modelica code and simulated with a Modelica tool [21].

2.3 Safety

2.3.1 Overview

Safety can be defined as freedom from an unacceptable risk. The risk concept can be
defined as a combination of the probability of occurrence of harm and the severity of
the harm [1]. Functional safety is part of the overall safety relating to the system of
interest (equipment under control and its control system) that depends on the correct
functioning of the electrical/electronic/programmable electronic safety-related systems
and other risk reduction measures. [1]

14

A practical definition for software safety, provided in [22] is: features and procedures
that ensure that a product performs predictably under normal and abnormal conditions.
The likelihood of an unplanned event occurring is minimized and its consequences
controlled and maintained; thereby preventing accidental injury or death, whether
intentional or unintentional [22]. In the automation and control domain, the safety of the
controlled plants, processes and machines often needs to be ensured by functional safety
systems that perform safety functions and include software parts.

2.3.2 IEC 61508

IEC 61508 [1] is an essential standard in the domain of functional safety. The standard
has been renewed a short while ago, in 2010, so that with respect to its
recommendations the standard is still as modern as applicable. The standard is a basis
for several sector specific standards, e.g. IEC 62061 in machinery [23] and IEC 61513
for nuclear power plants [24], which increases its importance. IEC 61508 covers the
functional safety of systems containing electrical, electronic and/or programmable
electronic systems. Software applications as parts of the programmable electronic
systems are covered in the third part of the standard. The standard defines an overall
lifecycle model for safety functions, according to which they can be specified,
developed and maintained.

The standard has been built so that a natural way to fulfil the requirements of it would
be to utilize the traditional V-model development process. However, provided that the
requirements are fulfilled, any development process can be used [P6]. Safety functions
that consist of electrical parts, for instance, are treated by the standard based on the
probabilities of correct operation. However, because of the systematic nature of
software faults, in case of software safety functions the standard focuses on software
development techniques and measures. It guides their selection as well as the
information content of documentation that must be produced to develop certifiable
applications to safety systems. In the thesis, the standard and the requirements of it are
used as a basis for extending the information content of models of basic control systems
with safety aspects and features.

2.3.3 Systematic Safety System Development and Patterns

Generally, the concepts of safety and reliability are well understood in relation to, for
example, electronic components. However, software safety and reliability form a
discipline that is well understood by few [22]. Unlike hardware, software does not
break, fail or wear out over time. The causes of software failures are systematic, not

15

random [22]. Because of the enormous state spaces of digital systems, it is also possible
that only a small part of causes of the failures can be exercised with testing [25].

System safety, in contrast, integrates management, hazard analysis and design
approaches to a planned, disciplined and systematic approach to prevent or reduce
accidents throughout the system lifecycle. System safety attempts to predict accidents
before they occur and to eliminate or prevent hazardous states. The primary concern in
system safety is, thus, the management of hazards in a controlled and systematic
manner. [25]

In software engineering, design patterns are a means to systematically re-use well-
known, proven solutions. Each design pattern systematically names, motivates and
explains a design solution that addresses a recurring problem or challenge in system
designs [26]. For safety systems, suitable design patterns can be found from both
standards and related literature. For example, IEC 61508 (in the third part) lists
architectural approaches and solutions, many of which have been presented in a more
detailed manner in pattern literature. For example, the standards suggest the use of
redundancy [27], backward recovery from faults [28], [29] as well as cyclic program
execution [27].

17

3 Tool Support for Model-Driven Development of
Control Applications

The use of models and model-driven development techniques has drawn extensive
research attention in the domain of automation and control systems during the past few
years. The modeling of software applications and systems, including their requirements,
has been seen as an integral phase in development and as a means to cope with the
increasing size and complexity of the applications. Such work has been published
related to both IEC 61131-3 [30] and IEC 61499 [31] based control system platforms.
Of these languages, IEC 61131-3 is a standard that defines five PLC programming
languages. The languages include Function Block (FB) diagram, structured text,
sequential function chart, ladder diagram and instruction list. IEC 61499, on the other
hand, extends the FB concept of IEC 61131-3 with event-driven execution and support
for distributing FBs in de-centralized execution environments.

