Arto Aho

Dilute Nitride Multijunction Solar Cells Grown by Molecular Beam Epitaxy
Arto Aho

Dilute Nitride Multijunction Solar Cells Grown by Molecular Beam Epitaxy

Thesis for the degree of Doctor of Science in Technology to be presented with due permission for public examination and criticism in Tietotalo Building, Auditorium TB104, at Tampere University of Technology, on the 14th of November 2015, at 12 noon.
Abstract

Solar cells generate green energy directly from sunlight. The energy conversion efficiency of solar cells depends strongly on materials used as absorbers and the cell architecture. Currently, the best solar cells convert sunlight energy to electricity with an efficiency of up to 46%. This thesis focuses on the development of dilute-nitride materials and related solar cells, which are one of the most promising approaches for achieving even higher efficiencies. Applications for these cells include concentrated photovoltaic and space power systems. In particular, the thesis focuses on developing solar cell materials based on GaInNAsSb, which can provide efficient light absorption and energy conversion for a photon energy range of 0.8 eV-1 eV, typically challenging for conventional III-V semiconductors. The GaInNAsSb semiconductor materials were synthesized by molecular beam epitaxy.

The experimental work of this thesis explored the dependence of the fabrication parameters on the GaInNAsSb material and solar cell properties. It was observed that for many of the growth parameters even a slight change of the value can have a significant effect on the solar cell performance. A N incorporation model was developed to help the iteration process for growth parameter tuning. For optimized growth conditions, nearly ideal current generation for GaInNAsSb based material was achieved. Based on external quantum efficiency measurements it was possible to collect up to ~90% of the photons in the spectral range of the GaInNAsSb junction. In addition, an excellent fill factor of 0.7 and voltages in the range of 0.5 V for a 1 eV GaInNAsSb junction were measured.

Simulation based on a state-of-the-art GaInP/GaAs double junction cell, a commercial GaInP/GaAs/Ge triple junction cell and GaInNAsSb single junction cells studied in this thesis, revealed that a GaInP/GaAs/GaInNAsSb/Ge cell at the one sun concentration can have 1.7 percentage points higher efficiency than GaInP/GaAs/GaInNAsSb cell. In addition, the estimated efficiency of a four junction cell at 300 suns would be 3.6 percentage points higher than for a GaInP/GaAs/GaInNAsSb cell. The optimized single junction GaInNAsSb cell was experimentally tested into a GaInP/GaAs/GaInNAsSb cell in this work. The one sun efficiency of the cell under AM1.5G spectral conditions was 31% and the efficiency of the cell at 70 suns concentration was 37-39%. The one sun result is 91% of the projected efficiency. The results under concentrated conditions are expected to be improved by optimizing of the cell top grid

Solar cells generate green energy directly from sunlight. The energy conversion efficiency of solar cells depends strongly on materials used as absorbers and the cell architecture. Currently, the best solar cells convert sunlight energy to electricity with an efficiency of up to 46%. This thesis focuses on the development of dilute-nitride materials and related solar cells, which are one of the most promising approaches for achieving even higher efficiencies. Applications for these cells include concentrated photovoltaic and space power systems. In particular, the thesis focuses on developing solar cell materials based on GaInNAsSb, which can provide efficient light absorption and energy conversion for a photon energy range of 0.8 eV-1 eV, typically challenging for conventional III-V semiconductors. The GaInNAsSb semiconductor materials were synthesized by molecular beam epitaxy.

The experimental work of this thesis explored the dependence of the fabrication parameters on the GaInNAsSb material and solar cell properties. It was observed that for many of the growth parameters even a slight change of the value can have a significant effect on the solar cell performance. A N incorporation model was developed to help the iteration process for growth parameter tuning. For optimized growth conditions, nearly ideal current generation for GaInNAsSb based material was achieved. Based on external quantum efficiency measurements it was possible to collect up to ~90% of the photons in the spectral range of the GaInNAsSb junction. In addition, an excellent fill factor of 0.7 and voltages in the range of 0.5 V for a 1 eV GaInNAsSb junction were measured.

Simulation based on a state-of-the-art GaInP/GaAs double junction cell, a commercial GaInP/GaAs/Ge triple junction cell and GaInNAsSb single junction cells studied in this thesis, revealed that a GaInP/GaAs/GaInNAsSb/Ge cell at the one sun concentration can have 1.7 percentage points higher efficiency than GaInP/GaAs/GaInNAsSb cell. In addition, the estimated efficiency of a four junction cell at 300 suns would be 3.6 percentage points higher than for a GaInP/GaAs/GaInNAsSb cell. The optimized single junction GaInNAsSb cell was experimentally tested into a GaInP/GaAs/GaInNAsSb cell in this work. The one sun efficiency of the cell under AM1.5G spectral conditions was 31% and the efficiency of the cell at 70 suns concentration was 37-39%. The one sun result is 91% of the projected efficiency. The results under concentrated conditions are expected to be improved by optimizing of the cell top grid
design, layer structure and interfaces. As future concepts are concerned, a nanopatterned moth eye antireflection coating was fabricated on top of the GaInP/GaAs/GaInNAs cell, which was then compared to a cell that had a traditional two layer TiO$_2$/SiO$_2$ coating. The moth eye nanostructure had a low average reflection of 2% in the spectral range of 400-1700 nm, being less than half of the reflectance of the TiO$_2$/SiO$_2$ coating. For future work, the absorption loss for the nanostructure coating at wavelengths below 500 nm needs to be reduced.
Acknowledgements

The research has been carried out at the Optoelectronics Research Centre (ORC) of the Tampere University of Technology. I acknowledge ORC for giving me an opportunity and support to study the material physics of III-V semiconductors. I also acknowledge the financial support received from Finnish Founding Agency for Technology and Innovation (TEKES), European Space Agency (ESA), National Graduate School in Material Physics, Graduate School in Electronics, Telecommunications and Automation (GETA), Doctoral training network in Electronics, Telecommunications and Automation (DETA), Ulla Tuominen Foundation, Finnish Foundation for Technology Promotion, and Wärtsilä Foundation.

For the opportunity to work in a team of solar cell and dilute nitride specialists I would like to thank Professor Mirea Guina, who built a team of professionals conducting frontier research in photovoltaics. I also acknowledge Professor Mirea Guina for supervising my doctoral studies. For hiring me to work at ORC and supervising my master studies, I would like to thank Professor Emeritus Markus Pessa. I would like to thank director Dr. Pekka Savolainen for managing the ORC during the years of my PhD studies. For the excellent support with many administrative tasks, I would like to thank Mrs. Anne Viherkoski and Mrs. Eija Heliniemi.

Dr. Antti Tukiainen has been my MBE mentor and my scientific advisor since the beginning of my MBE career. In particular, the learning years at 8-port MBE system gave me smooth start to MBE basics as we were studying the synthesis of InAs quantum dots and were developing AlGaNp epitaxy. I also own great gratitude for Dr. Antti Tukiainen for the deep analysis of solar cell materials, in particular the modelling and designing of the dilute nitride cell structures, and for developing realistic simulation models for single and multijunction cells.

Ville-Markus Korpiajärvi gave me the first introductory and guiding for dilute nitride epitaxy, and shared the response for the GEN20 system ramp ups, maintenances and crystal growth development discussions with me. Together we made it possible to have almost production base development speed for lasers and solar cells. I also greatly appreciate the analytic discussions that we have had for endless hours on the facts how particular dilute nitride and also all other layers should be grown for the best device performance. I also want to acknowledge the younger GEN20 MBE team mates in particular Pekka Malinen was the guy who just gets the...
jobs done. The newest MBE teammate Riku Isoaho, passionate young scientist, has shown that by dedicating to the team-effort well, extremely good results can be obtained. For Pekka and Riku I am grateful for the numerous wafer analyses, for which I certainly would have not have time to do it by my own for every sample. I also greatly acknowledge Janne Puustinen for the dilute nitride MBE growth on V80H reactor and analysis of the samples for the plasma paper, which made the model for the N incorporation even more convincing. I also acknowledge Janne for analytic discussions on the MBE epitaxy dynamics itself.

Solar cell wafers would be nothing without post processing and packing them to ready solar cells. To his end, my greatest gratitude I own to Ville Polojärvi who has had the main response for the processing and defect analyses of the dilute nitride based solar cells. Owing to Ville’s effort, we were able to do numerous different post growth treatments for the same wafer, which made it possible to have faster iteration processes for the dilute nitride growth and post process optimization. Also at the beginning of the solar cell research, Joel Salmi showed to be a dedicate researcher with the analysis of different process parameters on the cell performances and definitely still part of our success is due to his pertinent analysis. For the solar cell processing, I would also like to acknowledge the work of Wenxin Zhang, Timo Aho and Marianna Raappana. In particular for the CPV-cell chip development and for the highest efficiencies, I would like to mention the efforts of Timo and Marianna and their enrichment of the team as hard core chemists.

For the new solar cell processing concepts, I want to acknowledge Professor Tapio Niemi and Dr. Juha Tommila who contributed to the research and development of moth eye based antireflection coatings. In particular I want to thank Dr. Juha Tommila for making it possible to have extremely fast and analytic process development with very little need for iterative steps.

For the material characteristics analysis and for mentoring I would like to cordially mention Professor Pekka Laukkanen from the University of Turku for the RHEED, XPS and LEED analysis of the dilute nitride materials. In addition, for the time resolved photoluminescence analysis I would like to thank Alexander Gubanov and Professor Nikolai Tkachenko. For compositional analysis with SEM-EDS, I would like to thank Dr. Mari Honkanen.

Solar cell wafers would be nothing without post processing and packing them to ready solar cells. To his end, my greatest gratitude I own to Ville Polojärvi who has had the main response for the processing and defect analyses of the dilute nitride based solar cells. Owing to Ville’s effort, we were able to do numerous different post growth treatments for the same wafer, which made it possible to have faster iteration processes for the dilute nitride growth and post process optimization. Also at the beginning of the solar cell research, Joel Salmi showed to be a dedicate researcher with the analysis of different process parameters on the cell performances and definitely still part of our success is due to his pertinent analysis. For the solar cell processing, I would also like to acknowledge the work of Wenxin Zhang, Timo Aho and Marianna Raappana. In particular for the CPV-cell chip development and for the highest efficiencies, I would like to mention the efforts of Timo and Marianna and their enrichment of the team as hard core chemists.

For the new solar cell processing concepts, I want to acknowledge Professor Tapio Niemi and Dr. Juha Tommila who contributed to the research and development of moth eye based antireflection coatings. In particular I want to thank Dr. Juha Tommila for making it possible to have extremely fast and analytic process development with very little need for iterative steps.

For the material characteristics analysis and for mentoring I would like to cordially mention Professor Pekka Laukkanen from the University of Turku for the RHEED, XPS and LEED analysis of the dilute nitride materials. In addition, for the time resolved photoluminescence analysis I would like to thank Alexander Gubanov and Professor Nikolai Tkachenko. For compositional analysis with SEM-EDS, I would like to thank Dr. Mari Honkanen.
For the sub-systems needed for MBE and their continuous operation without interruptions, I thank the efforts of Ilkka Hirvonen and Bengt-Olof Holmström. I want to also mention Timo Lindqvist for the fabrication of high quality vacuum parts needed for the MBE system.

For the supporting of GEN20 team in MBE maintenance and heavy lifting jobs, the support of Miki Tavast and Riku Koskinen made my job easier. Also the other MBE group members have been lovely to work with and have shared the good and bad times of MBE with me. In addition all other ORC co-workers have made my years at ORC excellent.

For the last but not least, I would like to mention my family, friends and Jenni for the support that I have needed during the PhD research and studies.

Tampere, October 2015
Arto Aho
Table of Contents

Abstract ... i
Acknowledgements iii
Table of Contents vii
List of Publications ix
Author’s Contribution xi
List of Abbreviations and Symbols xiii

1 Introduction 1

2 Physics of III-V multijunction solar cells 7
 2.1 Solar cell operation principle 7
 2.2 Monolithic multijunction solar cells 13
 2.3 Current voltage characteristics of III-V multijunction solar cells 17

3 Growth dynamics of GaInNAsSb 23
 3.1 2D growth of GaInNAsSb single crystals 24
 3.2 Modelling of N incorporation 27
 3.3 Band gaps of GaInNAsSb compounds 29
 3.4 N composition dependent growth dynamics of GaInNAs crystals 32
 3.5 Unintentional doping of GaInNAsSb 35

4 Performance of GaInNAsSb solar cells 37
 4.1 Thermal annealing of GaInNAs solar cells 38
 4.2 The effect of N composition on the GaInNAs solar cell performance 39
 4.3 Growth optimization for GaInNAsSb single junction solar cells 41
 4.4 Performance of optimized GaInNAsSb solar cells 44

5 Performance of optimized GaInNAsSb solar cells 44
5 Dilute nitride multijunction solar cells 49
5.1 Design of dilute nitride multijunction solar cells .. 49
5.2 Epitaxy optimization for multijunction architectures .. 54
5.3 Performance of GaInP/GaAs/GaInNAsSb solar cells ... 59
5.4 AlInP moth eye coated GaInP/GaAs/GaInNAs SC ... 62

6 Conclusions 65

Bibliography 67
List of Publications

The following journal and conference proceeding publications P1 to P11 are included in this thesis as appendices and referred to in the text as [P1]–[P11]. All papers have been reviewed by peer review process coordinated by the journal editor or by the conference committee.

Author’s Contribution

The results presented have been largely obtained by teamwork. A summary of the author’s contribution to the research work and to the manuscript preparation is given in the list below. The main aspects provided by the coworkers listed in the publications include wafer processing, nanopatterning, solar cell and material characterization, and structure and result simulation.

P1: The author planned and performed the epitaxial experiments, participated in the characterization of GaInNAs crystal and solar cell properties, analyzed the results and prepared the manuscript.

P2: The author shared the contribution to epitaxial design and experiments, and crystal characterization with the second and fourth author. The author developed the incorporation model by brainstorming together with the co-authors and prepared the manuscript.

P3: The author participated in epitaxial layer structure design and performed epitaxial experiments. The author also contributed to the solar cell characterization and analysis as team work. The author participated in the manuscript writing as team work, which was finalized by the second and the last author.

P4: The author participated in epitaxial layer structure design and performed epitaxial experiments. The author also contributed to the solar cell characterization and analysis as team work. The author participated in the manuscript writing as team work, which was finalized by the second author.

P5: The author participated in epitaxial layer structure design and performed epitaxial experiments. The author also calculated the efficiency projections for terrestrial applications of triple and four junction cells, performed solar cell characterization and prepared the manuscript.

P6: The author participated in epitaxial layer structure design and performed epitaxial experiments. The author also made solar cell characterization, in particular the quantum efficiency analysis for each sub-cell. The author also prepared the manuscript.

P7: The author participated in epitaxial layer structure design and performed the epitaxy experiments. The author also made temperature dependent quantum efficiency analysis and prepared the manuscript.

P8: The author designed the experiments, epitaxial structures and performed epitaxial experiments. The characterization and analysis work was coordinated by the author and
performed as team work with the co-authors. The composition analysis was performed and modified band anti-crossing model was developed by the author. The author also prepared the manuscript.

P9: The author participated in epitaxial layer structure design and performed the epitaxy work. The author also participated in the solar cell characterization and analysis. The author drafted first version of the paper and participated in the paper writing, which was finalized by the second author.

P10: The author participated in epitaxial layer structure design, performed the epitaxy experiments and analyzed the results. The author also participated in the solar cell characterization and prepared the manuscript.

P11: The author participated in epitaxial layer structure design, performed the epitaxy experiments and analyzed the results. The solar cell characterization was performed as team work. In addition, the author calculated the efficiency projections for triple and four junction cells for space applications, and prepared the manuscript.

P9: The author participated in epitaxial layer structure design and performed the epitaxy work. The author also participated in the solar cell characterization and analysis. The author drafted first version of the paper and participated in the paper writing, which was finalized by the second author.

P10: The author participated in epitaxial layer structure design, performed the epitaxy experiments and analyzed the results. The author also participated in the solar cell characterization and prepared the manuscript.

P11: The author participated in epitaxial layer structure design, performed the epitaxy experiments and analyzed the results. The solar cell characterization was performed as team work. In addition, the author calculated the efficiency projections for triple and four junction cells for space applications, and prepared the manuscript.
List of Abbreviations and Symbols

AFM: Atomic force microscopy
AlGaAs: Aluminum gallium arsenide
AlGaInP: Aluminum gallium indium phosphide
AlInP: Aluminum indium phosphide
ARC: Anti reflection coating
As: Arsenic
A-sc: Area of solar cell
B, D: Fitting factors for N incorporation rate calculation taking into account system and plasma geometrics
Be: Beryllium
BEP: Beam equivalent pressure
BOL: Beginning of life
C: Light concentration level
CdTe: Cadmium telluride
CO₂: Carbon dioxide
CPV: Concentrated photovoltaics
CV: Capacitance-voltage
DLTS: Deep level transient spectroscopy
DNI: Direct normal irradiance
E+ : Higher energy band generated by N incorporation
E- : Lower energy band generated by N incorporation
E-ad: Effective activation energy for N₂ molecule dissociation processes
E_g : Band gap
E_0 : Band gap of the i-th sub cell sub-cell
E_M : Host material band gap in band anti-crossing model
E_N : N induced energy level
E_g : Host material band gap in band anti-crossing model
E_N : N induced energy level
EOL End of life
EQE External quantum efficiency
EQE_{av}^i Average EQE the i^{th} sub cell sub-cell
F N_2 molecular flow
FF Fill factor
Ga Gallium
GaAs Gallium arsenide
GaInAs Gallium indium arsenide
GaInNAs Gallium indium nitride arsenide
GaInNAsSb Gallium indium nitride arsenide antimonide
GaInP Gallium indium phosphide
GaNPAs Gallium nitride phosphide arsenide
Ge Germanium
GR_{III} Growth rate determined by group III atoms
HCPV High concentration concentrated photovoltaics
I Current of two terminal cell
i Sub-cell index
I_0 Reverse saturation current of solar cell
I_n Reverse saturation current of the n^{th} sub cell sub-cell
$I_{I\text{-sun}}$ Light intensity corresponding to one sun illumination
I_i Current of the i^{th} sub cell sub-cell
I_{Li} Photocurrent generated by the i^{th} sub cell sub-cell
I_{mp} Current at maximum power point
In Indium
InP Indium phosphide
IQE Internal quantum efficiency
I_c Short circuit current
$I_{sc-1\text{-sun}}$ Short circuit current at one sun concentration
I_{sun} Sunlight intensity at solar cell
IV Current-voltage
I_{sc} Short circuit current density
k_b Boltzmann constant
KPFM Kelvin probe force microscopy
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCPV</td>
<td>Low concentration concentrated photovoltaics</td>
</tr>
<tr>
<td>LIV</td>
<td>Light biased current-voltage measurements</td>
</tr>
<tr>
<td>MBE</td>
<td>Molecular beam epitaxy</td>
</tr>
<tr>
<td>MJSC</td>
<td>Multijunction solar cell</td>
</tr>
<tr>
<td>MOCVD</td>
<td>Metalorganic chemical vapor deposition</td>
</tr>
<tr>
<td>N</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>n_i</td>
<td>Ideality factor of the i^{th} sub cell</td>
</tr>
<tr>
<td>NREL</td>
<td>National Renewable research laboratory</td>
</tr>
<tr>
<td>ORC</td>
<td>Optoelectronics Research Centre</td>
</tr>
<tr>
<td>PL</td>
<td>Photoluminescence</td>
</tr>
<tr>
<td>P_{opt}</td>
<td>Optical radiation power</td>
</tr>
<tr>
<td>P_{RF}</td>
<td>Plasma primary power</td>
</tr>
<tr>
<td>q</td>
<td>Charge of electron</td>
</tr>
<tr>
<td>RF</td>
<td>Radio frequency</td>
</tr>
<tr>
<td>RHEED</td>
<td>Reflection high energy electron diffraction</td>
</tr>
<tr>
<td>R_s</td>
<td>Total series resistance of multijunction cell</td>
</tr>
<tr>
<td>R_{si}</td>
<td>Series resistance of the i^{th} sub cell</td>
</tr>
<tr>
<td>R_{sp}</td>
<td>Plasma system primary resistance</td>
</tr>
<tr>
<td>RTA</td>
<td>Rapid thermal annealing</td>
</tr>
<tr>
<td>Sb</td>
<td>Antimony</td>
</tr>
<tr>
<td>SC</td>
<td>Solar cell</td>
</tr>
<tr>
<td>Si</td>
<td>Silicon</td>
</tr>
<tr>
<td>T</td>
<td>Solar cell temperature</td>
</tr>
<tr>
<td>UHV</td>
<td>Ultra-high vacuum</td>
</tr>
<tr>
<td>V</td>
<td>Interaction potential</td>
</tr>
<tr>
<td>V_i</td>
<td>Voltage of i^{th} sub cell sub-cell</td>
</tr>
<tr>
<td>V_{mp}</td>
<td>Voltage at maximum power point</td>
</tr>
<tr>
<td>V_{oc}</td>
<td>Open circuit voltage</td>
</tr>
<tr>
<td>V_{tr}</td>
<td>Voltage of two terminal solar cell</td>
</tr>
<tr>
<td>W_{oc}</td>
<td>Band gap voltage offset</td>
</tr>
<tr>
<td>x</td>
<td>In composition in Ga$_{1-x}$In$_x$NzAs${1-y-z}$Sb$_y$</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>y</td>
<td>Sb composition in Ga$_{1-x}$In$_x$NzAs${1-y-z}$Sb$_y$</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>z</td>
<td>N composition in Ga$_{1-x}$In$_x$NzAs${1-y-z}$Sb$_y$</td>
</tr>
<tr>
<td>z1</td>
<td>N composition in lattice matched GaInNAs</td>
</tr>
<tr>
<td>z2</td>
<td>N composition in lattice matched GaNAsSb</td>
</tr>
<tr>
<td>3J</td>
<td>Triple junction cell</td>
</tr>
<tr>
<td>4J</td>
<td>Four junction cell</td>
</tr>
</tbody>
</table>