With IEC 61499 [31] as a target language, Thramboulidis and Tranoris have studied and
developed tools [32] and an engineering process [33] for distributed control applications
using UML to present requirements and design before implementations. The approach
of the EU MEDEIA project [34] builds on the use of Automation Components and bi-
directional model transformations between models. Automation Components are
described as composable combinations of embedded software and hardware. Vyatkin et
al. [35] have developed a model-integrated design framework for automation and
control applications that is based on an intelligent mechatronic component concept and
use of the IEC 61499 architecture. Of the referred approaches, [34] and [35] discuss also
how design models could be simulated, which is the topic of Chapter 4 of the thesis.
Other approaches related to combining the use of IEC 61499 and UML in the domain
include the work of Dubinin et al. [36], Hussain and Frey [37] as well as Panjaitan and
Frey [38].

Related to IEC 61131-3 [30] as a target language, FLEXICON project, see [39] and
[40], has integrated a combination of commercial off-the-shelf tools for supporting
software development of both basic control and safety related control systems.
MAGICS approach [41] aims at non-device-centric abstractions and support for PLC
(IEC 61131-3) code generation that is claimed to be missing from many approaches.
The approach ([41]) also addresses sequential control activities. Related to generating
PLC code from models, mappings between UML and IEC 61131-3 as well as the earlier

18

version of it have been presented by Witsch and Vogel-Heuser [42] as well as by Vogel-
Heuser and Witsch [43].

Use of design patterns in the domain has not been addressed in many MDD approaches.
However, Witsch and Vogel-Heuser in [42] envision collecting known solutions to
pattern catalogues in order to improve their re-use, motivated by the object-oriented
extensions to IEC 61131-3. For example, implementing a structure such as the one in
Observer design pattern [26] requires object-oriented features of programming
languages. In application domains other than industrial control, techniques and support
related to design patterns have been developed to specify patterns [44], to apply and
evolve patterns to models [45], [46], to detect pattern instances [47], to detect points in
models where patterns could be applied [48] as well as to visualize pattern instances in
models and diagrams [49], [50].

This Chapter discusses the development of tool support for domain specific modeling
and MDD in automation and control domain. The AUKOTON MDD process, which is
to be supported, is introduced briefly in Section 3.1. Domain requirements for the tool
are presented in Section 3.2. Possible implementation techniques are discussed in
Section 3.3. Section 3.4, then, introduces the developed UML AP tool and discusses
choices related to the development of it.

3.1 AUKOTON Development Process

AUKOTON is a development process for automation and control applications that was
developed during AUKOTON project. In detail, the process has been presented in [51].
However, it has been discussed also in the included publications [P1] and [P2]. The
development process aims to apply model-driven development technologies to control
application development while at the same time taking into account domain specific
practices related to, for example, the re-use of existing implementation blocks. The
process emphasizes the importance of platform independent modeling, automated
transfer of design information and late binding of platform specific details. The
objectives are to enhance productivity, solution re-use and software quality [P1].

The modeling basis in the process is UML AP [52] that covers the essential concepts of
modern, complex automation applications. The profile was further developed during the
project with respect to both requirement modeling and functional modeling concepts.
The development process, see Figure 2, applies models in three phases. The names of
the phases are requirement import and elaboration; functional, platform independent
design; and functional, platform specific design.

19

Figure 2 The AUKOTON development process proceeds from requirements to executable
applications through the requirement, functional and platform specific development phases.

During the requirements phase, UML AP requirement concepts are used to describe the
required functionality as well as non-functional properties of the applications. Part of
the information can be imported to the phase from source information documents e.g.
IEC 62424 [53] Piping and Instrumentation (P&I) diagrams or MS Excel spreadsheets
that can be produced e.g. by the process and instrumentation design. Spreadsheets, with
company specific practices, are also commonly used in industry [P2]. Such documents
can contain vital information about required control functions as well as connection
points in the processes to be controlled for controls and measurements. The Imported
requirements, as well as other intermediate products of the development process, can be
inspected and refined by developers in order to add information and decisions that are
not automated. The requirements are described mainly with the structured Automation
Requirement concepts of the profile but also informal textual requirements can be used.

During the functional, platform independent design phase, the functionality of the
applications is specified in a platform independent manner but so that it can be later
refined with platform specific details [P2]. The purpose is to increase the re-use
potential of models so that design work could be re-used also in projects that are
targeted to other control system platforms. During the phase, the modeling concepts of
interest are the Automation Function (AF) concepts of the profile (UML AP).

The central AF concept has been further divided into a hierarchy of different kinds of
measurements, actuation, control and interlock functions. AFs represent individual
pieces of the applications. They could be characterized as platform independent,
abstract type circuits (function blocks) representing different kinds of measurement,
actuation, control and interlock functions that can be combined and connected together
to compose an application [P2]. However, for each AF, there can exist several concrete
type circuits - possibly on different platforms - that could be used to implement the
functionality. That is, AFs neither identify the type circuits to be used nor restrict the
selection of the target platform. AFs exchange information with Ports that specify both

20

their types and roles, from the point of view of the AFs. For example, it is possible to
define a Port to be intended for relaying measurement information.

During the functional, platform specific phase, the purpose is to detail the platform
independent design for a chosen platform so that the application code can be generated
[P2]. Appropriate AFs (of the platform independent model) are tied to platform specific
implementation blocks to be used in the final applications. The connection interfaces of
the AFs are completed to correspond to those of the blocks and the required parameters
of the blocks are set. For example, for the assessment of the development process and
tools [P2], a set of type circuits that had been developed as IEC 61131-3 FBs was
modeled as an AUKOTON DCS collection. The collection was used for the generation
of an executable application in PLCopen IEC 61131-3 XML format [P2].

In the development process, see [51] and [P2], model transformations are used between
source information documents and requirement models, between requirements models
and functional platform independent model and between platform specific models and
executables. Between platform independent and platform specific modeling phases, the
process uses an interactive model transformation that reads and modifies a single model.
Thus, three types of transformations are required by the process: 1) import
transformations that import information to a model or a model Package, 2) intra-model
transformations that read and modify Packages of a model and 3) export transformations
that produce e.g. documentation files or parts of executables based on models or
Packages. All the transformations are automatic; however, after executing
transformations the resulting models can be edited manually. The transformations
produce rather starting points for manual work than complete phase products of the
development phases.

A single modeling tool is used throughout the AUKOTON process. The tool shall
support the entire application development process starting from manufacturing oriented
requirements and proceeding via platform independent design to platform specific
implementations. During the process, the tool must enable the use of the required
diagram types and concepts of UML AP. During the requirement import and
elaboration, the process utilizes mainly Requirements Specification Diagram. During
the functional modeling phases, the diagram types of interests are Control Structure
Diagram and Automation Sequence Diagram, both of which may not always be
required, depending on the modeled application.

21

3.2 Requirements for Modeling and Model Processing

Support in MDD of Control Applications

3.2.1 Modeling Concepts and implementations

The use of the AUKOTON development process in control application development,
with domain specific modeling concepts, requires tool support for the entire application
development lifecycle. Support shall start from source information and requirements
and proceed, via platform independent, architectural considerations, to the platform
specific implementation. [P1] Development of a MDD tool with consideration for
domain requirements and practices was, thus, an important research task from the
beginning of this research. Tool support was also required to further improve and to
experimentally estimate the profile (UML AP) that had been previously specified [P1].
The development work begun in the AUKOTON project, during which UML AP was
initially applied to MDD. Thereafter, tool development has been an on-going activity
during which both the modeling concepts and techniques to benefit from models have
been further developed.

Applying MDD techniques also requires taking into account various application domain
specific and other requirements and characteristics. These requirements are briefly
discussed in this and following sub-sections related to the modeling concepts and their
implementation techniques, development of graphical tool support, use of model
transformations as well as re-use of design patterns and concrete implementation blocks.