Symbols, Greek Alphabet

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ</td>
<td>Photon flux</td>
</tr>
<tr>
<td>η</td>
<td>Efficiency</td>
</tr>
</tbody>
</table>
Chapter 1

1 Introduction

Since the introduction of first pn-junction solar cell (SC) [1], patented by Russell Ohl in 1946 and developed in 1954 by Bell Laboratories, the energy conversion efficiency of solar cells has grown steadily [2]. Starting from the 1980s, the efficiency has been improved by an average of 1 percentage points per year [2] and currently the best solar cell converts 46% of the energy of sunlight to electricity [3] (see Figure 1.1). During the past 20 years, steady growth has been enabled by the development of solar cells based on thin film III-V semiconductors and on their band gap tailoring option for multijunction solar cells (MJSC) [4]. III-V solar cells are constructed from crystalline compounds that are made of group III and group V elements of the periodic table. During the last five years, new materials such as Perovskites have shown promise, reaching a maximum efficiency of about 20% [3]. We should also not forgot so called thin film technologies including CdTe ~21%, dye sensitive cells ~12% and ~11% organic solar cells which make the spectrum of photovoltaic technologies even wider [3]. Emerging technologies, such as intermediate band solar cells and hot carrier solar cells, may also play a significant role in future renewable energy generation [5]. In an ideal situation, the efficiency is high and cost of the solar cell material per area is low. Unfortunately for many simple and cheap solar cell technologies, the limit for solar cell efficiency can be rather low and therefore the additional installation, system costs and cost of space will make the solar energy expensive. If the solar cell is based on a single current generating material with a pn-junction diode, the ideal efficiency is determined mainly by the light absorption edge and the density of absorption states of the material.
Chapter 1. Introduction

The efficiency limit of a single pn-junction solar cell was calculated by Shockley-Queisser in 1960 [6] to be 30%, corresponding to materials with an absorption edge of 1.2-1.4 eV. The ideal efficiency of such a solar cell is low due to many loss mechanisms, of which the most important are transmission losses and energy losses as heat. The transmission losses can be reduced significantly by reducing the energy of the band edge. Unfortunately for single junction cells, in this case the thermalization losses are increased and the overall energy conversion efficiency is decreased. To increase the efficiency above the single junction limit, multijunction architecture cells are needed [7]. In this concept, solar cells with different band gaps are stacked on top of one another to reduce both transmission and thermalization losses. The idea behind such a solar cell is that the photons that are not absorbed at the junction above will be passed to the junction below and be partly absorbed. The actual stacking of the cells can be performed in many ways, the most important being monolithic integration.

The applications of solar cells and benefits of III-V solar cells

The III-V solar cells are prime choices for concentrated photovoltaic (CPV) power plants, space photovoltaics and in applications where solar cells are required to have a high power to weight ratio and low area [4]. For large area terrestrial flat panel usage, III-V cells are at the moment...
too expensive, when compared to Si or thin film technologies (see Figure 1.2) [4]. Currently, for III-V multijunction cells, the efficiency can be ~38% under one sun conditions, and with high light concentration, typically from 300 to 1000 suns, efficiencies of over 45% can be reached [3].

Figure 1.2. Solar panel installations in operation. On the left, Si flat panel installation connected to large batteries. On the right, an image of a 1 MW installation showing the back of the CPV panels. The panels are located in Albuquerque, New Mexico, USA.

CPV technology was introduced in the 1960s [8] and pioneering work in CPV was led by Sandia National Laboratories starting from 1976 [9]. In CPV technology, the sunlight is concentrated from a large area to a smaller area, and therefore the active solar cell material area can be significantly reduced. The light concentration also has another benefit: with concentrated light, the solar cell efficiency increases, up to a certain concentration. For III-V solar cells, the improvement continues with concentrations of several hundreds of suns, and in theory the cell can be improved nearly up to the concentration limit of the Sun. The light of the Sun has a concentration limit of 46200 suns that is given by the size of the Sun and the distance between the Earth and the Sun [7], although up to 56000 suns is possible using non-imaging optics [10]. The benefit of CPV-technology is definitely superior efficiency, but the disadvantages are the need for an incorporated sun tracking system, and that the optical concentration design needs to be good in order to achieve high panel efficiency. Currently, only direct, almost collimated sunlight can be focused to a small spot with simple optics. Fortunately, there are multiple locations in the world that have many clear sky, sunny days, where CPV-systems can deliver large amounts of electricity. CPV-systems are currently divided into two different groups according to their concentration factor [11]. For high concentration systems (HCPV) the concentration is over 300 and for low concentrations (LCPV) the concentration is below 100.

Figure 1.2. Solar panel installations in operation. On the left, Si flat panel installation connected to large batteries. On the right, an image of a 1 MW installation showing the back of the CPV panels. The panels are located in Albuquerque, New Mexico, USA.

CPV technology was introduced in the 1960s [8] and pioneering work in CPV was led by Sandia National Laboratories starting from 1976 [9]. In CPV technology, the sunlight is concentrated from a large area to a smaller area, and therefore the active solar cell material area can be significantly reduced. The light concentration also has another benefit: with concentrated light, the solar cell efficiency increases, up to a certain concentration. For III-V solar cells, the improvement continues with concentrations of several hundreds of suns, and in theory the cell can be improved nearly up to the concentration limit of the Sun. The light of the Sun has a concentration limit of 46200 suns that is given by the size of the Sun and the distance between the Earth and the Sun [7], although up to 56000 suns is possible using non-imaging optics [10]. The benefit of CPV-technology is definitely superior efficiency, but the disadvantages are the need for an incorporated sun tracking system, and that the optical concentration design needs to be good in order to achieve high panel efficiency. Currently, only direct, almost collimated sunlight can be focused to a small spot with simple optics. Fortunately, there are multiple locations in the world that have many clear sky, sunny days, where CPV-systems can deliver large amounts of electricity. CPV-systems are currently divided into two different groups according to their concentration factor [11]. For high concentration systems (HCPV) the concentration is over 300 and for low concentrations (LCPV) the concentration is below 100.
III-V cells are used in high concentration systems and other types of solar cells, typically silicon based, are used with lower concentration levels. There are predictions that with production volume and the next development steps in CPV technology, the energy price could go down to 0.045 Euro/kWh by 2030 [12]. The fabrication cost of CPV system will strongly depend on the concentration level [13]. If above 1000x concentrations are considered, only a minor part of the costs will be due to the CPV solar cell chip and the major part will be due to other parts of the system. Developing the cell efficiency will, however, lead to savings on the system level, since it directly improves the investment payback time and the price of energy.

In addition to semiconductor material science, smart product design can reduce the tracker costs and installation related costs, by optimizing power electronics and mechanical designs. For example, light weight designs minimize the logistics costs and enable a much cheaper and less CO₂ intensive production chain. In addition, new approaches in the CPV field are constantly being developed, reflecting almost endless possibilities for III-V CPV solar cell technology. Based on calculations reported in 2013 by the Fraunhofer ISE, the costs of CPV energy in sunny locations with a direct normal irradiance (DNI) of 2500 kWh/year/m² and 2200 kWh/year/m², is currently 0.08 to 0.12 €/kWh, respectively [11]. Some calculations suggest that the costs might be significantly lower, in the range of 0.04 to 0.05 $/kWh, depending on location [14]. In January 2015, the total amount of installed CPV-power was 330 MW (peak power) and all larger plants were delivering energy corresponding to 74-80% of their nominal performance [11]. Also, field tests by Soitec and National Renewable Energy Laboratory (NREL) reported that their panel installations show no measurable degradation during up to six years operation [15; 16], which is further evidence that CPV technology is not just a scientific exercise. These observations indicate a highly promising future for CPV-technology in sunny locations, where the produced energy can be predicted very accurately and produced without degradation of the output power.

While CPV is an emerging technology, space applications have been the largest application for III-V solar cells for a long time. This is first of all because the III-V cells have the highest efficiencies reported and smallest is area needed per unit power generation. Efficient area utilization saves room for the other essential equipment in the satellite or space station. In addition, the thermal efficiency coefficient for III-V cells has a lower negative slope than it does for Si cells, and therefore high solar power generation can be achieved even at elevated
temperatures. III-V cells also have excellent radiation durability [17; 18] in space, and this means by far the largest energy production in the space environment during the whole panel lifetime. The beginning of life (BOL) efficiency and the end of life (EOL) efficiency of optimized III-V cells are close to each other, when for the next best Si cell technology EOL can be significantly less than BOL. The EOL of III-V cells after a space mission can be as high as 90% of the BOL, while for Si solar cells it can be as low as 74% [19]. The III-V solar cells can also be fabricated as thin film devices to reduce the weight and increase the power to weight ratio. Currently, III-V solar cells with power to weight ratios of over 1000 W/kg can be fabricated [20]. The weight saving possibility makes satellite launches significantly cheaper. III-V solar cells might also be used in the future to produce hydrogen directly from sunlight and water for hydrogen based energy storing applications [21].

Currently III-V multijunction solar cells can be produced by two different epitaxial technologies. The technologies are metal organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE). With both techniques it is possible to grow all III-V solar cell junctions, but the techniques currently have different focuses due to their respective advantages in the production of different materials. MOCVD, at least for GaInAs materials, is a faster growth method than MBE. Therefore, MOCVD has been used as the development tool for III-V semiconductor solar cells in the past. MBE, on the other hand, has been shown to be a significantly better growth method for dilute nitrides, including GaInNAsSb compounds, and also has significant advantages in the fabrication of high performance tunnel junctions [22].

![Figure 1.3. Veeco Gen20 MBE system used in this study.](image-url)

Currently III-V multijunction solar cells can be produced by two different epitaxial technologies. The technologies are metal organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE). With both techniques it is possible to grow all III-V solar cell junctions, but the techniques currently have different focuses due to their respective advantages in the production of different materials. MOCVD, at least for GaInAs materials, is a faster growth method than MBE. Therefore, MOCVD has been used as the development tool for III-V semiconductor solar cells in the past. MBE, on the other hand, has been shown to be a significantly better growth method for dilute nitrides, including GaInNAsSb compounds, and also has significant advantages in the fabrication of high performance tunnel junctions [22].

![Figure 1.3. Veeco Gen20 MBE system used in this study.](image-url)
To overcome the 50% efficiency limit, III-V multijunction solar cell research groups are adopting new schemes. We have chosen to use 1 eV band gap GaInNAsSb as the key element for the breaking of the 50% efficiency barrier. We have developed GaInNAsSb solar cell materials by exploring MBE synthesis dynamics and determining the physical properties of GaInNAsSb solar cells. This thesis summarizes the research carried between 2009 and 2015 and focuses on the MBE of GaInNAsSb materials for multijunction solar cells. In particular, the thesis focuses on GaInNAsSb multijunction solar cell MBE growth (See Figure 1.3) and on the performance of the fabricated GaInNAsSb single and multijunction solar cells. The thesis also studies the potential of monolithic integration of a nanopattern antireflection coating on top of a triple junction cell in order to achieve minimal reflection losses on top of the cell. Papers 1, 2 and 8 focus on the epitaxy dynamics and characteristics of GaInNAsSb crystals. Paper 1 and papers 3 to 5 focus on GaInNAsSb single junction cell and material properties. Papers 1, 2, 5, 6 and 7 focus on dilute nitride multijunction solar cells. In addition to journal papers, conference proceeding papers 9 to 11 focus on single and multijunction cells. These topics have been addressed in an iterative fashion, following the initial steps of material synthesis to single, and then multijunction device demonstration. The performance of a nanopatterned antireflection coating on a triple junction cell is presented in paper 6.
Chapter 2

2 Physics of III-V multijunction solar cells

For the understanding and optimization of solar cell performance, it is essential to understand the physics behind the photovoltaic phenomenon. This chapter briefly introduces solar cell physics, especially for III-V semiconductors and III-V dilute nitride compounds. The theoretical limitations and potentials of III-V solar cell materials are also discussed in this chapter.

2.1 Solar cell operation principle

Solar cells convert photons into charge carriers and transfer them to positive and negative contacts biased by an internal electric field formed in the solar cell. Solar cells are often based on semiconductor crystals [23]. Charge carriers in semiconductors are electrons for negative charges (n) and holes for positive charges (p), the density of electrons and holes can be tuned by introducing doping atoms to the crystal. Semiconductors are used in solar cells due to their tunable absorption, emission, recombination and charge transport properties [7; 13; 23; 24]. These properties are dependent on the electronic band structure (Figure 2.1), which can be tailored in many ways for compound semiconductors. The tailoring options include tuning the type and the width of the band gap (E_g). The band gap makes it possible to have materials that

For the understanding and optimization of solar cell performance, it is essential to understand the physics behind the photovoltaic phenomenon. This chapter briefly introduces solar cell physics, especially for III-V semiconductors and III-V dilute nitride compounds. The theoretical limitations and potentials of III-V solar cell materials are also discussed in this chapter.

2.1 Solar cell operation principle

Solar cells convert photons into charge carriers and transfer them to positive and negative contacts biased by an internal electric field formed in the solar cell. Solar cells are often based on semiconductor crystals [23]. Charge carriers in semiconductors are electrons for negative charges (n) and holes for positive charges (p), the density of electrons and holes can be tuned by introducing doping atoms to the crystal. Semiconductors are used in solar cells due to their tunable absorption, emission, recombination and charge transport properties [7; 13; 23; 24]. These properties are dependent on the electronic band structure (Figure 2.1), which can be tailored in many ways for compound semiconductors. The tailoring options include tuning the type and the width of the band gap (E_g). The band gap makes it possible to have materials that
will exhibit efficient photon absorption between the valence and conduction bands of the electronic band structure. High absorption is possible due to the high density of states that enable many different absorption transitions. The formation of pn-junction with doping makes possible the separation of the photon generated electron hole pairs from the absorption area, and their efficient collection at the metal contacts without the use of external electric fields. [23; 25]

Figure 2.1. Simplified band diagram for direct band gap bulk semiconductor. Photons can be efficiently absorbed if photon energy is at least E_g.

In a semiconductor solar cell, the photons generate electron-hole pairs that are separated due to electric field created in the depletion region of the pn-junction. In addition to field aided separation, the charge carriers are collected at roughly the diffusion length [23] away from the junction. For the short circuit condition, the carrier collection to the contacts can be assumed to be complete and no accumulation of charges on the n or the p side of the junction occurs. If external load is placed in series with the solar cell, buildup of charges on the n side for electrons and on the p side for holes will result in building of voltage to the cell output. This voltage can increase up to the point in which the diffusion current cancels out the photocurrent, a level is called open circuit voltage. The current-voltage dependence can be modelled by diode equation for solar cells [23]. A pn-junction can be formed by either the implanting or diffusion of dopants to the crystal or by epitaxially forming an area which is p-type or n-type [25]. In the epitaxial growth, the dopant atoms are mixed on the growth plane during the growth of the epitaxial layer. The n- and p-type semiconductors are formed by introducing crystal lattice impurities that cause an electron density increase or a shortage of electrons, i.e. creating holes. An epitaxial pn-junction can be formed by changing the type of the impurity and continuing the growth. The diffusion length of the charge carriers [25] depends on the purity of the lattice and plays a critical role in the collection performance of the fabricated solar cell [23]. The second
critical parameter for solar cell design is the light absorption, determined by the solar cell material thickness, energy state densities and band gap energy [23]. Absorption strength is strongly dependent on the chosen material and the energy of the incident photon. For semiconductors with a direct band gap, the absorption near the band edge is much stronger than for indirect band gap semiconductors [23]. The difference between indirect and direct semiconductors arises from their electronic band structure. Near the band edges for direct band gap semiconductors, also at minimum absorption energies, the photon electron excitation interaction can occur without the presence of lattice vibrations, and is therefore a more probable phenomenon [23]. On the other hand, the direct band gap semiconductors also have a significantly higher probability to re-emit the photon compared to indirect band gap semiconductors, leading to shorter charge carrier lifetimes for direct gap semiconductors. Typical charge carrier lifetimes and physical constants are listed in Table 2.1. The charge carrier lifetimes are determined by recombination processes which include optical and thermal interactions. The recombination can take place in the bulk or at the interfaces. In the case of solar cells, optical emission is spontaneous emission. The recombination processes producing heat are based on impurity state recombination, also known as Shockley-Read-Hall recombination, or on Auger recombination [23]. At a given temperature, the rate of impurity recombination is dependent on the defect density, the cross section of the defect state, and the energy. Auger recombination is a different process and it is dependent on the free charge carrier densities in the bands. For III-V solar cells it is important to have low bulk recombination and surface recombination rates. For high quality defect-free bulk material and the correct choice of interface materials, significant improvements can be achieved, resulting in higher voltages, currents, and conversion efficiencies [26-28].
A simplified structure of a single material pn-junction solar cell is presented in Figure 2.2 a. Single material solar cells are also multilayer devices combining, at least, an antireflection coating (ARC), back and front metal contacts, cell interconnector bonds, and some electronics to match the cell to a load that consumes the produced energy. The ARC can be a single, multilayer or micro/nanopatterned surface that is used to minimize the light reflection on the semiconductor-air interface [43]. Back and front metal contacts minimize the resistive losses of photocurrent and photovoltage to the electronic matching unit. The front contact typically has a finger pattern to maximize light transmission. The back contact typically covers the whole back side of the solar cell crystal. In addition to these layers, in modern high efficiency solar cells the semiconductor crystal itself is composed of multiple semiconductor layers from different semiconductors having different purposes and functionalities. These devices are called heterointerface devices and they are widely used also in light emitting diodes, semiconductor lasers, transistors, and photodetectors. A simplified structure of a modern single junction III-V solar cell is presented in Figure 2.2 b.
2.1. Solar cell operation principle

Figure 2.2. On the left a schematic structure of a simple Si solar cell and on the right the structure of a GaInP top cell. Short wavelengths are absorbed near the top of the cell (blue arrow) and the longest wavelengths (red arrow) are absorbed near the bottom of the cell junction, or travel through the cell.

The cell has an ARC to maximize the light transmission to the active material. Metal contacts are also formed on the top, typically in a finger pattern. The metal contacts are made on an epitaxial layer of highly doped n-GaAs and the ARC is grown on a high band gap n-AlInP window layer. To form this structure a selective etching step is needed. The purpose of the AlInP is to reflect holes back to the pn-junction and minimize the surface recombination rate. N-doped GaInP forms the n side of the junction and low doping p-GaInP forms the p-side. The depletion region is mainly formed on the p-side of the junction, the low doped region is p-type because the diffusion length of electrons is longer than for holes. Highly doped p-GaInP, p-AlGaInP, or p-AlInP is needed to reflect back electrons to the junction and minimize surface recombination rates at the back side. The purpose of the p-GaAs buffer and substrate is to provide a platform for the device to be grown. A back metal contact is needed for good ohmic contact.

Depending on the application, this kind of device may already satisfy the performance needs, but if even higher performance is preferred, multijunction concepts need to be introduced. In multijunction architectures, solar cells with different absorption band edges are used to absorb the solar energy as efficiently as possible, and the remaining photons are recycled to a second junction that can use them efficiently. The process is efficient because in this way the energy consumed by the relaxation of the photon excited electron to the conduction band minimum has a smaller total energy when losses are integrated for all photons of the solar spectrum. Usually...
these devices are III-V semiconductor devices and from now on we will focus only on III-V multijunction solar cells.

Multijunction solar cell architectures

Different III-V solar cells can be connected together by mechanical stacking, spectral splitting, monolithically or by wafer bonding or wafer fusion [44-52]. Each approach has different challenges at different phases of the solar cell panel manufacturing. The advantages and disadvantages of the different approaches are compared in Table 2.2

Table 2.2. Comparison of different MJSC architectures.

<table>
<thead>
<tr>
<th>MJSC architecture</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral splitting</td>
<td>+ Simple epitaxy, + No material / lattice matching limitations, + Current matching not necessary</td>
<td>- Complex optics, - Multi terminal device and complex electronics, - Panel fabrication has many phases, - Multiple growths and wafers</td>
</tr>
<tr>
<td>Mechanical stacking</td>
<td>+ Simple epitaxy, + No lattice constant limitations, + Current matching is not necessary</td>
<td>- Complex assembly, - Multi terminal device, - Multiple growths and wafers</td>
</tr>
<tr>
<td>Wafer fusion</td>
<td>+ Two terminal device, + Easy panel fabrication, + Easy epitaxy, + Simple electronics</td>
<td>- Multiple growths and wafers, - Complex fusion process</td>
</tr>
<tr>
<td>Monolithic</td>
<td>+ Only one wafer and growth, + Simple electronics, + Easy panel fabrication</td>
<td>- Most of the challenges are on the epitaxy level, - Tunnel junctions necessary, - Limited amount of lattice matched junctions, - Panel fabrication has many phases, - Multiple growths and wafers</td>
</tr>
<tr>
<td>Metamorphic (inverted or upright)</td>
<td>+ Lattice matched and metamorphic junctions can be used in the same cell, + Only one wafer and growth, + Simple electronics, + Easy panel fabrication</td>
<td>- Most of the challenges are on the epitaxy level, - Multiple different tunnel junctions necessary, - Thick metamorphic buffers needed</td>
</tr>
<tr>
<td>Monolithic dilute N</td>
<td>+ Multiple material possibilities which all are lattice matched, + Only one wafer and growth, + Simple electronics, + Easy panel fabrication, + Only one or two different tunnel junctions need to be developed, + No thick buffers needed (thin and fast epitaxy)</td>
<td>- Most of the challenges are on the epitaxy level</td>
</tr>
</tbody>
</table>

Chapter 2. Physics of III-V multijunction solar cells

these devices are III-V semiconductor devices and from now on we will focus only on III-V multijunction solar cells.

Multijunction solar cell architectures

Different III-V solar cells can be connected together by mechanical stacking, spectral splitting, monolithically or by wafer bonding or wafer fusion [44-52]. Each approach has different challenges at different phases of the solar cell panel manufacturing. The advantages and disadvantages of the different approaches are compared in Table 2.2

Table 2.2. Comparison of different MJSC architectures.

<table>
<thead>
<tr>
<th>MJSC architecture</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral splitting</td>
<td>+ Simple epitaxy, + No material / lattice matching limitations, + Current matching not necessary</td>
<td>- Complex optics, - Multi terminal device and complex electronics, - Panel fabrication has many phases, - Multiple growths and wafers</td>
</tr>
<tr>
<td>Mechanical stacking</td>
<td>+ Simple epitaxy, + No lattice constant limitations, + Current matching is not necessary</td>
<td>- Complex assembly, - Multi terminal device, - Multiple growths and wafers</td>
</tr>
<tr>
<td>Wafer fusion</td>
<td>+ Two terminal device, + Easy panel fabrication, + Easy epitaxy, + Simple electronics</td>
<td>- Multiple growths and wafers, - Complex fusion process</td>
</tr>
<tr>
<td>Monolithic</td>
<td>+ Only one wafer and growth, + Simple electronics, + Easy panel fabrication</td>
<td>- Most of the challenges are on the epitaxy level, - Tunnel junctions necessary, - Limited amount of lattice matched junctions, - Panel fabrication has many phases, - Multiple growths and wafers</td>
</tr>
<tr>
<td>Metamorphic (inverted or upright)</td>
<td>+ Lattice matched and metamorphic junctions can be used in the same cell, + Only one wafer and growth, + Simple electronics, + Easy panel fabrication</td>
<td>- Most of the challenges are on the epitaxy level, - Multiple different tunnel junctions necessary, - Thick metamorphic buffers needed</td>
</tr>
<tr>
<td>Monolithic dilute N</td>
<td>+ Multiple material possibilities which all are lattice matched, + Only one wafer and growth, + Simple electronics, + Easy panel fabrication, + Only one or two different tunnel junctions need to be developed, + No thick buffers needed (thin and fast epitaxy)</td>
<td>- Most of the challenges are on the epitaxy level</td>
</tr>
</tbody>
</table>
2.2 Monolithic multijunction solar cells

For the associated electronics, monolithic and wafer fusion approaches have simpler solutions. On the other hand, the growth of mechanically stacked solar cells is much simpler since only single junction devices are needed, and they do not need to be current matched to each other. Currently, almost all III-V multijunction solar cells are two terminal devices as it is simply easier to resolve the problems on a wafer level than at the system level. Unfortunately, traditional III-V materials easily limit the number of available lattice matched junctions to three. Fortunately, there are new lattice matched materials that can enable multiple new junctions. These materials are based on GaInNAsSb compounds, which are the topic of this thesis.

2.2 Monolithic multijunction solar cells

Monolithic multijunction solar cells are composed of single solar cells that are connected together by electrical polarity inverting tunnel junctions. Tunnel junctions are needed to connect all the junctions in series and gain a voltage increment from each sub-cell. A schematic picture of a monolithic multijunction solar cell is presented in Figure 2.3. In a monolithic multijunction solar cell the topmost cell must have the highest band gap energy and the bottom cell the lowest. This allows equalization of the photon flux for all the junctions, which is based on the absorption properties of III-V cell materials (see Figure 2.1).

Most of the commercial monolithic III-V solar cells are currently triple junction solar cells and they are made of GaInP, Ga(In)As and Ge junctions. Ga\textsubscript{1-x}In\textsubscript{x}P is lattice matched on GaAs and Ge when x is approximately 0.5. This configuration sets the band gaps of the current generating materials to 1.9 eV, 1.4 eV and 0.7 eV, for GaInP, GaAs and Ge respectively. In practice this...
approach limits the solar cell efficiency in production to ~40% and the production panel efficiency of ~30% when installed in a CPV system. [53]

Monolithic multijunction solar cells require tunnel junctions that have low series resistance and high tunneling currents. First of all, the tunnel junction should be transparent to the photons that are not generating current in the junction above. If it is not highly transparent, it will lead to a drop in current generation of the junction below. Secondly, the tunnel junction should have high probability for electron tunneling through the barrier that is formed in a pn-junction between the n-side conduction band and the p-side valence band. If tunneling is not efficient, it will result in unideal operation of the whole multijunction device. In practice, the tunneling between these bands is achieved by introducing extremely high active doping concentrations on both sides of an abrupt pn-junction. The minimum active electron concentration for the n-side is ~1×10^{19} \text{cm}^{-3} and the minimum p-side hole concentration is ~4×10^{19} \text{cm}^{-3} [54-56]. If these minimum concentration levels are achieved, the barrier between conduction and valence bands becomes so narrow that the tunneling phenomenon becomes highly probable for electron in a GaAs pn-junction. The peak tunneling current is strongly dependent on the pn junction doping and band gap [4; 56]. The band diagram of a GaInP/GaAs multijunction cell is presented in Figure 2.4 (a). The corresponding current voltage characteristics of the tunnel junction are presented in Figure 2.4 (b). In a multijunction solar cell, the tunnel junction is operating in the forward bias condition [4].

![Figure 2.4](image-url)

Figure 2.4. (a) Simulated band diagram of GaInP/GaAs solar cell for open circuit voltage bias (courtesy of Dr. Antti Tukiainen). (b) Current-voltage characteristics of abrupt p++GaAs/n++GaAs tunnel junction fabricated by MBE in this work. The grey marked area shows the voltage and current region where the tunneling current occurs.

Chapter 2. Physics of III-V multijunction solar cells

approach limits the solar cell efficiency in production to ~40% and the production panel efficiency of ~30% when installed in a CPV system. [53]

Monolithic multijunction solar cells require tunnel junctions that have low series resistance and high tunneling currents. First of all, the tunnel junction should be transparent to the photons that are not generating current in the junction above. If it is not highly transparent, it will lead to a drop in current generation of the junction below. Secondly, the tunnel junction should have high probability for electron tunneling through the barrier that is formed in a pn-junction between the n-side conduction band and the p-side valence band. If tunneling is not efficient, it will result in unideal operation of the whole multijunction device. In practice, the tunneling between these bands is achieved by introducing extremely high active doping concentrations on both sides of an abrupt pn-junction. The minimum active electron concentration for the n-side is ~1×10^{19} \text{cm}^{-3} and the minimum p-side hole concentration is ~4×10^{19} \text{cm}^{-3} [54-56]. If these minimum concentration levels are achieved, the barrier between conduction and valence bands becomes so narrow that the tunneling phenomenon becomes highly probable for electron in a GaAs pn-junction. The peak tunneling current is strongly dependent on the pn junction doping and band gap [4; 56]. The band diagram of a GaInP/GaAs multijunction cell is presented in Figure 2.4 (a). The corresponding current voltage characteristics of the tunnel junction are presented in Figure 2.4 (b). In a multijunction solar cell, the tunnel junction is operating in the forward bias condition [4].

![Figure 2.4](image-url)

Figure 2.4. (a) Simulated band diagram of GaInP/GaAs solar cell for open circuit voltage bias (courtesy of Dr. Antti Tukiainen). (b) Current-voltage characteristics of abrupt p++GaAs/n++GaAs tunnel junction fabricated by MBE in this work. The grey marked area shows the voltage and current region where the tunneling current occurs.
The fabrication of tunnel junctions for MJSC devices is challenging, because ensuring both high doping and good material quality is not trivial. The challenge comes from the fact that high active doping levels require large amounts of impurity atoms to be incorporated to the crystal lattice, making the crystal in crystallographic perspective worse. High concentrations of impurity atoms make the two-dimensional growth of semiconductor crystals challenging, and epitaxial compromises are needed. Typically, use of lower synthesis temperatures is the minimum requirement needed to ensure two-dimensional growth in the presence of impurity atoms [57; 58].

For monolithic design, the junction band gaps and thicknesses need to be chosen properly so that the sunlight photons are shared equally between the junctions, resulting in current balance between the junctions [4]. The efficiency improves with the number of junctions and concentration. These dependences are presented in Figure 2.5 (a). Depending on the number of junctions integrated, the optimal band gap values for the different junctions vary roughly from 0.7 eV to 2.3 eV. An example of the correspondence between the band gaps of GaInP/GaAs/GaInNAs/Sb/Ge cell and the solar spectral bands can be seen from Figure 2.5 (b).

Figure 2.5. (a) Calculated and measured efficiencies from III-V solar cells as a function of number of junctions [2; 3; 7; 59-61]. Currently triple junction cells have almost reached the maximum performance and subsequently four or more junction cells will continue the trend. (b) Operation bands of potential four junction cell (GaInP/GaAs/GaInNAsSb/Ge) and AM1.5G spectrum. The operation bands of the four junction cell are colored with different colors. The estimated total efficiency of the four junction cell is the sum of the efficiencies produced by the sub cells – 17%, 13%, 6% and 2%, yielding 38% altogether in this example.
The traditional materials, lattice matched on GaAs, can cover band gaps from about 1.4 eV to 2 eV well, and these materials can be grown on Ge substrate which has a 0.7 eV band gap. For the energy gaps between 0.7 to 1.4 eV there are no traditional semiconductors lattice matched to GaAs or Ge, but this band gap window is crucial for the efficiency development of III-V multijunction solar cells (see Figure 2.5 (b) revealing the correspondence between the solar spectrum and band gaps). The potential materials with band gaps between 0.7 and 2.3 eV are listed in Table 2.3.

Table 2.3. Materials for multijunction design [24].

<table>
<thead>
<tr>
<th>Material</th>
<th>E_g (max, eV)</th>
<th>E_g (min, eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlGaInP</td>
<td>2.30</td>
<td>1.86</td>
</tr>
<tr>
<td>GaInAsP</td>
<td>1.9</td>
<td>1.42</td>
</tr>
<tr>
<td>AlGaAs</td>
<td>1.9</td>
<td>1.42</td>
</tr>
<tr>
<td>GaAs</td>
<td>1.42</td>
<td>1.42</td>
</tr>
<tr>
<td>GaInAs</td>
<td>1.42</td>
<td>0.35</td>
</tr>
<tr>
<td>GaInNAsSb</td>
<td>1.42</td>
<td>0.8 eV (this work, [62; 63])</td>
</tr>
<tr>
<td>Ge</td>
<td>0.7</td>
<td>0.7</td>
</tr>
</tbody>
</table>

To cover the band gaps from 0.7 eV to 1.4 eV, there are at least three practical solutions. The first solution is to epitaxially prepare virtual substrates that have matching lattice constant with junctions having smaller band gap energies than 1.4 eV. These layers are designed to change the lattice parameter of the host lattice and bury the lattice imperfections caused by the lattice strain relaxation, and to prepare a suitable surface for the growth of the smaller band gap semiconductor. In this approach GaInAs sub-cells are typically used. The challenge of this approach is that the metamorphic buffer layer usually needs to be several micrometers thick, making the epitaxy utilization worse and the cell more expensive.

The second approach is to grow lattice matched multijunction solar cells on different substrates and bond them using wafer fusion. For instance, a dual junction cell can be grown on GaAs and InP substrates, and then after growth the wafers are fused together to combine single four junction solar cell wafer. This approach is, however, hampered by the fact that multiple wafers and growths are needed, adding cost to a single cell, and more complex wafer processing is also required.

The second approach is to grow lattice matched multijunction solar cells on different substrates and bond them using wafer fusion. For instance, a dual junction cell can be grown on GaAs and InP substrates, and then after growth the wafers are fused together to combine single four junction solar cell wafer. This approach is, however, hampered by the fact that multiple wafers and growths are needed, adding cost to a single cell, and more complex wafer processing is also required.
The third option is to use a relatively new lattice matched III-V semiconductor group called dilute nitrides [64; 65]. Typically, dilute nitride III-V solar cells are prepared from GaInNAsSb compounds that can be grown lattice matched on GaAs and have a widely tunable band gap, at least down to 0.8 eV [62], [P4]. The dilute nitrides can also provide a wide band gap range with lattice matching to Si if GaNPAs with an appropriate composition is used [66]. The growth of dilute nitrides is associated with several challenges, which are discussed later in more detail.

Despite the challenges for dilute nitride epitaxy, close to 100% external quantum efficiency (EQE) results have been demonstrated, and dilute nitrides have been proven to have applications both in lasers and solar cells [67-71]. The advantage of dilute nitrides is that the growth can be done in one repeatable run and only one substrate is needed, even if the multijunction solar cell has more than 3 junctions. Also the total thickness which needs to be grown is not limited by the thickness of metamorphic buffer layers and can be freely optimized.

2.3 Current voltage characteristics of III-V multijunction solar cells

The maximum current generated by a solar cell is determined by the absorption and the material characteristics of the crystal. The maximum charge generation performance can be estimated from the short circuit current density (J_{sc}), which is defined as the ratio of the short circuit current (I_{sc}) and the solar cell area (A_{SC}). Other key parameters for solar cell characterization are the open circuit voltage (V_{oc}) and the fill factor (FF), which is defined as

$$FF = \frac{V_{mp}I_{mp}}{V_{oc}I_{sc}} \quad (2.1),$$

where V_{mp} and I_{mp} represent the voltage and current values recorded at the maximum power point [23]. The cell efficiency (η) is defined as

$$\eta = \frac{V_{mp}I_{mp}}{P_{opt}} \quad (2.2),$$

where P_{opt} represents the power at the maximum power point.
where \(P_{\text{opt}}\) is the total power radiated by the sun. Moreover the optical power received depends on the particular application as a function of geographical position and altitude. For characterization of terrestrial flat panels, the input power spectrum is termed AM1.5G and corresponds to 1000 W/m\(^2\) optical power. The standard spectrum for CPV-systems is termed AM1.5D and corresponds to 900 W/m\(^2\) or 1000 W/cm\(^2\) [72]. For space applications, with more intense UV components, the spectrum is denominated AM0. The AM0 spectrum also differs from AM1.5 spectra by other atmospheric losses in the infra-red caused for example by water.

The determination of the whole current-voltage (IV) characteristics of the solar cell can be done by voltage sweeps and can be modelled with standard diode equations (2.3-2.5) for multijunction solar cells. These equations have been used in [P5] and [P11] for the cell performance projections and were derived from series connected diodes with two terminals using Kirchhoff laws. The model is useful for projecting solar cell performance under different conditions and with different sub-cell performances. Similar models have been also used elsewhere [59].

\[
I = I_n \text{, } i = 1,2,3..., \ n \quad (2.3)
\]

\[
V_i(I) = \frac{n_i k_B T}{e} + \ln \left(\frac{I_{i}(E_{g_i}E_{QE}a_i) - I}{I_0(T,E_{g_i})} \right) - IR_n \quad (2.4)
\]

\[
V_n(I) = \sum_{i} V_i(I) \quad (2.5)
\]

Here \(I\) is the current of the two terminal solar cell, \(I_n\) is the current through an individual sub-cell, \(V_i(I)\) is the voltage of a sub-cell, \(n_i\) is the quality factor of the \(i^{\text{th}}\) sub-cell diode, \(k_B\) is the Boltzmann coefficient, \(T\) is the device temperature \((T = 300 \text{ K})\), \(I_{i}\) is the current generated by the junction \(i\), \(E_{g_i}\) is the band gap \((300 \text{ K})\) of the \(i^{\text{th}}\) junction, \(I_0\) is the reverse saturation current of the \(i^{\text{th}}\) junction at 300 K, \(R_s\) is the series resistance of \(i^{\text{th}}\) junction, \(E_{QE_i}\) is the average \(E_{QE}\) of each junction, and \(V_{n}\) is the device total voltage. We have neglected the shunt resistance for simplicity, which is a good approximation for most high quality SC devices. In case of low shunt resistance, the cell is self-shorted due to improper processing or non-ideal material characteristics. Figure 2.6 utilizes the model for fitting of the diode characteristics.

\[
I = I_n \text{, } i = 1,2,3..., \ n \quad (2.3)
\]

\[
V_i(I) = \frac{n_i k_B T}{e} + \ln \left(\frac{I_{i}(E_{g_i}E_{QE}a_i) - I}{I_0(T,E_{g_i})} \right) - IR_n \quad (2.4)
\]

\[
V_n(I) = \sum_{i} V_i(I) \quad (2.5)
\]

Here \(I\) is the current of the two terminal solar cell, \(I_n\) is the current through an individual sub-cell, \(V_i(I)\) is the voltage of a sub-cell, \(n_i\) is the quality factor of the \(i^{\text{th}}\) sub-cell diode, \(k_B\) is the Boltzmann coefficient, \(T\) is the device temperature \((T = 300 \text{ K})\), \(I_{i}\) is the current generated by the junction \(i\), \(E_{g_i}\) is the band gap \((300 \text{ K})\) of the \(i^{\text{th}}\) junction, \(I_0\) is the reverse saturation current of the \(i^{\text{th}}\) junction at 300 K, \(R_s\) is the series resistance of \(i^{\text{th}}\) junction, \(E_{QE_i}\) is the average \(E_{QE}\) of each junction, and \(V_{n}\) is the device total voltage. We have neglected the shunt resistance for simplicity, which is a good approximation for most high quality SC devices. In case of low shunt resistance, the cell is self-shorted due to improper processing or non-ideal material characteristics. Figure 2.6 utilizes the model for fitting of the diode characteristics.
2.3. Current voltage characteristics of III-V multijunction solar cells

In the same way, the IV-characteristics of a multijunction device can be modelled or projected by summing the IV-curves of each sub-junction at a certain operation current. The tunnel junction losses, transport losses within the SCs and the losses in the metal contacts can be modelled by a lump series resistance R_s, which is the sum of sub-junction resistances. This can be done if the tunnel junction is operating in the first linear regime (see Figure 2.4 (b) for details). Typically, for MJSCs the series resistance terms caused by current spreading in sub-cells and the contact resistances limit the operation earlier than the saturation of the first linear regime of the tunnel junctions.