UML AP, in its initial form [52], was partially extended from the suitable concepts of
SysML [12], the UML Profile for Schedulability, Performance and Time [54] as well as
UML Profile for Quality of Service and Fault Tolerance [55]. Although the profile
defines new diagram types, not all the concepts of it are intended for them [P1]. Instead,
many of the extended concepts are intended for UML and SysML diagram types in
which they can be used as stereotypes, so that practical use of parts of the profile
requires support for UML and SysML. It was, thus, a clear requirement that the profile
implementation should be based on an existing UML/SysML tool to enable the co-use
of the languages without developing UML and SysML support from scratch [P1].
However, significant parts of the concepts of the profile are new, specific to the domain
and intended to be used in new, domain specific diagram types. (The new diagram types
are intended to describe the requirements of control applications, control structures as
well as sequentially executed control activities.)

22

In addition to be used with UML, the UML AP modeling concepts were required to be
extendable and flexible for future needs; so that the profile and concepts could be
further developed [P1]. Modeling languages undergo major changes infrequently so that
their implementations do not need to be updated every day. Changing the metamodel of
a tool does not need to be as easy as modifying a graphical application model. However,
changes need to be realizable with a reasonable amount of work. UML AP has also been
further developed during the research to enable e.g. modeling control logic and hazards.
The fulfilment of the extendibility requirement has thus been evaluated during the
research.

3.2.2 Graphical Support

Implementing UML AP required implementing the new graphical diagram types. The
new diagrams resemble domain specific diagram types and notations and are thus
intuitive for domain professionals. For example, the Automation Sequence Diagram
type is based on the Sequential Function Chart (SFC) notation which is part of IEC
61131-3 [30]. The purpose of the (intended) resemblance is to make it easier for domain
professionals to familiarize themselves with UML based modeling and tools. With a
Domain Specific Language (DSL), problems can be solved with domain concepts, on a
high level of abstraction and in a problem-oriented manner. However, as a drawback,
design and implementation of a DSL require a lot of effort and consideration [P1].

Graphical support development requires the stability of modeling concepts. On Eclipse
platform, with existing open source tools, the supported approach to build graphical
modeling support is to develop diagram types on top of a model layer, in a layered like
architecture. In this way, graphical code manipulates models that are on a lower level.
Graphical diagrams need the information content of models and their metamodel level
properties. As a consequence, code related to implementing graphics often requires
changes when the model code (metamodel) is changed1. Changes, however, are not
required on a daily basis and it should not be possible to cause changes to metamodel
e.g. by accident.

1 Graphical tool support development is in this thesis addressed only to the extent to which graphical tool
development is affected by choices in modeling concept implementations.

23

3.2.3 Model Transformations

In MDD, model transformations are the means to reduce the amount of manual
development work and to automate tasks that are repetitive enough to be treated with
programmed rules. Transformations can be used in importing information to models
[P1, P2], transferring information between modeling and development phases [P2],
generating code [P1, P2] and generating documentation from models [P6, P7, P8].
Transformations and related techniques, e.g. QVT and Object Constraint Language
(OCL) [56], can be used to query models and to automate consistency checks [P6]. It is
also possible to use model transformations for creating simulation models that can be
used to assess designs in a timely manner [P3, P4, P5].

The models that are used in a MDD process thus need to be processable with
(preferably standard) transformation techniques. OMG, for example, has specified three
QVT [13] model transformation languages for which there are open source
implementations on Eclipse platform, e.g. SmartQVT2. Transformations should be
integrated into the MDD environments so that all transformations could be searched and
controlled in an agreed manner, with a graphical user interface of the tool. However,
similarly to graphical modeling support, model transformations often need to undergo
changes when modeling concepts change. On the other hand, to support e.g. new source
information formats or control system platforms, the integration must be loose and
adaptable [P1]. It must be possible to add, remove and replace transformations in a
flexible manner. It cannot be assumed that all transformations that may be required in
future would be known or would have been known.