The effect of cell temperature on the III-V multijunction cell performance

For semiconductors, room temperature provides sufficient energy for the ionization of many typical dopant atoms in the crystal lattice [25]. If the operation temperature of the solar cell is changed from standard measurement conditions (25°C), the active doping concentrations do not change remarkably. However, significant changes in the cell performance are seen if the cell temperature is changed by even a few degrees [23; 73]. When the solar cell heats up, the charge carrier recombination rate in the crystal increases, leading to an increase of the recombination current that reduces the cell open circuit voltage. On the other hand, the solar cell current generation increases because the semiconductor band gap shrinks with increasing temperature [24]. The temperature coefficients measured in connection with this work are discussed in chapter 5.3 and in paper [P7].
Altogether, the efficiency of III-V multijunction solar cell drops only slightly with increasing temperature, and the drop is significantly less than for Si solar cells [74]. The target operation spectrum also has significance for the cell design, since the band gap temperature coefficients for the different junctions of a III-V multijunction solar cell might in some cases lead to a situation where a certain junction is current limited, while under other conditions the same sub-cell is not limiting the performance [75]. Figure 2.7 shows an example of IV-measurements carried out for a GaInP/GaAs/GaInNAsSb solar cell fabricated in this work and measured at 25°C and 90°C, the cell is illuminated close to AM0 intensity.

![IV-measurement graph](image)

Figure 2.7. GaInP/GaAs/GaInNAsSb solar cell performance at standard and elevated temperatures measured with Oriel xenon simulator.

The physics behind increased efficiency with concentrated sun light

The semiconductor properties of III-V semiconductors make them excellent choices for CPV solar cells, since their efficiency can significantly improve up to concentration of hundreds of suns. This property is related to the fact that for III-V solar cells the recombination current I_0 does not significantly change with the concentration and therefore the cell operation voltage can improve significantly, thus making it possible to achieve an efficiency improvement by almost 10 percentage points [4; 23; 62]. A second important characteristic of III-V semiconductors is that they can be fabricated in such a way that the total series resistance of the cell will be low, ensuring high fill factors and efficient utilization of the voltage improvement. Typically, for MJSCs the I_{sc} grows linearly with concentration [76], although luminescent coupling might result in slight over linearity at high concentrations [77-79]. Luminescent coupling is possible if
2.3. Current voltage characteristics of III-V multijunction solar cells

Over generating higher band gap cell is emitting extra charge carriers as photons to lower band gap cell(s) that utilize the photons generating higher current. Solar cell efficiency under CPV conditions, $\eta_{\text{eff}}(C)$, can be estimated with equation 2.6, which can be achieved by combining equations 2.1 to 2.5.

$$\eta_{\text{eff}}(C) = \frac{V_{\text{oc}}(C) - I_{\text{sc}}(C) \cdot FF(C)}{I_{\text{sun}} \cdot A_{\text{SC}}} = \frac{n(C)kT}{q} \ln \left(\frac{I_{0 \text{sun}}}{I_{0}} \right) \cdot CL_{1 \text{sun}} \cdot FF(C)$$

(2.6), where C is the concentration level, $n(C)$ is a C dependent diode ideality factor, $I_{\text{sc,1sun}}$ is the short circuit current generated by the cell under one sun conditions, I_{sun} is sunlight intensity at solar cell, $I_{1 \text{sun}}$ corresponds to the intensity of one sun illumination, q is the electron charge and $FF(C)$ is a C dependent fill factor. Typically, $n(C)$ remains close to constant up to high concentrations, if the cell temperature can be kept constant then the ultimate efficiency is limited by $FF(C)$. FF typically starts to drop at 400-1000 suns concentration, depending on the cell and the front metallization design [80]. One important point for CPV is that the cells will heat up and the maximum efficiency will drop, but not as significantly as for one sun conditions, since the I_0 growth with temperature does not have such a strong effect on the operation voltage of the MJSC at high light concentrations. CPV cells may operate significantly over the ambient temperature (30-50°C) [81] and temperature is also dependent on wind speed [53] and module
design. Elevated operation temperatures will reduce the cell efficiency by 1 to 3 percentage points [73; 76]. The panel designs are often only passively cooled by the panel back plate.

A CPV multijunction solar cell requires careful design in such a way that all the stacked cells will produce close to the same current. Significant losses in the energy production result if the sub-junction band gaps and thicknesses are not well optimized. Depending on the location, the spectrum may differ at morning, noon and evening. The spectrum also has seasonal variations, during some seasons the UV and the blue part of the spectrum might be stronger, and on the other hand the air humidity has an effect on the IR part of the spectrum [35; 75; 82]. However, there are studies that report on the effects of seasonal and daily spectral variations on the performance of CPV solar cells with multiple junctions, and the result is that the total energy produced as a function of number of junctions will have positive slope [59].
Chapter 3

3 Growth dynamics of GaInNAsSb

This chapter focuses on the properties of GaInNAsSb semiconductor and on the growth dynamics of GaInNAsSb crystals. The GaInNAsSb crystals were grown by MBE.

MBE growth

MBE growth is based on thermal evaporation of molecules and atoms in ultra high vacuum (UHV) from solid or liquid high purity elements to a heated substrate that typically has a specific crystal structure and orientation. The UHV conditions are maintained by pumping the system by vacuum pumps and by the liquid nitrogen cooled inner walls of the deposition chamber, and by transferring the substrate through different pumping stages to the growth chamber. If the mixture of the elements and the substrate temperature is in the correct range, a layer of the evaporated elements will be grown which will copy the orientation and crystal structure of the substrate. Many epitaxial layers can be stacked on top of each other. For growth of thick epitaxial layers, a minimal difference between substrate and epitaxial layer lattice constants is preferred. For growth of nanostructures such as quantum wells, wires and dots, the restriction for the lattice constant is not so strict. For growing III-V bulk crystals, the group III fluxes typically limit the growth rate and significant overpressure is used for group V fluxes. The optimal conditions for epitaxial growth depend on the formation energies of the epitaxial crystal and defects. The molecular mixture can be alternated rapidly by mechanical shutter plates and/or valves, and each thermal evaporator cell may have different temperature regions for different purposes. The evaporation rate can be also controlled by the cell evaporator temperature(s). In addition to purely thermal evaporation, the MBE system can also incorporate...
gas phase sources. In this work, we have used high purity N\textsubscript{2} gas molecules for the incorporation of nitrogen to GaInNAsSb compounds. Unfortunately the N\textsubscript{2} sticking coefficient is insufficient at typical GaInNAsSb compound growth temperatures and therefore N\textsubscript{2} needs to be cracked into N atoms, which have a close to unity sticking coefficient in the growth parameter range of GaInNAsSb compounds. The N\textsubscript{2} molecules can be cracked into N atoms by transferring the N\textsubscript{2} molecular flow through a radio frequency (RF) plasma chamber that uses a coil antenna to transfer the RF energy to the plasma, which also takes place in vacuum. The MBE growth processes can be monitored by many methods in real time, providing data on the surface structure and substrate temperature, for example. Further reading and more technology details can be found in references [83-85].

3.1 2D growth of GaInNAsSb single crystals

High efficiency III-V solar cells require stacking of single crystal materials with homogenic atomic distribution and smooth heterointerfaces. In general, the epitaxy of metastable highly mismatched materials such as GaInNAsSb is challenging, and in particular when the N concentration is increased close to 3\%, the typical composition needed for 1 eV solar cells, the fabrication of smooth surfaces having uniform atomic distribution becomes a great challenge. This is because highly mismatched materials are composed of atoms that have large differences in their size, electronegativity and ionization potential [86]. These materials cannot be fabricated in thermal equilibrium with smooth surfaces, uniform atomic distribution and abrupt heterointerfaces [87-91]. This property of highly mismatched materials drives the grown film to phase separate during the growth, to at least two phases [90-92]. Studies have shown that, especially for GaInNAs, the crystal separates to Ga-N bond rich areas and In-As bond rich areas if the chosen growth parameters are not properly selected [93]. Fortunately, the crystallization processes can be controlled and phase separation effects can be limited by growing the highly mismatched alloys far from thermal equilibrium, resulting in smooth and uniform epitaxial layers. The GaInNAsSb growth can be controlled by keeping the N composition as low as possible, using ~200 to 300°C lower growth temperatures than typical for GaAs [87; 91; 94-96], and by using surfactants such as Sb and Bi [97-101]. The controlling of these conditions bring challenges to dilute nitride epitaxy and a deep understanding of the growth dynamics is essential for high quality devices.
3.1. 2D growth of GaInNAsSb single crystals

Due to the many atomic species in GaInNAsSb crystal, there are many fundamental processes interacting together at the GaInNAsSb growth front. The main processes are illustrated in Figure 3.1 and can be divided into: a) atom segregation from bulk face to surface [87], b) formation of clusters on surface and at bulk face, c) desorption of atoms and molecules from the surface, and d) molecule dissociation on the surface. The resulting crystal is defined by the surface energy, where the resultant crystal is driven by minimization of the surface energy [102].

Growth front processes can be controlled by selection of the substrate material and orientation, by control of the substrate temperature and the atom and molecular flux densities and their energies. It is clear that if all atoms and molecules for the growth of the GaInNAsSb crystal have two independently tunable parameters in addition to the substrate temperature selection, the optimization space in the ideal case would be enormous, with a total of 11 independent parameters for a single substrate selection and orientation. In addition, the nature of the incorporation of N by an RF plasma assisted system introduces parameters that are related to the control of the ion flux by, for instance, electric field induced ion deflection [103; 104]. Therefore, many simplifications and approximations need to be used as compromises to reach high quality growth conditions. The safest way to understand the dynamics is to analyze the effect of each parameter one at time using physically intuitive directions and models.

N incorporation is also responsible for introducing point defects that change the charge carrier dynamics, i.e. the defects reduce the lifetimes and mobilities of the charge carries. The defects in dilute nitrides can be, for example, group-III vacancies, arsenic antisites and interstitial...
nitrigen [95; 105]. N incorporation also increases the background/unintentional doping of the crystal. Increased background doping results in the formation of a narrow depletion region in the p-i-n structure. Also, increased doping combined with short diffusion lengths often results in low internal quantum efficiency (IQE).

Fortunately, part of the characteristic defects of dilute nitrides can be changed or cured after the growth. Thermal annealing is a well-known method for curing and introducing defects to semiconductor crystals, especially for GaInNAs [95; 106-108]. The main idea of post growth annealing is to manipulate the bonding environment of the grown crystal. The applied thermal energy pulse will make short range atomic rearrangements plausible in the crystal, while remain surface characteristics as intact as possible in the inert atmosphere. In this work, the annealing studies were done using rapid thermal annealing (RTA), where the crystal can be heated up rapidly in a controlled manner by using infrared radiation in an N₂ gas background. The following chapters discuss the growth dynamics and material characteristics of the GaInNAsSb crystals grown in this thesis. [41; 67; 109; 110]

Lattice matched GaInNAsSb crystals

For lattice matched III-V solar cells grown on GaAs, the lattice parameter of the GaInNAsSb layer needs to be well matched to GaAs to avoid misfit dislocations. Misfit dislocations reduce the solar cell performance if they are located in or near the active area of the solar cell [111; 112]. They are generated when the total tensile or compressive strain is too high [111]. The relaxation mechanisms are dependent on the strain type [113], but these effects are not discussed in detail in this thesis since the majority of the studied GaInNAsSb layers are grown almost fully lattice matched, and the used thicknesses are well below the critical thickness limiting the presence of misfit dislocations. For lattice matching of GaInNAs and GaNAsSb, the In and Sb compositions need to be roughly 2.7z₁, where z₁ is the composition of N that has substituted As. For GaNₓAs₁₋ₓSb₂₋ₓ the Sb composition needs to be 2.4 z₂, where z₂ is the composition of N. These composition dependencies are based on the lattice constants of cubic GaInSb, GaInN and GaInAs and Vegard’s law [24; 63].

Fortunately, part of the characteristic defects of dilute nitrides can be changed or cured after the growth. Thermal annealing is a well-known method for curing and introducing defects to semiconductor crystals, especially for GaInNAs [95; 106-108]. The main idea of post growth annealing is to manipulate the bonding environment of the grown crystal. The applied thermal energy pulse will make short range atomic rearrangements plausible in the crystal, while remain surface characteristics as intact as possible in the inert atmosphere. In this work, the annealing studies were done using rapid thermal annealing (RTA), where the crystal can be heated up rapidly in a controlled manner by using infrared radiation in an N₂ gas background. The following chapters discuss the growth dynamics and material characteristics of the GaInNAsSb crystals grown in this thesis. [41; 67; 109; 110]

Lattice matched GaInNAsSb crystals

For lattice matched III-V solar cells grown on GaAs, the lattice parameter of the GaInNAsSb layer needs to be well matched to GaAs to avoid misfit dislocations. Misfit dislocations reduce the solar cell performance if they are located in or near the active area of the solar cell [111; 112]. They are generated when the total tensile or compressive strain is too high [111]. The relaxation mechanisms are dependent on the strain type [113], but these effects are not discussed in detail in this thesis since the majority of the studied GaInNAsSb layers are grown almost fully lattice matched, and the used thicknesses are well below the critical thickness limiting the presence of misfit dislocations. For lattice matching of GaInNAs and GaNAsSb, the In and Sb compositions need to be roughly 2.7z₁, where z₁ is the composition of N that has substituted As. For GaNₓAs₁₋ₓSb₂₋ₓ the Sb composition needs to be 2.4 z₂, where z₂ is the composition of N. These composition dependencies are based on the lattice constants of cubic GaInSb, GaInN and GaInAs and Vegard’s law [24; 63].

Chapter 3. Growth dynamics of GaInNAsSb

nitrogen [95; 105]. N incorporation also increases the background/unintentional doping of the crystal. Increased background doping results in the formation of a narrow depletion region in the p-i-n structure. Also, increased doping combined with short diffusion lengths often results in low internal quantum efficiency (IQE).

Fortunately, part of the characteristic defects of dilute nitrides can be changed or cured after the growth. Thermal annealing is a well-known method for curing and introducing defects to semiconductor crystals, especially for GaInNAs [95; 106-108]. The main idea of post growth annealing is to manipulate the bonding environment of the grown crystal. The applied thermal energy pulse will make short range atomic rearrangements plausible in the crystal, while remain surface characteristics as intact as possible in the inert atmosphere. In this work, the annealing studies were done using rapid thermal annealing (RTA), where the crystal can be heated up rapidly in a controlled manner by using infrared radiation in an N₂ gas background. The following chapters discuss the growth dynamics and material characteristics of the GaInNAsSb crystals grown in this thesis. [41; 67; 109; 110]

Lattice matched GaInNAsSb crystals

For lattice matched III-V solar cells grown on GaAs, the lattice parameter of the GaInNAsSb layer needs to be well matched to GaAs to avoid misfit dislocations. Misfit dislocations reduce the solar cell performance if they are located in or near the active area of the solar cell [111; 112]. They are generated when the total tensile or compressive strain is too high [111]. The relaxation mechanisms are dependent on the strain type [113], but these effects are not discussed in detail in this thesis since the majority of the studied GaInNAsSb layers are grown almost fully lattice matched, and the used thicknesses are well below the critical thickness limiting the presence of misfit dislocations. For lattice matching of GaInNAs and GaNAsSb, the In and Sb compositions need to be roughly 2.7z₁, where z₁ is the composition of N that has substituted As. For GaNₓAs₁₋ₓSb₂₋ₓ the Sb composition needs to be 2.4 z₂, where z₂ is the composition of N. These composition dependencies are based on the lattice constants of cubic GaInSb, GaInN and GaInAs and Vegard’s law [24; 63].
3.2 Modelling of N incorporation

For the growth of GaInNAsSb crystals it is essential to understand the incorporation kinetics of the different atomic species. For the group III-atoms, when using MBE it is relatively easy to define the In/Ga ratio below the high desorption range of In, which starts to be significant at growth temperatures above 520°C [114]. Fortunately, the In desorption is negligible in the growth temperature range optimal for dilute nitrides [87; 91; 94-96] and the In composition can be determined from the calibrated flux ratios of In and Ga measured in-situ by an ion gauge. On the other hand, for N composition, the situation is far more complex. In the early days of dilute nitride epitaxy, it was observed that the N incorporation rate is inversely proportional to the group III atom growth rate [115; 116]. On the other hand, it has also been observed that the N incorporation rate is close to constant in a wide range of As/III beam equivalent pressure (BEP) but may vary significantly at small As fluxes [116-118]. The complexity of N incorporation is compounded further by the fact that it has been observed to be a function of the growth temperature [94; 119].

To control the composition using different growth conditions, it is therefore crucial to understand how the plasma source is used for cracking of the N molecules and how it can be controlled to yield the desired N incorporation rate under the given growth conditions. For traditional RF plasma sources used for the growth of dilute nitrides in MBE, the control parameters are the primary power of the plasma system and the flow of N molecules through the plasma tube. The operation range can also be tuned by introduction of nozzles to the end of the plasma source that can be used for tuning of the flux distribution and the pressure difference between the MBE system and the plasma. The N incorporation dependence has been modelled previously [118; 120; 121]. To this end, in this thesis work [P2] we have introduced an analytical model, which needs only the plasma primary coil power and N₂ molecular flow as inputs to determine the N incorporation. Thus, the dependence of the N composition on power and flow can be determined using the equation:

\[
N(\%) = \frac{B_{GR}}{GR_{eff}} F\left(R_{eff}P_{RF}\right)^{1/2} \exp\left(-\frac{E_{ad}D}{R_{eff}P_{RF}}\right) \quad (3.1),
\]

3.2 Modelling of N incorporation

For the growth of GaInNAsSb crystals it is essential to understand the incorporation kinetics of the different atomic species. For the group III-atoms, when using MBE it is relatively easy to define the In/Ga ratio below the high desorption range of In, which starts to be significant at growth temperatures above 520°C [114]. Fortunately, the In desorption is negligible in the growth temperature range optimal for dilute nitrides [87; 91; 94-96] and the In composition can be determined from the calibrated flux ratios of In and Ga measured in-situ by an ion gauge. On the other hand, for N composition, the situation is far more complex. In the early days of dilute nitride epitaxy, it was observed that the N incorporation rate is inversely proportional to the group III atom growth rate [115; 116]. On the other hand, it has also been observed that the N incorporation rate is close to constant in a wide range of As/III beam equivalent pressure (BEP) but may vary significantly at small As fluxes [116-118]. The complexity of N incorporation is compounded further by the fact that it has been observed to be a function of the growth temperature [94; 119].

To control the composition using different growth conditions, it is therefore crucial to understand how the plasma source is used for cracking of the N molecules and how it can be controlled to yield the desired N incorporation rate under the given growth conditions. For traditional RF plasma sources used for the growth of dilute nitrides in MBE, the control parameters are the primary power of the plasma system and the flow of N molecules through the plasma tube. The operation range can also be tuned by introduction of nozzles to the end of the plasma source that can be used for tuning of the flux distribution and the pressure difference between the MBE system and the plasma. The N incorporation dependence has been modelled previously [118; 120; 121]. To this end, in this thesis work [P2] we have introduced an analytical model, which needs only the plasma primary coil power and N₂ molecular flow as inputs to determine the N incorporation. Thus, the dependence of the N composition on power and flow can be determined using the equation:

\[
N(\%) = \frac{B_{GR}}{GR_{eff}} F\left(R_{eff}P_{RF}\right)^{1/2} \exp\left(-\frac{E_{ad}D}{R_{eff}P_{RF}}\right) \quad (3.1),
\]
where G_{III} is the group III growth rate, B and D are factors that take into account system and plasma geometrics, F is molecular flow, P_{RF} plasma primary power, R_p is plasma system primary resistance, and E_{ad} is the activation energy for the dissociation process. E_{ad} is an effective energy which takes into account all the dissociation/collision processes, including molecule dissociation into atoms, molecule ionization and atom ionization. This equation is based on the Maxwell-Boltzmann electron energy distribution and assumes that electrons are confined to an effective volume. A detailed explanation for the derivation of the model is given in the paper [P2]. The accuracy of the model can be assessed from the graphs shown in Figure 3.2.

![Figure 3.2](image)

Figure 3.2. The incorporation kinetics of N as the function of plasma primary power and molecular flow of N. (a) Results fitted for Veeco Gen20 MBE and (b) fitting obtained for V80H reactor. Both systems had Veeco Uni-bulb plasma sources.

In Figure 3.3 we have used the equation 3.1 to predict the N composition for the growth of lattice matched bulk samples. The maximum error within the tests was 6%. The error analysis shows that the deviation from the model is $4\pm1\%$. This shows that the absolute accuracy of the model with well calibrated group-III fluxes would be 1%. In practice this is close to the same accuracy with which the group-III fluxes can be determined by using nude ion gauges for the flux measurement.

In Figure 3.3 we have used the equation 3.1 to predict the N composition for the growth of lattice matched bulk samples. The maximum error within the tests was 6%. The error analysis shows that the deviation from the model is $4\pm1\%$. This shows that the absolute accuracy of the model with well calibrated group-III fluxes would be 1%. In practice this is close to the same accuracy with which the group-III fluxes can be determined by using nude ion gauges for the flux measurement.
Figure 3.3. Forecasting accuracy of the derived model for Gen20 reactor. The results show that the model is accurate and has a calibration related drift of only ~4%.

N related ion incorporation can also be controlled. Control of the ions is essential, as they can easily introduce additional defects to the crystal at the growth front. The ion fluxes have been typically controlled by deflecting them with electric or magnetic fields placed in between the plasma cell and sample surface [103; 104; 122]. The N flux energy also plays a role in the formation of the bonds at the growth front; our preliminary results show that with higher N flux energies a phase separation of the material is more likely. However, in our set-up we have not been able to separate the effects of ions and the energies of N species on the surface properties of GaInNAs and more research is needed for conclusive results.

3.3. Band gaps of GaInNAsSb compounds

One crucial design parameter for any optoelectronic application is the material band gap. For GaInNAsSb there are many possible compositions that can be used to achieve the same band gap and lattice constant, yet they will exhibit different behavior in terms of other material parameters. Therefore, understanding the band gap dependence on In, Sb and N composition is essential for successful epitaxy and applications of GaInNAsSb.

For traditional semiconductors such as GaInAs the band gap can be calculated using a second order polynomial function [24]. However, for dilute nitrides this does not work, because introduction of N splits the conduction band into two different bands termed E_- and E_+ [63]. An accurate estimate of the band gap for dilute nitrides led to the introduction of a band anti
The band gap dependence of GaInNAsSb is more complex to determine: it is not enough to measure the lattice constant by x-ray diffraction (XRD) and determine the band gap by photoluminescence (PL) or transmission spectroscopy, since the material can have many different compositions with the same band gap and lattice constant, unlike the case for GaInNAs. Therefore, a different method is needed in which the In, N or Sb compositions can be fixed. For spectroscopy N is a challenging atom and many methods are considered to be nearly impossible for measuring low N compositions with high precision. In and Sb atoms on the other hand are heavy atoms that are more easy for spectroscopic methods. In paper [P8] we used energy dispersive x-ray spectroscopy analysis to measure the atomic densities of Sb and In atoms from core electron transitions. In addition, we used PL and XRD data to calculate the band gap dependence on the material composition of GaInNAsSb. In addition to the composition dependence, we modified the band anticrossing model for GaInNAsSb. For the modified model, we replaced the band gap of GaInAs with a band gap of GaInAsSb that was interpolated from the band gaps of As and Sb compounds. The excellent accuracy of the new model we devised can be seen in Figure 3.4 (a). The modified band anti crossing model is presented in equation 3.2 for the estimation of the band gap (E_{g}).

$$E_{\text{g}}(\text{GaIn}_{1-x}N_{x},\text{As}_{1-y}Sb_{y}) = \frac{1}{2} \left(E_M(x,y) + E_N \right) \pm \sqrt{(E_M(x,y) + E_N)^2 + 4V^2 z} \quad (3.2)$$

where E_M is the host material band gap, E_N is the nitrogen state, V is the interaction potential, x is In composition, y is Sb composition and z is N composition.
3.3. Band gaps of GaInNAsSb compounds

In addition to measuring the characteristics of the core electrons of the incorporated elements [123; 124], it is also possible to determine the atomic composition by measuring the properties of atomic nucleus utilizing methods such as Rutherford back scattering [86]. Possible band gaps of the lattice matched GaInNAs/GaAs and GaNAsSb/GaAs compounds as a function of N concentration can be seen in Figure 3.4 (b).

The band gap of GaInNAsSb compounds also has a significant dependence on the bonding environment of the introduced atoms. It is highly probable that the grown GaInNAs crystals will have Ga bonded near N and In bonded near As [102]. It has also been observed that growth conditions and thermal annealing have a great effect on the bonding environment in the crystals [95; 119; 125-128]. For instance, an increase in growth temperature is observed to increase the degree of ordering (see Figure 3.5.) and annealing reduces ordering, which causes a band gap blue shift [119]. The annealing induced blue shift is observed to increase linearly with the growth temperature, revealing growth temperature enhanced ordering effects during the GaInNAs growth. The ordering dependent blue-shift also increases as a function of the In and N composition [129].
3.4 N composition dependent growth dynamics of GaInNAs crystals

For the design of GaInNAs crystal growth, the target N composition is an essential parameter. Generally speaking, the more nitrogen is needed the narrower the growth parameter window becomes, due to the low solubility of N in GaInAs. The ultimate N composition at a certain growth temperature is limited by phase separation. For typical GaInNAs grown at a temperature of 440°C, the N composition limit is approximately 5%, as observed in P1. For an N composition of 3%, the phase separation starts near 500°C. In Figure 3.6, the XRD spectra measured from GaInNAs structures grown at 440°C with different N compositions are presented. The XRD results reveal a widening and lowering of the intensity of the XRD peak corresponding to the GaInNAs epitaxial layer, and less intense spectral oscillations as a function of N composition. These observations suggest that the interface sharpness is deteriorating and the lattice parameter distribution is widening with N composition increase. Ideally, the XRD measurement of the grown GaInNAs structure should look like the simulated single crystal layer XRD-peak presented on top of the measured spectrum for the GaInNAs sample that had 6% of N. For N compositions above 4%, the deviation from the simulated curve is significant. The modelled peak has uniform lattice constant distribution and abrupt interfaces.
The phase separation effects of the GaInNAs crystals are also reflected in the charge carrier lifetimes, resulting in lower intensities of PL signals even after optimal RTA (see Figure 3.8). This indicates that not only is the epitaxy roughness limited, but also the charge carrier dynamics are changed significantly and this will reflect negatively on GaInNAs solar cell performance, as will be discussed later.

In [P1] the surface morphology was characterized by atomic force microscopy (AFM). AFM results summarized in Figure 3.6 reveal that even at N composition of 5%, one can achieve smooth layers when using growth temperatures below 440°C. On the other hand, in situ...
analysis using high energy electron diffraction (RHEED) corroborated by AFM surface roughness analyses, revealed smooth surfaces for a growth temperature of 440°C when N composition was 3%. AFM analysis also revealed that the phase separation leading to cluster formation is dependent on the crystal directions of the GaAs(100) substrate. The size of such clusters are on the order of tens of nanometers.

In addition to enhancing the phase separation processes, the increase of growth temperature has been observed to result in enhanced N incorporation and activated desorption processes. The results in [P1] and [119], reported on the enhanced incorporation of N (see Figure 3.7). In the paper by Korpijärvi et al. [119] we modelled and analyzed the observed processes with two exponential Arrhenius components from which we calculated the activation energy for enhanced incorporation as 0.1 eV and the activated desorption as 2.1 eV.

![Figure 3.7. (a) Model for activated N incorporation in the case of thin quantum well samples [119]. (b) XRD measurements for thick GaInNAs samples. The enhanced N incorporation is observed as an epitaxial layer peak position transition from compressive to tensile strain as a function of the growth temperature. The growth temperature enhanced N incorporation has been proved by many methods in paper [P1] and by Korpijärvi et al. [119].](image)

The effect of the chosen growth temperature on the optical activity after an optimized RTA process was studied by measuring PL. Figure 3.8 shows how the PL intensity is maximized at 415°C growth temperature for all N compositions (i.e. 1%, 2% and 3%). The same trend was observed also from time resolved PL measurements. When the N composition was increased from 2% to 4% the lifetime after optimized RTA dropped from 0.9 ns to 0.3 ns for GaInNAs, as reported in proceedings paper P9. Without annealing, the lifetimes are in the range of 0.02 ns.
3.5 Unintentional doping of GaInNAsSb

For GaInNAsSb solar cells one key material parameter is the background doping type and density. GaInNAs typically has relatively short minority carrier diffusion lengths and this limits the design of the cells to the p-i-n type configuration, where it is preferable that the GaInNAs region is fully depleted [67]. In practice, full depletion sets the maximum concentration for the GaInNAs i-region to the 10^{15} 1/cm³ range and due to the higher mobility of electrons [37; 133], the design of the cells to the p-i-n type configuration, where it is preferable that the GaInNAs region is fully depleted [67]. In practice, full depletion sets the maximum concentration for the GaInNAs i-region to the 10^{15} 1/cm³ range and due to the higher mobility of electrons [37; 133], the growth temperature dependence of the PL can be explained by formation of point defects of different kinds [105; 130-132] at the low end of the temperature range, and phase separation effects at the high end of the growth temperature range. The phase separation related effects are also seen in low temperature PL measurements, where phase separation ordering splits the PL spectrum into different components, which become wider when the growth temperature is increased (reported in [P1]). The point defects on the other hand are more difficult to see, and for their characterization we have used deep level transient spectroscopy (DLTS). Thus, we have identified many different impurity levels and the results of the analysis will be published soon. In this thesis, we mainly focus on electrical characterization by Hall-effect measurements, capacitance voltage spectroscopy (CV), light biased current voltage measurements (LIV) and EQE measurements, which will be discussed later.
the i-region has p-type preference. The unintentional doping of GaInNAs can be either n or p type and the background doping depends on annealing conditions [40; 133].

To analyze the GaInNAs solar cell performance, Tukiainen et al. [37] have modeled the effect of background doping on the solar cell performance. For the analysis, we have measured Hall effect characterization using simple epitaxial layers and CV spectroscopy for p-i-n junctions. From the GaInNAs Hall effect data we see that for GaInNAs the p-doping level has an exponential dependence on the N composition and goes over 10^{15} 1/cm3 when N composition is over ~1.5%. A similar trend has been seen also for MOCVD grown materials [109; 134]. For 1 eV GaInNAs the doping rises to the ~10^{16} 1/cm3 level, which is not the ideal case for high performance p-i-n GaInNAs solar cells.

![Figure 3.9. Estimated background doping as a function of Sb composition for GaInNAsSb p-i-n structures measured by CV spectroscopy.](image)

It has been reported that the incorporation of Sb can reduce GaInNAsSb background doping, thus making wide depletion regions plausible for 1 eV dilute nitrides [71; 135]. We also studied the effect of Sb on the background doping and came to the same conclusion; levels as low as 10^{15} 1/cm3 were achieved by incorporation of Sb (see Figure 3.9).

![Figure 3.9. Estimated background doping as a function of Sb composition for GaInNAsSb p-i-n structures measured by CV spectroscopy.](image)

It has been reported that the incorporation of Sb can reduce GaInNAsSb background doping, thus making wide depletion regions plausible for 1 eV dilute nitrides [71; 135]. We also studied the effect of Sb on the background doping and came to the same conclusion; levels as low as 10^{15} 1/cm3 were achieved by incorporation of Sb (see Figure 3.9).
This chapter connects the findings made on the crystallization processes and crystal characteristics of GaInNAsSb with the performance of single junction solar cells. First we analyze the GaInNAs solar cells and then move on to GaInNAsSb solar cells. For the relative comparison between the samples with different growth parameters, we used heterostructures consisting of p-GaAs/GaInNAs/n-GaAs grown on n-GaAs and p-GaAs. Figure 4.1 presents a schematic structure of cells grown on n-GaAs. In this chapter, all N compositions refer to solar cell materials, where we have 2.7 times more In than N, also for some cells part of the In has been replaced by Sb while maintaining the same lattice constant. This ensured lattice matching and made possible the growth of thick structures necessary for solar cell applications.
4.1 Thermal annealing of GaInNAs solar cells

In chapter 3.3, it was briefly discussed how the annealing affects the N-atom bonding environment and the charge carrier lifetime. This chapter focuses on the effects of annealing on solar cell performance. Annealing has multiple effects on the GaInNAs crystal. It has been observed that the doping density and doping type can change \cite{40, 133}. Also, the annealing introduces a band gap blue-shift that reduces the bandwidth for photon absorption under GaAs band gap energy \cite{119}. The effect of RTA on the solar cell performance is presented in Figure 4.2. After optimized RTA, the GaInNAs solar cell power generation, fill factor and open circuit voltage increase significantly, but RTA may result in lower current generation, as shown in this example. The current generation is dependent on the resulting band gap and the type and density of the GaInNAs background doping. The improved voltage and fill factor are caused by the improved charge carrier lifetimes, as reported by, for example, Gubanov et al. \cite{41}.

![Figure 4.2](image_url)

Figure 4.2. The effect of post growth annealing on the IV-performance of a 1 eV GaInNAs solar cell. The annealing improves the open circuit voltage significantly and reduces device shunt resistance. On the other hand, the cell current generation is sacrificed slightly.

The changes in the doping profile of a p-i-n diode has been studied by kelvin probe force microscopy (KPFM), where the internal potential of the junction is profiled by atomic force microscopy \cite{136}. The analyzed KPFM measurements reveal that the GaInNAs material has n-type background doping without annealing and becomes p-type after annealing. The doping type change observed here is also supported by Hall-measurements of 3000 nm thick samples grown on semi insulating GaAs substrates, where the background doping changed from $\sim 10^{15}$ l/cm3 n-type to high 10^{16} l/cm3 p-type. All these findings were confirmed by simulation of the
4.2 The effect of N composition on the GaInNAs solar cell performance

The band gap of GaInNAs shrinks as a function of N and In composition. In theory, the current generation increases nearly linearly with N and In composition, as can be seen from Figure 4.3. Figure 4.3 shows three different current density curves calculated from an AM1.5G spectrum [72] by assuming three different average EQEs of 45%, 70% and 100% (theoretical maximum value). Our experiments show that for thin solar cells (~300 nm) the current generation increases with increasing N composition, up to an N composition of 4%. However, with higher compositions, the growth of uniform GaInNAs crystals becomes extremely challenging, as described in chapter 3.4. The formation of clusters results in an increase of the device shunt leakage and far from ideal cell performance is thus achieved (see results reported in [P1]). For high quality GaInNAs crystals with long charge carrier lifetimes and low background doping, it is possible to increase the current generation with thicker GaInNAs i-regions of a few microns. The optimal thickness depends on the diffusion length of the material and on the i-region doping density [37; 67; 135].
Chapter 4. Performance of GaInNAs solar cells

Figure 4.3. (a) Calculated current densities obtainable for GaInNAs solar cells with different band gaps. Solid lines present the constant average EQE lines for the current generation potential and data points present the results obtained for thin 300 nm thick GaInNAs solar cells. (b) Measured IV-characteristics of thin lattice matched GaInNAs solar cells with N compositions up to 6%.

GaInNAs solar cell performance is not only dependent on the maximum current achievable, but also on the maximum voltage obtainable under open circuit conditions. The \(V_{oc} \) values for GaInNAs cells with different band gaps are presented in Figure 4.4. In addition, the \(FF \) of the GaInNAs cell is dependent on the N composition and band gap; Figure 4.4 also presents the \(FF \) dependencies for GaInNAs cells. To maximize the output power from the full multijunction device the dilute nitride cell \(I_{sc} \), \(V_{oc} \) and \(FF \) should have the maximum possible values, and therefore the selection of the correct band gap plays a significant role in the multijunction cell efficiency, as can be seen in the following chapter.

Figure 4.4. Measured \(V_{oc} \) and \(FF \) values for GaInNAs solar cells measured at close to AM1.5G conditions.

Figure 4.4. Measured \(V_{oc} \) and \(FF \) values for GaInNAs solar cells measured at close to AM1.5G conditions.
4.3 Growth optimization for GaInNAsSb single junction solar cells

Growth conditions play a significant role in achieving high efficiency III-V solar cells [67; 119; 126; 133; 135; 138]. This chapter summarizes the interplay between the growth conditions and the performance of GaInNAsSb solar cells.

Growth temperature dynamics of GaInNAs solar cells

As a metastable compound, GaInNAs has a very narrow growth parameter window, when compared to GaAs. The window is limited by phase separation effects and point defect formation at the low growth temperatures required by the metastable nature of the compound. These effects were discussed on the bulk level in chapter 3.4. The influence of these effects on GaInNAs solar cell performance were studied in paper [P1]. In this paper, we observed that for high solar cell performance it is essential to grow uniform materials. This is especially true for V_{oc} performance, as if even a slight amount of clusterization or unideal short range ordering is present in the crystal, the V_{oc} will decrease, which can be seen from Figure 4.5. The growth temperature induced ordering and clustering effects also make the crystal harder to anneal, requiring longer annealing times, as seen in Figure 4.5 (c). It might be that the ordered or phase separated areas act as shunt channels that increase the leakage current and lower V_{oc}, but do not yet significantly decrease shunt resistance as was seen in Figure 4.3 (b) for 5% and 6% N compositions.
Figure 4.5. Growth temperature dynamics of GaInNAs solar cell open circuit voltage (a), cell maximum power (b) and required annealing time for maximum power (c). Results published in P1.

As a compromise for the growth temperature we found 440°C to yield the best results for the cell power and average EQE for the entire range of studied lattice matched compositions. At this growth temperature, the mutual sum of harmful point defect formation and the leakage caused by phase separation is minimized. Figure 4.6 presents a comparison of single wavelength EQE values for GaInNAs SCs grown with different growth temperatures and with 3% N.

Figure 4.6. Measured EQEs at 900 nm (squares), 1000 nm (circles) and 1100 nm (triangles) for optimally annealed 3% N solar cells grown at different growth temperature. Samples were left uncoated. Results published in P1.
The second growth parameter studied in this thesis was the As/III BEP ratio. This ratio is between the measured As pressure value and the measured sum of group-III atomic fluxes. Because of low GaInNAs growth temperatures, it is logical that the compound defect density is sensitive to the selected As pressure. We have studied the As pressure related effects on the GaInNAs solar cell performance in P10 and P3 papers. Figure 4.7 shows the generic trend of the As/III-BEP ratio effect on the GaInNAs solar cell maximum performance. We see that between 7.5-10 the cell output power and efficiency peak. If the selected As pressure value is lower than 7.5, a rapid drop is observed for the cell performance and if the value is higher than 10, the drop is slower but the slope is almost constant.

It is also possible to alloy atoms other than In for the lattice matching of the crystal, when N is used. Especially good results have been reported for the use of Sb to replace some of the In atoms in the crystal lattice [71; 115; 135]. In chapter 3.1 and [P8], we have shown how the incorporation of Sb has a faster band gap shrinking effect than In per composition percentage. In practice this means that slightly less N is needed to achieve the same band gap value, and it is therefore easier to avoid the phase separation effects. Another benefit is that Sb is known to be an effective surfactant for III-V semiconductor material growth and it therefore also aids the uniform distribution of atoms during the growth [97; 99; 115; 139]. In this thesis we did not perform any atomic level investigations on the Sb atomic spacing and incorporation, but the...
Chapter 4. Performance of GaInNAsSb solar cells

macroscopic effect of the use of Sb atoms in the growth is reported as the total effect on the performance of single and multijunction solar cells.

4.4 Performance of optimized GaInNAsSb solar cells

This chapter summarizes the results obtained for optimized single solar cells in this work. In the previous chapter, we discussed the effect of the microscopic properties on the GaInNAsSb solar cell performance and the effect of annealing, N composition and growth parameters on the performance of single junction cells. In this chapter, the current generation of a 1 eV band gap GaInNAsSb sub-cell is pushed to the maximum, so that the maximum efficiency for dilute nitride multijunction concepts can be achieved. We also included phosphate based window layers in the structure to improve the surface recombination rates [4] of the devices. Figure 4.8 presents the solar cell layer structure for the studies in this section.