Transformations, thus, differ from each other by their basic purpose. However, they also
accept different parameters, which must be taken into account in the development of the
transformation support mechanism [P1], [15]. For example, in the AUKOTON process,
code generators usually only read source models whereas intra-model transformations
both read and modify parts of a model. On the other hand, to import information to a
requirement Package from several sources, for example, it must be possible to target
transformations to the selected Packages of a model. [15]

2 http://sourceforge.net/projects/smartqvt/

24

3.2.4 Design Patterns

The efficiency of control application development work is becoming a more and more
important competitiveness factor in the domain. A means to improve the efficiency of
the work is facilitating the re-use of work and solutions. In the domain, such solutions to
re-use can be concrete, platform specific implementations and blocks, the re-use of
which is already common. However, re-use should be supported also with respect to
general, platform independent solutions and structures. Due to the lack of acknowledged
methods for supporting the platform independent development [57], for instance, their
re-use has not been as common as in the case of platform specific design.

Design patterns, see [58] and [59], are a means to re-use platform independent solutions.
A design pattern represents a relation between a context, a problem and a solution [59].
Patterns document proven solutions to recurring challenges in design and development
work and capture expert knowledge for re-use purposes, for both expert developers and
less experienced ones [P7]. In the domain, an example of a design pattern could be
organizing a measurement, a controller and an output to a control loop.

Patterns have names that are known to developers so that their use aids communication.
They provide vocabulary for developers, enhance documentation and encapsulate
knowledge and experience. [60] A design pattern instance marks a point in which a
developer has been potentially faced with a challenge (that the pattern addresses).
Pattern instances represent design decisions to use patterns, with pattern specific
potential benefits and drawbacks. The use of patterns could thus be of great value and
extend the documentation value of models towards architectural knowledge. Especially
this could be useful in MDD that emphasizes the use of models instead of (written)
documents. If documents are not used in a development process, the only places where
the information can be added are the models [P7].

To benefit from patterns, a non-restrictive pattern modeling approach is required. UML,
as the de-facto software modeling language, aims to support patterns with its
Collaboration concepts. However, as presented in [P7], a pattern modeling approach
should not restrict the nature of solutions in patterns. Patterns should be able to consist
of any modeling elements such as class definitions or components, not only the
properties of UML Classifiers, as is the case in the UML approach [P7]. On the other
hand, it should be possible for other modeling elements than Classifiers to contain
elements that play roles in pattern instances [P7]. To systematically use and benefit
from the use of patterns, it should also be possible to collect patterns to libraries as
suggested e.g. in [42].

25

Automating the application of patterns to models could be a useful feature. However,
even without it, patterns could be used to document recurring solutions and their use for
e.g. documentation and traceability purposes. Pattern concepts should also enable
generating traceability information and statistics on their use. It should be possible to
visualize patterns in models and diagrams so that they could improve the documentation
value of the diagrams and learning of developers. With an appropriate tool support,
patterns could also enable comparing applications in terms of re-use as was done e.g. in
[61] with respect to the re-use of platform specific engineering work. [P7]

3.2.5 Platform Specific Implementations

In addition to platform independent models and solutions, re-use can be related to
platform specific blocks. The re-use of implementation blocks, e.g. type circuits that
perform control algorithms or interface with the sensors and actuators, is a special
characteristic of the domain. As such, it needs to be taken into account when developing
tool support for the AUKOTON development process. As argued in [57], DCS
platforms capture the results of years of development and well-tested features that are
worth supporting. Ability to re-use existing, tested and known blocks could increase
quality and reduce the amount of repeated work also within MDD.

To enable the re-use of implementation blocks, it should be possible to refine platform
independent design to platform specific design. In the AUKOTON process, parts of
platform independent models need to be possible to be refined to platform specific ones
that are then used in executables. In order to use code generation to produce
applications, the required information should be available in models. That is, it should
be possible to use the platform specific features of implementation blocks, e.g. interlock
ports, and it should be possible to set platform specific properties in models.

3.3 Considerations on Implementation Techniques

3.3.1 Extension Mechanisms of UML and MOF Based Languages

UML can be extended with two distinct approaches: by using the built-in, stereotype
based profile mechanism of it and by extending the metamodel of the language with the
use of Meta Object Facility (MOF) [9]. MOF is the metamodeling technique that has
been used in the first place to define the metamodel of UML. These two approaches
were also the practical alternatives for implementing the UML AP modeling concepts

26

[P1]. However, the mechanisms differ in terms of modifications that they enable and in
terms of required work.