Figure 4.8. Schematic structure of dilute nitride solar cell for high current generation.

EQE performance of thick GaInNAsSb solar cells

Here we review how the performance of thick GaInNAsSb cells depend on the GaInNAsSb quality. Figure 4.9 presents the EQE performance of six thick GaInNAsSb solar cells with different performances. We have also calculated the J_{sc} values for AM1.5G, AM1.5D and AM0, the results are collected in Table 4.1. For the calculation of the J_{sc} values equation 4.1 [4] and the ASTM G 173-03 spectrum were used [72].

$$J_{sc} = \varepsilon \int_{0}^{\infty} QE(\lambda) \phi(\lambda) d\lambda \quad (4.1)$$

where $\phi(\lambda)$ is photon flux (1/s/nm).
4.4. Performance of optimized GaInNAsSb solar cells

Figure 4.9. EQE of GaInNAsSb solar cells with different performances. (a) Cells grown with different thicknesses and (b) cells with different background doping. The measured parameters from the cells are summarized in Table 4.1.

Table 4.1. The performance of 1 eV band gap GaInNAsSb solar cells.

<table>
<thead>
<tr>
<th>Cell</th>
<th>(J_{sc}) (mA/cm(^2))</th>
<th>(V_{oc}) (V)</th>
<th>Thickness (nm)</th>
<th>Lifetime (ns)</th>
<th>Background doping (1/cm(^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.4/5.8/5.4</td>
<td>0.44</td>
<td>300</td>
<td>~ 1 ns</td>
<td>2 \times 10^{16}</td>
</tr>
<tr>
<td>2</td>
<td>14.7/11.1/10.5</td>
<td>0.43</td>
<td>1200</td>
<td>~ 1 ns</td>
<td>2 \times 10^{16}</td>
</tr>
<tr>
<td>3</td>
<td>12.5/9.9/9.3</td>
<td>0.44</td>
<td>3000</td>
<td>~ 1 ns</td>
<td>2 \times 10^{16}</td>
</tr>
<tr>
<td>4</td>
<td>9.6/7.5/7.1</td>
<td>0.41</td>
<td>1200</td>
<td>~ 1 ns</td>
<td>3 \times 10^{16}</td>
</tr>
<tr>
<td>5</td>
<td>16.1/12.7/12.0</td>
<td>0.43</td>
<td>1200</td>
<td>~ 1 ns</td>
<td>8 \times 10^{15}</td>
</tr>
<tr>
<td>6</td>
<td>17.3/13.6/13.0</td>
<td>0.44</td>
<td>2000</td>
<td>~ 1 ns</td>
<td>1 \times 10^{15}</td>
</tr>
<tr>
<td>Est. from Ref. [71]</td>
<td>16.3/12.8/12.1</td>
<td>0.3</td>
<td>1000</td>
<td>0.2 ns</td>
<td>6.3 \times 10^{15}</td>
</tr>
<tr>
<td>Est. from Ref. [133]</td>
<td>14.2/11.1/10.5</td>
<td>0.2</td>
<td>1500</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ideal cell (1 eV QE = 1)</td>
<td>19.4/15.2/14.3</td>
<td>0.6</td>
<td>thick</td>
<td>~14 ns*</td>
<td>1 \times 10^{17}</td>
</tr>
</tbody>
</table>

Values assuming the performance level of GaAs, see Table 2.1 for details.

Table 4.1. also includes the measured variables from the cells: \(V_{oc} \) values for each cell at one sun excitation, i-region thickness, estimated charge carrier lifetimes, and background doping values. From the results it can be seen that the charge carrier lifetime limits the open circuit voltage, and that background doping limits the depletion of the GaInNAsSb region, which sets the depletion area width for efficient charge carrier collection. If the charge carrier lifetimes are
long and the i-region active doping is low enough, the charge carrier collection efficiency can be improved by increasing the i-region thickness up to approximately 3000 nm. In this work, we have limited the thickness to 2000 nm as a compromise for the highest performance. For ultimate performance it is clear that the thickness might be thinner or thicker than the selected value. By comparing the Table 4.1 values, we can see that the doping density needs to be below 8×10^{15} cm$^{-2}$ to achieve over 90% EQE values. The material quality of the crystal also affects the V_{oc} values and the best way to compare the values to each other is to use the term band gap voltage offset (W_v), which is defined as $V_{oc} = E_g q W_v$, where V_{oc} is measured under one sun conditions. For the highest quality III-V solar cells the W_v value is close to 0.4 V, but traditionally for dilute nitrides the value has been larger, typically 0.6 V in many scientific reports [59]. We have measured values from 0.7 V to 0.47 V for non-optimized growth parameters and optimized parameters, respectively. Figure 4.10 (a) shows V_{oc} data from various GaInNASb solar cells studied in this work. The same figure also includes the values for typical GaInP and GaAs III-V solar cells grown by MBE in this work.

<table>
<thead>
<tr>
<th>Band gap (eV)</th>
<th>Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>4%</td>
<td>100% QE</td>
</tr>
<tr>
<td>5%</td>
<td>70% QE</td>
</tr>
<tr>
<td>6%</td>
<td>45% QE</td>
</tr>
</tbody>
</table>

Figure 4.10. (a) Measured open circuit voltage values for GaInNASb solar cells with different band gaps and best cell V_{oc} for this work up to 1.9 eV. To the same figure we have also added the values obtained for GaInP and GaAs solar cells in this work. (b) J_{sc} values for GaInNASb solar cells with different band gaps. Currently the current generation efficiency is approaching the ideality limit.

The absolute current generation performance of the fabricated GaInNASb solar cells can be seen in Figure 4.10 (b), where the absolute performance is compared to the average EQE trends calculated for an ASTM 173-G AM1.5G spectrum as a function of GaInNASb solar cell band gap. The band gap is determined from the PL peak position.

The absolute current generation performance of the fabricated GaInNASb solar cells can be seen in Figure 4.10 (b), where the absolute performance is compared to the average EQE trends calculated for an ASTM 173-G AM1.5G spectrum as a function of GaInNASb solar cell band gap. The band gap is determined from the PL peak position.
Compared to the beginning of the thesis research plan we have been able to improve the GaInNAsSb cell average EQE values from 30% to close to 90% on average, over the whole measurement spectrum below the band gap wavelengths. For this development graph, the optimization iteration data points represent the best value for each iteration, so the practical number for grown solar cells is significantly larger. It also includes many different post process optimization rounds for each development step presented in this graph. The simulation of the structures plays a large role for the understanding and developing of the GaInNAsSb solar cells.

Our preliminary simulation results have been published in [37]. Detailed simulation of cell performance for different charge carrier lifetimes, background doping levels and realistic mobility values also proved excellent fit (to be published) to the experimental EQE and IV characteristics demonstrated in this thesis.

![Graph 1](image1.png)

Figure 4.11. IV-performance of the best GaInNAsSb solar cell measured under AM1.5G real sun conditions. The spectral irradiance was measured by a Kipp&Zonen pyranometer and the power density of the irradiation was 980 W/m².

Figure 4.11 presents the best IV-performance achieved for a GaInNAsSb single junction solar cell fabricated in this work. The corresponding EQE of this cell is also presented in Figure 4.9 b. This result represents state-of-the-art GaInNAsSb cell performance and this material is also the workhorse for the GaInP/GaAs/GaInNAsSb solar cell results presented in the following chapter.
Chapter 5

5 Dilute nitride multijunction solar cells

In this chapter, we focus on the modeling, fabrication and characterization of high performance dilute nitride multijunction solar cells. For multijunction cells the same characterization methods can be used as for single junction cells, but the spectral sensitivity and accuracy of the measurements are more demanding.

5.1 Design of dilute nitride multijunction solar cells

For multijunction solar cells, the structural design plays a greater role in the device performance than it does for single junction solar cells. One key difference from the design point of view is that the top cell needs to pass a sufficient amount of photons to the cells below, so that the bottom cells can produce the same amount of current. How much light the top cell needs to pass to the bottom cells depends on the top cell and bottom cell(s) EQE performance. The design strategy starts from the setting of the top and bottom cell band gaps and the desired operation spectrum. Next, the number of sub cells needs to be decided and then the generated J_{sc} of the multijunction cell can be estimated. For the next step, the middle cell(s) band gap can be selected from the available materials. At this point, the theoretical maximum efficiency can already be estimated by assuming feasible average EQE values for the sub cells and diode...
characteristics based on single junction cells. For the performance estimation of the multijunction devices, projective diode models were used. In papers [P5] and [P11] we estimated the efficiencies for AM1.5 and AM0 spectra. In the calculations, we used GaInP/GaAs/GaInNAsSb and GaInP/GaAs/GaInNAsSb/Ge architectures. An example of a GaInP/GaAs/GaInNAsSb structure is presented in Figure 5.1.

Figure 5.1. Schematic picture of GaInP/GaAs/GaInNAs solar cell.

Simulation of GaInNAsSb MJSC solar cell performance

We used diode equations for the simulation of the GaInP/GaAs/GaInNAsSb and GaInP/GaAs/GaInNAsSb/Ge solar cell performances based on equations 2.3 to 2.5 (chapter 2.3). Since the performance of GaInP/GaAs and GaInP/GaAs/Ge cells have already been optimized by many groups, the variables in our projective model were related to GaInNAsSb sub-cells: quality measured by average EQE, band gap, and thickness. Figure 5.2 a presents the J_c for GaInNAsSb sub-cells with different band gaps and with different average EQE performances. In Figure 5.2 b, the current matching window for GaInNAsSb placed under thick GaAs in the GaInP/GaAs/GaInNAsSb configuration is drawn. In this figure we have highlighted the average EQE and band gap area where the incorporation of a GaInNAsSb bottom cell is feasible. In practice, this sets the band gap window for the GaInNAsSb sub-junction in the GaInP/GaAs/GaInNAsSb device, from 0.9 to 1.04 eV.

Simulation of GaInNAsSb MJSC solar cell performance

We used diode equations for the simulation of the GaInP/GaAs/GaInNAsSb and GaInP/GaAs/GaInNAsSb/Ge solar cell performances based on equations 2.3 to 2.5 (chapter 2.3). Since the performance of GaInP/GaAs and GaInP/GaAs/Ge cells have already been optimized by many groups, the variables in our projective model were related to GaInNAsSb sub-cells: quality measured by average EQE, band gap, and thickness. Figure 5.2 a presents the J_c for GaInNAsSb sub-cells with different band gaps and with different average EQE performances. In Figure 5.2 b, the current matching window for GaInNAsSb placed under thick GaAs in the GaInP/GaAs/GaInNAsSb configuration is drawn. In this figure we have highlighted the average EQE and band gap area where the incorporation of a GaInNAsSb bottom cell is feasible. In practice, this sets the band gap window for the GaInNAsSb sub-junction in the GaInP/GaAs/GaInNAsSb device, from 0.9 to 1.04 eV.
An attractive design aspect for the GaInNAsSb sub-cell is that the thickness and band gap of high quality GaInNAsSb can be rather freely optimized, so that the highest performance will be achieved for each application spectrum and concentration value. The generated current follows the absorbed light amount, which is close to exponentially dependent (Beer-Lambert law) on the semiconductor thickness. Figure 5.3 shows the thickness required for the current matching under thick GaAs in the GaInP/GaAs/GaInNAsSb/Ge configuration for different band gaps. The estimates for the required thicknesses are gathered from publications [42; 140].

It should be noticed that thicker cells are more demanding in terms of background doping and diffusion length limits for the GaInNAsSb junction. Therefore, an understanding of the optimal
Chapter 5. Dilute nitride multijunction solar cells

band gap and thickness combinations becomes essential, especially if the material has high background doping and short diffusion lengths [37; 67; 104]. The option to use different band gaps for the GaInNAsSb junction gives the advantage that the junction can be significantly thinned down with the same current generation if the band gap is shifted towards smaller values. These thicknesses are calculated for GaInP/GaAs/GaInNAsSb/Ge devices, but they also provide a good understanding of how much the cell can be thinned down for triple junction cell if the cell band gap is reduced by, for example, 0.1 eV. The drawback of reducing the band gap is that the voltage of the multijunction cell will be lower, but simultaneously the cell fabrication costs can be reduced significantly by faster and cheaper epitaxy. This option was used as an input for the performance modelling. Figure 5.4 presents the estimated potential of GaInP/GaAs/GaInNAsSb and GaInP/GaAs/GaInNAsSb/Ge cells incorporated with GaInNAsSb cells with different performances. The individual sub-cell performances for GaInP, GaAs and Ge were estimated from publications and datasheets [141; 142] and the GaInNAsSb cell performance was estimated from the data gathered for GaInNAsSb single junction cells during this work. A detailed description of the modelling process for the sub-cells and multijunction cells is given in [P5] and [P11].

The simulation results for AM1.5G and AM1.5D from paper P5 show that, especially for the AM1.5D spectrum, the four junction design can provide a significant efficiency improvement when compared to the triple junction design. For the calculations with the AM1.5D spectrum, the GaInAsSb sub-cell was set to be current matched or to be overgenerating current in the triple junction cell. Similarly, for four junction cell calculations, the cell was set to be undergenerating and to be current matched. For the triple junction design the calculated practical maximum efficiency is 33.6% at one sun, and up to 1.7 percentage points higher efficiencies can be calculated for the four junction design. For a band gap of 0.9 eV instead of 1.0 eV, the cell will have only 1.4 percentage points lower efficiency, so with cell production in mind the 0.9 eV junction might be an attractive choice, since the sub cell could be ~2 μm thinner. The results, however, depend on the spectrum, and since for an AM1.5G spectrum the J_{sc} of the triple junction (3J) can be significantly higher than for a four junction cell (4J), the practical efficiency for this band gap combination will be ~1 percentage points higher for the triple junction cell. For better four junction cell design, all the sub-cell band gaps should be better matched to the AM1.5G spectrum. The simulation results for AM1.5D are listed in the Table 5.1 and the calculated IV-curves are plotted in Figure 5.4. For increased AM1.5D
5.1. Design of dilute nitride multijunction solar cells

concentrations, the efficiency increases significantly for both designs. By assuming a realistic series resistance value of \(-5 \, \text{m}^2\text{cm}^2\) for the multijunction cells, the cell efficiency can improve up to 46% for a triple junction cell and between 47 to 50% for a four junction cell at 300 suns concentration. Therefore it is clear that for new world records with over ~46% efficiency [143; 144], at least four junctions are needed.

Similar calculations were also performed for AM0 in the paper P11, but in this paper we focused only on the 1-sun calculations, since currently the majority of space photovoltaic applications are based on one sun AM0 concentrations (see Table 5.2, for calculated performance). As the for simulation results, we calculated that by changing the performance of the limiting GaInNAs sub-cell within reasonable limits, efficiencies from 25.6% to 30.7% could be achieved for the triple junction design. We do anticipate that the voltage of the GaInNAsSb

Table 5.1. Estimated one sun efficiencies of GaInNAsSb multijunction solar cells at AM1.5D.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Spectrum</th>
<th>J(sc) (mA/cm²)</th>
<th>Voc (V)</th>
<th>FF</th>
<th>η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaInP/GaAs/GaInNAs</td>
<td>AM1.5D</td>
<td>13.79</td>
<td>2.86</td>
<td>83.05</td>
<td>32.76</td>
</tr>
<tr>
<td>GaInP/GaAs/GaInNAsSb (0.90 eV)</td>
<td>AM1.5D</td>
<td>13.79</td>
<td>2.76</td>
<td>82.52</td>
<td>31.36</td>
</tr>
<tr>
<td>GaInP/GaAs/GaInNAs (15.5 mA/cm²)</td>
<td>AM1.5D</td>
<td>13.79</td>
<td>2.87</td>
<td>84.98</td>
<td>33.58</td>
</tr>
<tr>
<td>GaInP/GaAs/GaInNAs</td>
<td>AM1.5D</td>
<td>15.15 (Ideal 3J)</td>
<td>2.87</td>
<td>82.97</td>
<td>36.08</td>
</tr>
<tr>
<td>GaInP/GaAs/GaInNAs</td>
<td>AM1.5D</td>
<td>12.00</td>
<td>3.10</td>
<td>86.20</td>
<td>32.08</td>
</tr>
<tr>
<td>GaInP/GaAs/GaInNAs/Ge</td>
<td>AM1.5D</td>
<td>13.35</td>
<td>3.11</td>
<td>82.71</td>
<td>34.36</td>
</tr>
<tr>
<td>GaInP/GaAs/GaInNAs/Ge</td>
<td>AM1.5D</td>
<td>14.68 (Ideal 4J)</td>
<td>3.12</td>
<td>82.65</td>
<td>37.79</td>
</tr>
</tbody>
</table>

Figure 5.4. (a) The calculated I-V-performance for GaInP/GaAs/GaInNAs triple junction solar cell structures and GaInP/GaAs/GaInNAs/Ge four junction devices with AM1.5D excitation.

Table 5.1. Estimated one sun efficiencies of GaInNAsSb multijunction solar cells at AM1.5D.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Spectrum</th>
<th>J(sc) (mA/cm²)</th>
<th>Voc (V)</th>
<th>FF</th>
<th>η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaInP/GaAs/GaInNAs</td>
<td>AM1.5D</td>
<td>13.79</td>
<td>2.86</td>
<td>83.05</td>
<td>32.76</td>
</tr>
<tr>
<td>GaInP/GaAs/GaInNAsSb (0.90 eV)</td>
<td>AM1.5D</td>
<td>13.79</td>
<td>2.76</td>
<td>82.52</td>
<td>31.36</td>
</tr>
<tr>
<td>GaInP/GaAs/GaInNAs (15.5 mA/cm²)</td>
<td>AM1.5D</td>
<td>13.79</td>
<td>2.87</td>
<td>84.98</td>
<td>33.58</td>
</tr>
<tr>
<td>GaInP/GaAs/GaInNAs</td>
<td>AM1.5D</td>
<td>15.15 (Ideal 3J)</td>
<td>2.87</td>
<td>82.97</td>
<td>36.08</td>
</tr>
<tr>
<td>GaInP/GaAs/GaInNAs</td>
<td>AM1.5D</td>
<td>12.00</td>
<td>3.10</td>
<td>86.20</td>
<td>32.08</td>
</tr>
<tr>
<td>GaInP/GaAs/GaInNAs/Ge</td>
<td>AM1.5D</td>
<td>13.35</td>
<td>3.11</td>
<td>82.71</td>
<td>34.36</td>
</tr>
<tr>
<td>GaInP/GaAs/GaInNAs/Ge</td>
<td>AM1.5D</td>
<td>14.68 (Ideal 4J)</td>
<td>3.12</td>
<td>82.65</td>
<td>37.79</td>
</tr>
</tbody>
</table>

Similar calculations were also performed for AM0 in the paper P11, but in this paper we focused only on the 1-sun calculations, since currently the majority of space photovoltaic applications are based on one sun AM0 concentrations (see Table 5.2, for calculated performance). As the for simulation results, we calculated that by changing the performance of the limiting GaInNAs sub-cell within reasonable limits, efficiencies from 25.6% to 30.7% could be achieved for the triple junction design. We do anticipate that the voltage of the GaInNAsSb
sub-cell can be improved, so that the ultimate efficiency may be at least 1 percentage point higher.

Table 5.2. Calculated efficiencies for dilute nitride based 3J and 4J space solar cells under AM0 excitation.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Spectrum</th>
<th>J_{SC} (mA/cm2)</th>
<th>V_{OC} (V)</th>
<th>FF</th>
<th>η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaInP/GaAs/Ge commercial ref. [145]</td>
<td>AM0</td>
<td>17.7</td>
<td>2.746</td>
<td>86</td>
<td>30.6</td>
</tr>
<tr>
<td>GaInP/GaAs/GaInNAs (GaInNAs lim.)</td>
<td>AM0</td>
<td>14.1</td>
<td>2.849</td>
<td>87</td>
<td>25.6</td>
</tr>
<tr>
<td>GaInP/GaAs/GaInNAs</td>
<td>AM0</td>
<td>17.7</td>
<td>2.861</td>
<td>83</td>
<td>30.7</td>
</tr>
<tr>
<td>GaInP/GaAs/GaInNAs/Ge (GaInNAs lim.)</td>
<td>AM0</td>
<td>14.1</td>
<td>3.134</td>
<td>87</td>
<td>28.1</td>
</tr>
<tr>
<td>GaInP/GaAs/GaInNAs/Ge</td>
<td>AM0</td>
<td>17.7</td>
<td>3.144</td>
<td>82</td>
<td>33.5</td>
</tr>
</tbody>
</table>

The GaInP/GaAs/GaInNAsSb/Ge four junction cell can have up to 2.8 percentage points higher efficiency than the triple junction cell, resulting in efficiencies between 28.1 to 33.5%, depending on the GaInNAsSb sub-cell J_{SC} performance. Also in this case we believe that the GaInNAsSb sub-junction V_{OC} can be significantly improved, since the calculation in [PP3] was based on a GaInNAs cell with poorer performance than the best GaInNAsSb cell. This means that the best GaInP/GaAs/GaInNAsSb/Ge might break the 35% efficiency barrier.