With the built-in (light-weight) mechanism, extensions are defined as Stereotypes that
can be used to specialize the semantics of the modeling concepts of the language.
Stereotypes can also define tagged values, which are attributes with basic data types.
The tagged values can parameterize the semantic characteristics of the Stereotypes.
Stereotypes, however, cannot be used in a way that would contradict with the UML
metamodel [10]. For example, the use of Stereotypes to insert new metaclasses or meta-
associations between metaclasses is prohibited. This is a clear restriction of the
approach, since some of the concepts required by the new UML AP diagram types have
structural features that do not fit the UML metamodel. Implementing these concepts
requires at least new meta-associations, in addition to defining Stereotypes [P1]. In the
MOF-based approach, there are no such limitations related to the addition of new
elements [P1], [10]. Removing existing metamodel elements from an extended tool,
however, could be difficult if the concepts were implemented with program code in an
extended tool.

Both the extensions mechanisms are, to some extent, tool-supported. The Stereotype
based mechanism, for example, is supported by standard tools such as Magicdraw3 and
Topcased4 so that no programming work is required. Stereotypes can be defined in
profile models that are referenced by application models in which the Stereotypes are
used. In this way, models with domain specific extensions can be portable to other tools
(with compatible file formats). However, UML profile models cannot define new
graphical diagram types in typical tools. (Although new diagram types are sometimes
described in written profile specifications such as that of SysML [12].) As a
consequence, to support new diagram types, programming work is often required in any
case. On the other hand, with special diagram types, models may not be portable to
other tools regardless of the implementation technique of the modeling concepts.

The metamodeling based approach often requires additional programming work
(compared with the Stereotype based approach) since modifications to the metamodel
require changes in program code. For example, new metaclasses usually require
implementing code for them so that the new code is coupled to implementations of

3 http://www.nomagic.com/products/magicdraw.html
4 http://www.topcased.org/

27

existing metaclasses. Metamodel modifications can also affect adversely on the
portability of models. It is possible that models containing instances of new metaclasses
cannot be opened in other (standard) tools. However, as mentioned, with new diagram
types this can be the case regardless of the modeling concept implementation technique.
This is because the models would include information related to the new diagram types
and elements in them.

3.3.2 Graphical Diagram Development on Eclipse Platform

At the time of AUKOTON project and beginning of the tool development, there were at
least two alternative tool families that supported graphical tool development. These
alternatives were: 1) the use of Graphical Editing Framework (GEF5) and Graphical
Modeling Framework (GMF6) of Eclipse Modeling Project7 and 2) the use of Topcased
as the extended base tool. Both the alternatives were intended to support the
development of new (own) diagram types. They, however, used different kinds of
configuration files to define the elements to have graphical counterparts and to be used
to generate a starting point for manual diagram type development (programming). In
both approaches, the configuration files refer to metamodel concepts so that code
created based on them refers to code created to correspond to the metamodel concepts.

As a metamodel for graphical support generation, it would be possible to use both a new
(MOF) metamodel and UML metamodel so that new concepts would be defined with
Stereotypes. However, both GEF/GMF and Topcased based approaches are intended for
building diagrams on (MOF) metamodel elements. In, for example, the diagram
configuration files of Topcased, diagram elements refer to metaclasses in the (MOF)
metamodels, not to Stereotypes that could be applied to run-time instances of UML
metaclasses. Checks for Stereotype applications could be added to the automatically
generated code manually, in order to support the Stereotype based approach. However,
it could require error-prone switch-case (or e.g. if-else) structures to query applied
stereotypes and other similar changes to several places in generated code that could be
difficult to be kept up-to-date.

5 http://wiki.eclipse.org/GEF
6 http://wiki.eclipse.org/GMF
7 http://eclipse.org/modeling/

28

3.3.3 Model Transformation Techniques

In addition to graphical development, selection between the extension mechanisms
affects the use of model transformations. Standard QVT model transformations are
naturally suited for the metamodeling (MOF) based approach. This can be understood
based on relationships between models, metamodels and model transformations in
Figure 1 in Section 2.1.4. MOF based metamodels are on layer M2 so that concepts in
them can be accessed from transformation definitions on layer M1. Profile models with
Stereotype definitions, however, would be on the same layer with the transformation
definitions, and could not be accessed from transformation specifications.