5.2 Epitaxy optimization for multijunction architectures

For three and four junction cells, well over 40% cell efficiencies are possible under concentrated light. The epitaxy of such devices is indeed very demanding. For efficiencies over 40%, the first requirement for the grown wafer is that the multijunction solar cell structure to be incorporated with proper thicknesses, band gaps, doping levels and diffusion lengths. Simultaneously, the interfaces need to be sharp and the roughness of the whole grown structure low enough to meet the demands of post processing and thin tunnel junctions. The growth is also followed by post processing, which includes thermal treatments, etching steps and contact metal depositions with and without metal grid patterns. Altogether the III-V multijunction solar cell process is dependent on many different processes. Therefore, if some of the steps are not optimized, the resulting cell’s performance is limited by the non-optimized process step. This

Chapter 5. Dilute nitride multijunction solar cells

sub-cell can be improved, so that the ultimate efficiency may be at least 1 percentage point higher.

Table 5.2. Calculated efficiencies for dilute nitride based 3J and 4J space solar cells under AM0 excitation.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Spectrum</th>
<th>J_{SC} (mA/cm2)</th>
<th>V_{OC} (V)</th>
<th>FF</th>
<th>η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaInP/GaAs/Ge commercial ref. [145]</td>
<td>AM0</td>
<td>17.7</td>
<td>2.746</td>
<td>86</td>
<td>30.6</td>
</tr>
<tr>
<td>GaInP/GaAs/GaInNAs (GaInNAs lim.)</td>
<td>AM0</td>
<td>14.1</td>
<td>2.849</td>
<td>87</td>
<td>25.6</td>
</tr>
<tr>
<td>GaInP/GaAs/GaInNAs</td>
<td>AM0</td>
<td>17.7</td>
<td>2.861</td>
<td>83</td>
<td>30.7</td>
</tr>
<tr>
<td>GaInP/GaAs/GaInNAs/Ge (GaInNAs lim.)</td>
<td>AM0</td>
<td>14.1</td>
<td>3.134</td>
<td>87</td>
<td>28.1</td>
</tr>
<tr>
<td>GaInP/GaAs/GaInNAs/Ge</td>
<td>AM0</td>
<td>17.7</td>
<td>3.144</td>
<td>82</td>
<td>33.5</td>
</tr>
</tbody>
</table>

The GaInP/GaAs/GaInNAsSb/Ge four junction cell can have up to 2.8 percentage points higher efficiency than the triple junction cell, resulting in efficiencies between 28.1 to 33.5%, depending on the GaInNAsSb sub-cell J_{SC} performance. Also in this case we believe that the GaInNAsSb sub-junction V_{OC} can be significantly improved, since the calculation in [PP3] was based on a GaInNAs cell with poorer performance than the best GaInNAsSb cell. This means that the best GaInP/GaAs/GaInNAsSb/Ge might break the 35% efficiency barrier.

5.2 Epitaxy optimization for multijunction architectures

For three and four junction cells, well over 40% cell efficiencies are possible under concentrated light. The epitaxy of such devices is indeed very demanding. For efficiencies over 40%, the first requirement for the grown wafer is that the multijunction solar cell structure to be incorporated with proper thicknesses, band gaps, doping levels and diffusion lengths. Simultaneously, the interfaces need to be sharp and the roughness of the whole grown structure low enough to meet the demands of post processing and thin tunnel junctions. The growth is also followed by post processing, which includes thermal treatments, etching steps and contact metal depositions with and without metal grid patterns. Altogether the III-V multijunction solar cell process is dependent on many different processes. Therefore, if some of the steps are not optimized, the resulting cell’s performance is limited by the non-optimized process step. This
chapter focuses on the description of the multijunction solar cell growth optimization steps aiming to achieve efficiencies of over 40%.

Designing growth for dilute N multijunction solar cells

Traditionally it has been a challenge to achieve high enough current generation for dilute nitride cells with close to 1 eV band edges \([64; 65; 67; 107; 109; 133-135; 137]\). It is highly probable that if the dilute nitride growth is not optimized, the current generation in GaInP/GaAs/GaInNAsSb will be approximately half of the achievable maximum, and therefore roughly only half of the efficiency potential can be harvested. For this reason, it was clear during the early stages of this thesis that we could utilize the highest development potential by first developing the dilute N cell process to a sufficient level, so that the use of GaInNAsSb sub-cells would be viable in real world applications. In the beginning, we saw rapid improvements in GaInNAsSb cell performance; Figure 5.5 summarizes the development trend for the 1 eV band gap cell during the development years.

![Graph showing J_sc development for the 1 eV GaInNAsSb cell](image)

From Figure 5.5 we also see how extremely challenging it became to improve the current generation, and during the years 2010 to 2012 no significant breakthroughs were made. Starting from 2013, however, the cumulative understanding of the GaInNAsSb growth dynamics started to result in significant and constant progress for the current generation performance, and during
Chapter 5. Dilute nitride multijunction solar cells

spring 2014 we were able to produce a cell that generated more than the GaInP and GaAs top cells generate at AM1.5G and AM1.5D, meaning that the dilute nitride junction was no longer the limiting junction for the GaInP/GaAs/GaInNAsSb cell, making high efficiencies possible.

We had already started to incorporate dilute N sub-junctions into a 3J cell in 2011, and the first structure was not only current limited by the dilute N sub-junction, but also by the performance of all of the five pn-junctions (three cell solar cell junctions and two tunnel junctions) incorporated into the 3J cell structure. After incorporation of one extra sub-junction and tunnel junction, it was clear that everything needed to be optimized together for the final integration of all five sub-junctions. Problems for multijunction integration arise from many different origins, and one of the greatest problems is how to handle the thermal stress for the junctions below when the top junctions are grown. In order to understand all the different MBE process related variables, a graphic was drawn where the main variables are linked together by a sphere. The optimization sphere is presented in Figure 5.6.

Fortunately MBE is a flexible tool so that many of these variables can be optimized separately, but the separately optimized sub-sections always need to be tested in larger sub-pieces and...
finally incorporated into the final 3J structure. The sphere was drawn as a dilute N centered approach, but the same kind of strategy can be centered on tunnel junctions other sub-junctions.

Generally speaking, the thermal stress bottleneck for multijunction cells is the diffusion and activation of dopants in the tunnel junction, where the junction should have as high as possible doping levels and atomically sharp interfaces. For Be and Si, which are the traditional MBE dopants for p and n doping, respectively, there are a few problems related to the tunnel interface. Be, as a small atom, tends to have a high diffusion constant [146] and Si on the other hand has an amphoteric nature, causing compensation of the n type doping level at the close to \(10^{19} \text{ cm}^{-3}\) concentrations that are needed for high current and low resistance tunnel junctions [58]. Both these processes are thermally activated, and therefore low temperature growth makes high concentrations and sharp interfaces plausible. For growth condition tuning, with the tunnel junctions in mind, the MBE process is more flexible for fine tuning of the growth than MOCVD, since the precursors in the MBE process do not need to be thermally activated or cracked at the growth front for the efficient incorporation of the dopants or group III or group V atoms [22].

Figure 5.7. IV-performance of GaInP/GaAs/GaInNAsSb solar cell annealed at different RTA temperatures. Tunnel junction(s) start to fail at high annealing temperatures; the physical reason for the exact process is under investigation.

Figure 5.7 presents the IV-performance of a 3J cell structure annealed using RTA at different temperatures. From here it is clear that if the temperature is kept under 800°C, the tunnel junctions can withstand the annealing related thermal load. At higher temperatures the active
doping of the tunnel junction starts to change, and the possible reasons for this phenomenon could be inter diffusion of doping atoms near the tunnel junction interface, or the changes in the type and activation of the doping species on either side of the pn-tunnel junction. The performance of a single tunnel junction can be evaluated from separately processed and mesa etched tunnel junction diodes. Table 5.3 lists the key parameters of tunnel junction devices reported in the literature. The table also lists the tunnel junction results achieved in this thesis.

Table 5.3. Performance of GaAs based tunnel junctions designed for multijunction solar cells.

<table>
<thead>
<tr>
<th>Growth method</th>
<th>Structure</th>
<th>Maximum tunneling current density (A/cm²)</th>
<th>Forward tunneling peak voltage (V)</th>
<th>Series resistance (mΩ cm²)</th>
<th>Voltage drop at 1 sun (mV)</th>
<th>Voltage drop at 1000 suns (mV)</th>
<th>Voltage drop at 5000 suns (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBE n-GaAs/p-GaAs [this work]</td>
<td>493</td>
<td>0.15</td>
<td>0.19</td>
<td>2.7×10⁻³</td>
<td>2.7</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>MBE n-GaAs/p- AlGaAs [this work]</td>
<td>181</td>
<td>0.09</td>
<td>0.33</td>
<td>4.7×10⁻³</td>
<td>4.7</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>MBE GaAs/ErAs/GaAs [147]</td>
<td>20 000</td>
<td>0.13</td>
<td>0.18</td>
<td>2.5×10⁻³</td>
<td>2.5</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>MOCVD n-GaAs/p- AlGaAs [148]</td>
<td>10 100</td>
<td>0.25</td>
<td>0.02</td>
<td>0.3×10⁻³</td>
<td>0.3</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>MOCVD p-AlGaAs/GaInP [149]</td>
<td>996</td>
<td>0.10</td>
<td>0.07</td>
<td>1.0×10⁻³</td>
<td>1.0</td>
<td>4.7</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5.8 presents the efficiency optimization results of the iterative process starting from 2011. We have been able to improve the 3J cell efficiency by a slope of 5.2 points efficiency per year, and this year the projection hits the efficiencies predicted from the calculations discussed in chapter 5.1. From this point the trend for the 3J cell will start to saturate due to physical limitations of the design. Therefore, we have started to focus on the optimization of 4J design that would enable the trend to continue. In addition we are developing our metal grids and cell dimensions to work better with higher concentrations, making it possible to utilize the full
5.3 Performance of GaInP/GaAs/GaInNAsSb solar cells

This chapter focuses on the performance of GaInP/GaAs/GaInNAsSb solar cells. The cells were measured by real sun illumination, by an Oriel solar simulator with an AM1.5G filter, by an in-house built three band solar simulator and by EQE. We also measured the cell characteristics at different cell temperatures and at elevated concentrations.

EQE performance and one sun performance of GaInP/GaAs/GaInNAsSb cell

As the basis of the efficiency determination for the GaInP/GaAs/GaInNAsSb cell, the EQE performance for each sub-cell was measured. For the EQE measurements of the GaInP/GaAs/GaInNAsSb cell careful optical and sometimes electrical biasing is needed. Light biasing with a nearly monochromatic bias light band is needed to make the sub-cells that are not under investigation produce more current than the cells being measured [150]. An additional electric bias might be needed for some junctions such as Ge, where electric breakdown may happen with relatively low voltages, or for junctions with low shunt resistance [151]. The EQE measurements have been used in this thesis for the analysis of the spectral response of GaInP/GaAs/GaInNAsSb cells in papers [P6] and [P7].
Figure 5.9 presents the performance of a GaInP/GaAs/GaInNAsSb solar cell measured at 22°C and at 80°C. These data are based on article P7. From the results it can be seen that all the sub-cells have a maximum EQE around 90% and that the integration of all the sub-junctions has been successful, with high EQE levels. When the cell is heated up from 22°C to 80°C we can see the EQE edges shifting towards longer wavelengths, which is caused by the band gap shrinking with temperature. This band gap shift typically increases the current generation of the multijunction device and reduces the V_{oc}. As an end result, the cell efficiency generally becomes lower when the cell is heated up. More details about the temperature dependencies of GaInP/GaAs/GaInNAsSb cells can be found from [P7].

The absolute performance for this cell was estimated from the light biased IV-measurements, where the 3J current generation was calibrated to the value of the cell which generated the lowest current. The IV-results are presented in Figure 5.9 b, from which the calculated efficiencies for ASTM G-173 AM1.5G, AM1.5D and AM0 are 31.4%, 30.4% and 26.2%, respectively. The maximum performance for the 3J cell under AM1.5D one sun conditions is 91%, from the predicted ultimate efficiency presented in chapter 5.1. This can be considered a remarkably good result achieved at the academic level.
The performance of GaInP/GaAs/GaInNAsSb cells under concentrated light

Our measurement set-up allowed assessments under concentrated light up to the 70-suns level. The performance of a GaInP/GaAs/GaInNAsSb 3J cell is presented in Figure 5.10 for an AM1.5G 1-sun spectrum and at ~70 suns real sun concentration. The sun intensity was recorded before the measurements by a calibrated pyranometer. Most of the concentrated power consisted only of direct irradiation, which is 900 W/m², but also some of the diffuse light, being less than 0.1 suns of 70 suns, was passed to the sample. For the one sun measurement the estimated cell efficiency was 31%, and the efficiency increased to 37-39% when the concentration was increased to 70 suns. The uncertainty for the cell efficiency at 70 suns comes mainly from the deviation of the cell temperature under concentrated sunlight conditions, which means that the estimated cell temperature was between 25 and 40°C. In practice the cell temperature was closer to 40°C than 25°C, because the cell stage was set to 25°C. For future developments better current matching between the sub-cells is essential and overall structural optimization and fewer interface recombinations will result in higher conversion efficiency. These targets can be achieved by more advanced processing and by improvement of the epitaxy process.

![Figure 5.10. (a) Measured GaInP/GaAs/GaInNAsSb cell performance at AM1.5G one sun excitation and at 70 suns excitation, both measurements were normalized to one sun intensity of 1000 W/cm². (b) Solar cell efficiencies under concentration and modelled efficiencies of GaInP/GaAs/GaInNAsSb solar cells with three different series resistance values.](image1)

![Figure 5.10. (a) Measured GaInP/GaAs/GaInNAsSb cell performance at AM1.5G one sun excitation and at 70 suns excitation, both measurements were normalized to one sun intensity of 1000 W/cm². (b) Solar cell efficiencies under concentration and modelled efficiencies of GaInP/GaAs/GaInNAsSb solar cells with three different series resistance values.](image2)
The efficiencies of the concentration dependent measurements are presented in Figure 5.10 b. In this graph, the efficiency trends are also calculated with lower and upper limits for the series resistance. One can see that the efficiency grows logarithmically with the concentration as presented in equation 2.6. The saturation of the three different efficiency trends are caused by the existing device series resistance, which can be due to the metal contact and metal transfer resistance or to the spreading resistance of the current within the cell. To estimate the potential of the measured cell we have used three different values for the series resistance; 200 mΩ-cm², 17 mΩ-cm² and 5 mΩ-cm². Based on the diode analysis of the 3J cell, the most probable series resistance values are between 17 and 5 mΩ-cm², which are reported in paper P7. This suggest that the cell efficiency may improve from 1.0 to 2.6 percentage points at higher concentration levels.

5.4 AllInP moth eye coated GaInP/GaAs/GaInNAs SC

For the future development of ultra-high efficiency solar cells it is essential to develop new concepts aiming at improved performance. Many modern concepts have been introduced, which include utilization of photonic 3D-structures with more than three junctions, and tailoring of the absorption bands of the solar cell absorber materials by quantum wells, quantum dots and intermediate band engineering [5]. To this end, we have studied the potential of moth eye nanostructures fabricated on the AlInP window layer of a GaInP/GaAs/GaInNAs solar cell. The purpose of this nano-pattern is to mimic the structure of the eye cornea layer surface pattern of the nocturnal butterfly, a pattern that has been optimized by nature for maximum light transmission and highest sensitivity for the eye at low light intensity levels during nighttime. This nano-sized pattern can be used as an antireflection coating [152]. The patterning process was developed by Tommila et al. [153-155] and the detailed spectral response for the moth eye patterned GaInP/GaAs/GaInNAs cell was studied in this thesis [P6]. The paper also compared moth eye anti reflection performance to a similar GaInP/GaAs/GaInNAs cell with a traditional two layer TiO₂/SiO₂ dielectric antireflection coating. Figure 5.11 shows the nano-pattern of the solar cell and the antireflective properties of moth eye patterned cell and TiO₂/SiO₂ comparison structure.
The antireflection performance of the patterned AlInP surface is compared to the different antireflection coatings published in the literature and fabricated in this work. The comparison in Table 5.4 shows that the average reflection of the AlInP moth eye pattern is extremely low, only 2.1% to 1.6%, and agrees well with the simulated average reflectivity of 1.7% [155]. The pattern outperforms the comparison structure reflectivity, having less than half of the latter’s reflectivity. Also, the reflectivities of the published nano pattern structures collected in Table 5.4 are significantly higher than for the AlInP nano pattern demonstrated in this work.
Chapter 5. Dilute nitride multijunction solar cells

Table 5.4. Reflectivities of ARC on MJSCs.

<table>
<thead>
<tr>
<th>ARC Structure</th>
<th>Average reflectivity 400-1000 nm</th>
<th>Average reflectivity 1000-1700 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlInP moth eye, [this work]</td>
<td>2.09</td>
<td>1.64</td>
</tr>
<tr>
<td>AlInP moth eye simulation [155]</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>TiO₂/SiO₂, [this work]</td>
<td>4.24</td>
<td>5.83</td>
</tr>
<tr>
<td>TiO₂/SiO₂ nanostructure [156]</td>
<td>7.28</td>
<td>7.28</td>
</tr>
<tr>
<td>Patterned PVC film [157]</td>
<td>3.45</td>
<td>4.25</td>
</tr>
<tr>
<td>Sub-moth eye on conventional ARC [158]</td>
<td>4.16</td>
<td>3.80</td>
</tr>
<tr>
<td>TiO₂/SiO₂ nanopillars on conventional ARC [160]</td>
<td>11.4</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 5.5. Calculated AM1.5G current densities from EQE.

<table>
<thead>
<tr>
<th>ARC</th>
<th>Sub-cell</th>
<th>Calculated AM1.5G J(sc) (mA/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlInP moth eye</td>
<td>GaAs</td>
<td>10.1</td>
</tr>
<tr>
<td>AlInP moth eye</td>
<td>GaNAs</td>
<td>13.9</td>
</tr>
<tr>
<td>AlInP moth eye</td>
<td>GaAs</td>
<td>10.4</td>
</tr>
<tr>
<td>TiO₂/SiO₂</td>
<td>GaAs</td>
<td>11.0</td>
</tr>
<tr>
<td>TiO₂/SiO₂</td>
<td>GaNAs</td>
<td>13.3</td>
</tr>
<tr>
<td>TiO₂/SiO₂</td>
<td>GaAs</td>
<td>11.0</td>
</tr>
<tr>
<td>TiO₂/SiO₂</td>
<td>GaNAs</td>
<td>13.3</td>
</tr>
</tbody>
</table>

From the point of view of the reflectivity values the results looked very promising and the next step for the performance evaluation was to measure the 3J cell performances with real sun illumination. The results show [P6] that the moth eye cell has higher current generation and better fill factor. A more detailed analysis, however, showed that the AlInP moth eye structure is not perfect. In Figure 5.12 the comparison of the measured EQE values of GaInP/GaAs/GaNAs solar cells with an AlInP moth eye and a TiO₂/SiO₂ antireflection coating are presented. Differences are seen for the spectral responses especially at short wavelengths below 500 nm, where the absorption of the remaining AlInP window causes the extinction of the photons. For wavelengths longer than 500 nm, the moth eye pattern is significantly better than the TiO₂/SiO₂ coating which was used as a reference. Significantly better performance at long wavelengths indicates a highly promising future for the developed nano-pattern, if the losses at wavelengths below 500 nm can be reduced by structural optimization of the pattern.
Chapter 6

6 Conclusions

This thesis focused on the growth optimization of GaInNAsSb compounds for III-V multijunction cells fabricated by plasma assisted molecular beam epitaxy. The growth, characteristics and multijunction cell design aspects were reported in 11 scientific papers. The outcome of the thesis work was that it is possible to fabricate GaInNAsSb solar cell materials for a GaInP/GaAs/GaInNAsSb cell without GaInNAsSb being the current limiting junction. The growth dynamics of GaInNAsSb crystals demand careful control of the growth temperatures, N plasma parameters, arsenic overpressure and annealing conditions.