The stereotype applications and tagged values of UML models can be queried from
transformations with, for example, OCL [56]. However, the use of Stereotypes in
transformations would require defining e.g. switch-case structures based on stereotype
and property names. A transformation programmer would need to know the exact
names of the stereotypes and their tagged values. Programming-time type checks would
not be available in addition to, for example, auto correction functions. This is because
the profile models would not be actually used until executing the transformation. With a
static metamodel, for example, correction functions and consistency checks are
possible. When compiling a transformation, the contents of it can be compared with the
names and concepts of the metamodel.

3.4 UML AP Tool Implementation

In the tool development, a profound decision was the selection of an existing tool to be
extended, which was made in order to re-use the support of an existing tool for plain
UML and SysML. It was, though, assumed that the tool to be extended should be an
open source tool, so that modifications to existing functionality would be possible, if
needed. Among suitable tools, the choice was Topcased. At the time of beginning the
tool development, it was one of few tools supporting both UML and SysML and
development of new diagram types [P1]. At the time, an alternative would have been the
Modeling Project of the platform that was based on GEF/GMF techniques. However, in
addition to UML, Topcased provided extensive support for SysML and was ranked as
the best available UML tool for Eclipse in a VTT study [62], too.

The following sub-sections will discuss the tool development from the point of view of
implementing the modeling concepts (metamodel), graphical support for the new
diagram types and extension interfaces for model transformations. Support for the use

29

of design patterns and re-use of platform specific blocks will be presented in sub-
sections as well.

3.4.1 Metamodel Implementation

The basics of the tool implementation, related to metamodel and graphical support
development, are discussed in the included publication [P1]. In addition to the selection
of an existing tool, an important decision was the extension mechanism to be used to
implement the new modeling concepts of UML AP. The selected basic mechanism was
the metamodeling based approach, with MOF. As discussed earlier, the MOF based
approach has few restrictions when changes to modeling concepts are additions (instead
of removing elements, for example), which was the case with UML AP. UML AP with
its diagram types also required new meta-associations between metaclasses, which
would have caused challenges with the Stereotype based approach. The metamodeling
based approach is also well supported related to developing new (own) diagram types.
The SysML metamodel used by Topcased, for example, has been implemented with
Eclipse Modeling Framework (EMF) by extending the UML28 implementation of UML
metamodel, on the platform.

The majority of the new UML AP concepts have, thus, been defined with EMF, which
is a MOF implementation on the platform and used by several modeling tools.
However, in addition to MOF based extensions, some UML AP concepts were
implemented as Stereotypes. In this way, the concepts (Stereotypes) can be used also in
UML and SysML models and diagrams without changes to their program code. [P1]

The developed metamodel, which specifies the new UML AP concepts, is dependent on
the UML metamodel of the platform (UML2) so that concepts of UML can be used and
extended by UML AP concepts. In addition, the metamodel extends and is dependent on
Topcased implementation of SysML metamodel. The MOF-based extension approach
was facilitated by the availability of the EMF models related to the UML and SysML
implementations so that they could be referenced from the developed EMF model
(which was a metamodel from the point of view of the tool development).

The generated implementation for the (EMF) metamodel is dependent on the respective
(Topcased and UML2) plug-ins that implement the UML and SysML metamodels.
Since only new metaclasses were required, instead of modifications to existing ones, the

8 http://wiki.eclipse.org/MDT-UML2

30

additions could be realized in a distinct plug-in [P1]. The dependencies between the
plug-ins implementing UML, SysML and UML AP metamodels are illustrated in Figure
4 in Section 3.4.2. The figure also illustrates the dependencies between the
corresponding graphical editors.

The initial profile implementation, which is described in [P1], has been later extended
with concepts related to, for example, the modeling of safety aspects, control logic and
design patterns. These extensions are described in more detail in Chapters 4 and 5 of the
thesis. These extensions to the modeling concepts have been implemented so that new
elements have been added to the metamodel. The procedure has been to edit the
metamodel (the EMF model), to re-generate an EMF generator model (genmodel) and
to re-generate the implementation code (see Figure 3). After re-generating code, small
manual modifications have been required related to, for example, the initialization
process of (Java) classes corresponding to the metamodel elements.

The extendibility aspect was not included in [P1]. However, according to experience
gained during the research, it has been possible to further extend and change the profile
implementation with a reasonable amount of work. When changes have been limited to
the additions of new metaclasses, old code related to graphical modeling, for instance,
has also been possible to be re-used without changes.

3.4.2 Graphical Support for UML AP Diagram Types

The graphical support of the tool was initially developed to implement the new diagram
types of UML AP, namely Requirements Specification Diagram, Control Structure
Diagram and Automation Sequence Diagram [P1]. All these diagram types are also
needed in the AUKOTON development process. Requirements Specification Diagrams
are used during the requirements phase and Control Structure as well as Automation
Sequence Diagrams during the functional platform independent and platform specific
design phases. In the included publications, the graphical support development approach
is discussed in [P1]. After the AUKOTON project and publication [P1], additional
graphical support has also been developed for Logic Diagrams as well as for presenting
risks and hazards with the Fault Tree Analysis (FTA) notation [P6]. Support for
visualizing design patterns has been developed to be used in conjunction to all diagram
types [P7].

At the beginning of the tool development, UML AP did not strictly specify the concrete
syntax of the new diagram types and graphical presentation of all the elements. Instead,
the initial specification provided few example diagrams. The intended users of the tool,

31

however, were automation and control engineers that are accustomed to traditional
diagram types of the domain. Accordingly, the diagram types were implemented to
resemble traditional diagram types of the domain, with the intention to help the intended
users to familiarize themselves with the tool and the profile [P1].

The extended open source UML/SysML tool, Topcased, supports the development of
new diagram types with specific configuration files, which are in [P1] called generator
models. They can be used for generating graphical editor plug-ins, plug-ins that
implement diagram types [P1] as well as, for example, plug-ins that contribute to the
properties view of the platform. The generated diagram type skeletons can be further
tailored [P1], for example, to modify the symbols of the model elements in diagrams.
Assuming that a new metamodel is used as a basis of a new diagram type, Topcased
configuration files can be used according to the process described in [63] and illustrated
in Figure 3.

The metamodel is in the process defined with an EMF (ecore) model that is used as a
basis for creating a genmodel and generating the implementing code for the metamodel.
The genmodel is also required for creating an editor configuration and diagram
configurations, with which it is possible to define editor properties and diagram types.
Based on the genmodel, editor and diagram configurations get the information about the
related metaclasses and to which (Eclipse) plug-ins and (Java) Packages the
implementing code (for the metamodel) is generated. However, after generating a
diagram type, for example, the metamodel can be changed and the implementation re-
generated, provided that the classes that the diagram requires are in the same plug-ins
and Packages. Especially, although UML AP metamodel has been changed, the
additions of metaclasses have not broken existing diagram type implementations.

32

Figure 3 Graphical tooling development process with Topcased tool. (Modified from [63])

With the generation process, editor and diagrams become dependent on the metamodel
implementations as illustrated in Figure 4. However, UML AP tool editor is also
dependent on SysML and UML metamodels, in addition to UML AP metamodel. In a
similar manner, the editor of the Topcased SysML implementation is dependent on both
SysML and UML metamodels. [63]

Figure 4 The dependencies between Topcased UML and SysML editors, UML AP tool editor as
well as UML, SysML and UML AP metamodel implementations (Modified from [63])

3.4.3 Finding, Using and Controlling Model Transformations

As discussed, the AUKOTON development process requires three kinds of model
transformations: import transformations, intra-model transformations and export
transformations. These transformations differ from each other with respect to the
purpose to which they are used. However, they also accept different parameters. Import
transformations are targeted to a model Package, export transformations read the
contents of a model Package and intra-model transformations are targeted between