The GaInNAsSb semiconductor materials were evaluated by testing them in simple bulk structures, single junction GaInNAsSb cells, and in GaInP/GaAs/GaInNAsSb multijunction cells. Altogether over 300 structures have been fabricated and more than 1000 components with different post growth treatments and optimizations steps were tested. The results show that the average EQE of GaInNAsSb in the spectral range of 1.4 eV to 1.0 eV can exceed 90%. The cells with high EQE can also be integrated into GaInP/GaAs/GaInNAsSb cells with excellent voltage and fill factor characteristics. For single junction 1 eV cells V_{oc} values of ~0.5 V and fill factor values of ~70% were achieved. The GaInP/GaAs/GaInNAsSb integration yielded one sun efficiencies of 30%, 31% and 26%, for AM1.5D, AM1.5G and AM0 spectra, respectively. For the concentrated sun light measurements at 70 suns the efficiency increased to 37-39%. For future improvements, detailed optimization of the growth interfaces and post processing optimizations, especially for front grid design, are needed. In order to approach 50% cell efficiencies more junctions are needed, and based on the calculations in this thesis the...
GaInP/GaAs/GaInNAsSb/Ge cell concept can almost reach the target, with a projected efficiency of 47% to 50% at over 300 suns. In addition, an AlInP moth eye nanopattern antireflection coating was developed on top of a GaInP/GaAs/GaInNAs triple junction cell. The pattern performed well above 500 nm and exhibited less than 2% average reflectivity for the spectral band from 400 to 1700 nm. For the future usage of the structure in wide spectral range cells with more than 3 junctions, the pattern should be further optimized by minimizing the absorption in the patterned AlInP below 500 nm wavelengths. Our target in the near future is to achieve well over 30% conversion efficiency under AM0 illumination and to reach the 50% efficiency limit with a multijunction solar cell with at least 4 junctions, under high concentration.
5.4. AlInP moth eye coated GaInP/GaAs/GaInNAs SC

Bibliography

Chapter 6. Conclusions

[38] Sturge, M.D. Optical Absorption of Gallium Arsenide between 0.6 and 2.75 eV. Phys.Rev. 127(1962)3, pp. 768-773.

5.4. AlInP moth eye coated GaInP/GaAs/GaInNAs SC

Chapter 6. Conclusions

5.4. AlInP moth eye coated GaInP/GaAs/GaInNAs SC

Chapter 6. Conclusions

AZUR SPACE Solar Power GmbH, Azur space CPV triple junction solar cell - Type 3C40C (5.5x5.5mm), Cited: 06/14/2015, http://www.azurspace.com/images/pdfs/CPV%20TJ%20Solar%20Cell%203C40C%205.5x5.5mm.pdf.

Composition dependent growth dynamics in molecular beam epitaxy of GaInNAs solar cells

Arto Ahoa,n, Ville Polojärvia, Ville-Markus Korpijärvi, Joel Salmi, Antti Tukianinen, Pekka Laukkanen, Mircea Guina

A R T I C L E I N F O

Article history:
Received 31 January 2014
Available online 21 February 2014

A B S T R A C T

We have investigated the role of the nitrogen content, the growth parameters, and the annealing processes involved in molecular beam epitaxy of GaInNAs solar cells lattice-matched to GaAs. The nitrogen composition was varied between 13% and 5%. The influence of the growth temperature was assessed by performing photoluminescence, atomic force microscopy, X-ray diffraction, reflection high-energy electron diffraction, quantum efficiency and light-based current–voltage measurements. The growth temperature ensuring the best cell parameters was found to be 440 °C. At this temperature we were able to incorporate up to 4% of nitrogen and achieve a good material quality. Further increase of the N composition to 5% led to phase separation. For the lattice matched samples grown within the optimal temperature range, we have identified a clear (1 × 1) surface reconstruction. Using the optimized growth conditions we have demonstrated a GaInNAs p–n solar cell structure containing 4% nitrogen, that exhibited a short-circuit current density as high as 31.8 mA/cm² in respect to the active area illuminated. These measurements have been performed under real sun AM1.5 (~ 1000 W/m²) illumination.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Multi-junction III–V solar cells (MJSCs) with efficiencies above 40% are poised to make a strong impact on the development of concentrated photovoltaic (CPV) systems [1,2]. Solar cells (SC) with efficiency above this level would make CPV systems even more attractive and could accelerate the penetration and the development of more advanced solutions to the market. This goal can be achieved by using MJSCs with 4 or even 5 junctions, i.e. GaInP/GaInAs/Ge, which are currently adopted for the commercial fabrication of III–V SCs. Generally speaking, the synthesis of dilute nitride materials is rather challenging because these alloys are metastable and have a large miscibility gap [8,9]. Therefore, they have to be grown under non-equilibrium conditions to incorporate even small amounts of N. We note here that in order to achieve 1 eV GaInNAs material lattice-matched to GaAs, we would need to incorporate about 3% of N, which is already a high value and can lead to significant defect densities. In particular, the use of dilute nitrides has been hampered by the rather complex defects associated with N incorporation [10] and relatively low growth temperature used in the epitaxy of dilute nitrides [11]. Such defects decrease the carrier lifetimes and diffusion lengths. These effects get more severe when the amount of nitrogen is increased leading to reduced voltages and poor quantum efficiencies [10,12].

1 eV compounds lattice-matched to GaAs is to use dilute nitrides, i.e. GaInNAs [5,6] with an N content of only a few percent. Replacing a small fraction of the As atoms with N induces a strong reduction of the band gap and reduces the lattice constant enabling lattice matching to GaAs [7]. Despite these prospects, achieving a sufficiently high material quality for SC applications of dilute nitrides has remained elusive, at least when it comes to the use of metal–organic chemical vapor deposition (MOCVD), which is currently adopted for the commercial fabrication of III–V SCs.

Generally speaking, the synthesis of dilute nitride materials is rather challenging because these alloys are metastable and have a large miscibility gap [8,9]. Therefore, they have to be grown under non-equilibrium conditions to incorporate even small amounts of N. We note here that in order to achieve 1 eV GaInNAs material lattice-matched to GaAs, we would need to incorporate about 3% of N, which is already a high value and can lead to significant defect densities. In particular, the use of dilute nitrides has been hampered by the rather complex defects associated with N incorporation [10] and relatively low growth temperature used in the epitaxy of dilute nitrides [11]. Such defects decrease the carrier lifetimes and diffusion lengths. These effects get more severe when the amount of nitrogen is increased leading to reduced voltages and poor quantum efficiencies [10,12].
Despite the complexity of GaInNAs material systems, there are means to reduce the number of defects associated with N incorporation. First of all, when it comes to epitaxial techniques used for fabricating dilute nitrides, molecular beam epitaxy (MBE) offers clear advantages over MOCVD, as it avoids issues related to C doping and the use of N-rich precursors within GaNAs/GaInNAs/GaInAs layers on MBE has also been reported to operate at relatively low growth temperatures to avoid phase separation and clustering effects. The most common way of incorporating N in MBE uses a radio frequency (RF) plasma source to crack high purity N2 molecules into N atoms. The down side of using RF plasma source is that it simultaneously generates N ions that cause additional defects during the epitaxial growth. Fortunately, in plasma assisted molecular beam epitaxy (PAMBE), the detrimental effect of the ions can be reduced by optimizing the design of the RF plasma source and using ion deflecting electric or magnetic fields [13–15]. The use of surfactants [15], post growth annealing [16] and the high quality of the epitaxy may be due to a combination of factors. Fortunately, in plasma assisted molecular beam epitaxy (PAMBE), the detrimental effect of the ions can be reduced by optimizing the design of the RF plasma source and using ion deflecting electric or magnetic fields [13–15]. The use of surfactants [15], post growth annealing [16] and the high quality of the epitaxy may be due to a combination of factors.

2. Description of structures and experiments
2.1. Growth and processing
The GaInNAs heterostructures were grown on n-GaAs(1 0 0) substrates and p-GaAs(1 0 0) substrates using a Veeco Gen20 solid source MBE equipped with a Veeco Unis-Buli RF plasma source for nitrogen activation. For all samples, we used a 300W beam equivalent pressure (BEP) ratio of 30; this ratio was shown to result in high optical quality GaInNAs [20]. For the GaInNAs experiments, the In compositions were calibrated using GaAs/Ga0.66In0.34As superlattice structures comprised of four periods of 60-nm-thick GaAs and 30-nm-thick GaNAs layers grown on GaAs(1 0 0) substrates. The In compositions of GaInAs were analyzed from high-resolution x-ray diffraction (XRD) rocking curves using dynamical diffraction theory and commercial fitting algorithms. The GaNAs composition was varied by changing the plasma power between 150 W and 300 W, and the N2 flow between 0.15 sccm and 0.53 sccm. This parameter range corresponds to a variation of the In/Ga ratio from zero to 5%. After growth, the samples were cooled down to the high temperature range (i.e. T = 480 °C) the high quality two-dimensional (2D) growth is mainly limited by the phase separation of the GaInNAs crystal to InAs and GaN rich phases [18]. It has also been proposed that the phase separation takes place because the N segregation to the surface leads to enhanced phase separation, which eventually leads to a three dimensional growth mode and poor interfacial [21–23]. After growth, the defect density can be reduced by annealing the samples at high temperatures [16]. The main effects of annealing are related to a change of the neighboring configuration of atoms in the crystal lattice. Essentially, the amount of Ga–N bonds is reduced compared to In–N bonds [16,28] while there is also a substantial decrease of the point defects, leading to a decrease [15,30].

The temperature related processes involved in the epitaxy of dilute nitride quantum wells (QW) have been thoroughly studied [11,21–23]. However, in most of the published reports, the GaInNAs layers have been compressively strained or the studies have been carried out only for a specific N composition. Much less is known about the composition dependent growth dynamics in thick GaInNAs layers lattice matched to GaNAs or about the effect of the growth processes on the operation of solar cells using such GaInNAs heterostructures. In this paper, we report a study focused on improving the understanding of the relation between the MBE growth temperature and the quality of GaInNAs solar cells with various N contents in connection with annealing processes. Finally, we also incorporated the growth temperature within GaN/ GaInNAs/GaInAs solar cell with a AlInP window to show that the growth conditions we have devised are suitable for the fabrication of high performance solar cells.

2.2. Annealing
The GaInNAs heterostructures were grown on n-GaAs(1 0 0) substrates and p-GaAs(1 0 0) substrates using a Veeco Gen20 solid source MBE equipped with a Veeco Unis-Buli RF plasma source for nitrogen activation. For all samples, we used a 300W beam equivalent pressure (BEP) ratio of 30; this ratio was shown to result in high optical quality GaInNAs [20]. For the GaInNAs experiments, the In compositions were calibrated using GaAs/Ga0.66In0.34As superlattice structures comprised of four periods of 60-nm-thick GaAs and 30-nm-thick GaNAs layers grown on GaAs(1 0 0) substrates. The In compositions of GaInAs were analyzed from high-resolution x-ray diffraction (XRD) rocking curves using dynamical diffraction theory and commercial fitting algorithms. The GaNAs composition was varied by changing the plasma power between 150 W and 300 W, and the N2 flow between 0.15 sccm and 0.53 sccm. This parameter range corresponds to a variation of the In/Ga ratio from zero to 5%. After growth, the samples were cooled down to the high temperature range (i.e. T = 480 °C) the high quality two-dimensional (2D) growth is mainly limited by the phase separation of the GaInNAs crystal to InAs and GaN rich phases [18]. It has also been proposed that the phase separation takes place because the N segregation to the surface leads to enhanced phase separation, which eventually leads to a three dimensional growth mode and poor interfacial [21–23]. After growth, the defect density can be reduced by annealing the samples at high temperatures [16]. The main effects of annealing are related to a change of the neighboring configuration of atoms in the crystal lattice. Essentially, the amount of Ga–N bonds is reduced compared to In–N bonds [16,28] while there is also a substantial decrease of the point defects, leading to a decrease [15,30].

The temperature related processes involved in the epitaxy of dilute nitride quantum wells (QW) have been thoroughly studied [11,21–23]. However, in most of the published reports, the GaInNAs layers have been compressively strained or the studies have been carried out only for a specific N composition. Much less is known about the composition dependent growth dynamics in thick GaInNAs layers lattice matched to GaNAs or about the effect of the growth processes on the operation of solar cells using such GaInNAs heterostructures. In this paper, we report a study focused on improving the understanding of the relation between the MBE growth temperature and the quality of GaInNAs solar cells with various N contents in connection with annealing processes. Finally, we also incorporated the growth temperature within GaN/ GaInNAs/GaInAs solar cell with a AlInP window to show that the growth conditions we have devised are suitable for the fabrication of high performance solar cells.
increases with the growth temperature for constant N flux leading to slight decrease of the lattice constant and band gap [29]. After growth, these p-i-n samples were thermally annealed at 800 °C and electrical contacts were processed using shadow masks. We used Ni/Ge/Au for n-side contact grid metallization and Ti/Pt/Au on the p-side. The solar cell area was 0.157 cm² with a metal coverage of 25% and an active area of 0.117 cm². For these tests the top surface was not antireflection coated.

The third set of samples was fabricated taking into account the identified optimal growth parameters and was used to assess the performance of more realistic GaInNAs-based solar cells. To this end, we fabricated single junction and a triple junction solar cell and a GaInP/GaInNAs MJSC, both grown on p-GaAs(1 0 0). The N composition for the bottom GaInNAs cells was 4% and the growth temperature was 440 °C. A schematic structure of the MJSC is also shown in Fig. 3. After the growth, the optimized SCs were processed and coated by plasma-enhanced chemical vapor deposition. We used a SiN/SiO₂ antireflection (AR) coating designed to have minimum reflectivity at 1000 nm.

2.2 Characterization

The surface structure of the bulk GaInNAs samples incorporating 3% N was studied in-situ by reflection high energy electron diffraction (RHEED). After growth, the first set of samples with 3% and 5% N were studied by XRD and atomic force microscopy (AFM). The p-n interfaces were studied by photoluminescence (PL), cone angle resolved PL (TREPL), and XRD. For the characterization of the p-n interfaces, we measured light-based current-voltage (I-V) characteristics of the solar cells fabricated with the layered structures. The measured current density was expressed in terms of the density of injected carriers assuming that all the crystallographic changes would arise from the variation of the Tg. For these samples, we observed that GaInNAs p-i-n structures were shifted from compressive to tensile side when the Tg was increased from 375 °C to 465 °C (see Fig. 2). This corresponds to an absolute compositional change of 0.13 percentage points for N or ~10 percentage points for In, leading to an approx. ±0.04% maximum lattice mismatch. The Pendellösung oscillations were observed to be stronger at low growth temperatures indicating sharper interfaces and better crystal quality. The observations based on XRD measurements are supported by in-situ RHEED patterns measured during the crystal growth. As shown in Fig. 1, the RHEED pattern for the lattice matched bulk samples with 3% N exhibited a clear (1 3) surface reconstruction, which was the clearest at Tg = 450 °C but became spotty when the temperature was increased above this point. This was the only reconstruction observed during the growth of GaInNAs. The (1 3) reconstruction is interesting because usually it is not seen on the III–As(1 0 0) binary surfaces but has been previously observed for GaAs/AlGaAs structures (second set).

3. Experimental results and discussions

This chapter presents the structural, optical, and electrical characteristics of the GaInNAs crystals. Section 3.1 is concerned with the structural characterization of bulk heterostructures (first set of samples) and the optical characteristics p-n GaInNAs structures (second set). The performance of processed p-i-n SCs are presented in Section 3.2. The results described in Sections 3.1 and 3.2 are discussed and analyzed in detail in Section 3.3.

The third set of samples was fabricated taking into account the identified optimal growth parameters and was used to assess the performance of more realistic GaInNAs-based solar cells. To this end, we fabricated a single junction and a triple junction solar cell and a GaInP/GaInNAs MJSC, both grown on p-GaAs(1 0 0). The N composition for the bottom GaInNAs cells was 4% and the growth temperature was 440 °C. A schematic structure of the MJSC is also shown in Fig. 3. After the growth, the optimized SCs were processed and coated by plasma-enhanced chemical vapor deposition. We used a SiN/SiO₂ antireflection (AR) coating designed to have minimum reflectivity at 1000 nm.
growth at ~450 °C [30]. Furthermore, we have used AFM for the surface structure and roughness analysis. We measured AFM in tapping mode and the presented roughness values are arithmetic averages. These measurements were done for samples where GaInNAs was the top-most layer. The results are summarized in Fig. 4. Clear minima of the surface roughness were detected near 440 °C for the samples with 3% N. For higher N composition and higher Tg the surface roughness increases; in fact we observed formation of surface pits elongated along the [0–1–1] as revealed in Fig. 4. This leads to a conclusion that higher nitrogen content shifts the 2D growth temperature window to lower temperatures.

The optical quality of the as-grown and thermally annealed GaInNAs p-i-n structures was assessed by measuring the PL properties. The room temperature PL and carrier lifetime improved remarkably with annealing for the entire N composition range between 1% and 3% [31]. Annealing also caused a slight blue shift of the photoluminescence emission peak of GaInNAs. The blue shift increases with Tg, being 10 meV for Tg=400 °C and reaching 40 meV when Tg approaches 500 °C [28]. The blue shift is caused by changes in the short range ordering of GaInNAs crystal during thermal annealing. The changes in the short range ordering are rapid with annealing but further changes take place after the atomic rearrangement [29]. For the annealed samples, the band-gaps of the GaInNAs layers with N compositions of 1% and 3% were approximately 1.25 eV, 1.14 eV and 1.06 eV, respectively. As it can be seen in Fig. 5, the p-i-n samples grown at 415 °C have the highest PL intensities for all compositions. The PL intensity dropped rapidly on both sides of 415 °C. Moreover, higher Tg resulted in longer PL wavelengths for the annealed samples. For samples with N fluxes targeting nominal composition of 3%, the PL wavelength increased linearly from 395 °C to 410 °C. Since the In incorporation in MBE does not depend on the Tg within the studied temperature range [32] and since the In flux was fixed during the experiment, the red-shift of the PL wavelength is associated with an increase of the N concentration with increasing the Tg. Using the band anticrossing model [33] we have estimated the change of N-composition corresponding to this wavelength shift to be close to ~0.42 meV percentage points which is in a good agreement with the XRD analysis that provided an estimation of 0.33 percentage points for N increase (see previous section). This phenomenon has also been confirmed by other samples and measurement methods [30].

Furthermore, we performed low temperature PL (LTPL) measurements at 30 K for the p-i-n samples with 3% N; these measurements are summarized in Fig. 6. We found that the PL peak splits into two components and the split is dependent on the Tg [33]. For compositions below 3% we did not observe any clear evidence of spectral splitting in this Tg range. The linewidths of the PL peaks were also dependent on the Tg; they were broadened at the low Tg and the high Tg ranges. At high Tg, the PL lines broadened due to spectral splitting while the individual peaks remained quite narrow. The splitting of the spectrum is considered to be an indication of partial phase separation of GaInNAs into In and N rich areas. The peak splitting observed for samples grown at high Tg is in a good agreement with previously observed peak splitting of 40 meV for phase separated compressive Ga0.92In0.08N0.03As QW [34]. In our case, the splitting is between 6 meV and 66 meV (70 nm) depending on the Tg. Phase separation growth at ~450 °C [30]. Furthermore, we have used AFM for the surface structure and roughness analysis. We measured AFM in tapping mode and the presented roughness values are arithmetic averages. These measurements were done for samples where GaInNAs was the top-most layer. The results are summarized in Fig. 4. Clear minima of the surface roughness were detected near 440 °C for the samples with 3% N. For higher N composition and higher Tg the surface roughness increases; in fact we observed formation of surface pits elongated along the [0–1–1] as revealed in Fig. 4. This leads to a conclusion that higher nitrogen content shifts the 2D growth temperature window to lower temperatures.

The optical quality of the as-grown and thermally annealed GaInNAs p-i-n structures was assessed by measuring the PL properties. The room temperature PL and carrier lifetime improved remarkably with annealing for the entire N composition range between 1% and 3% [31]. Annealing also caused a slight blue shift of the photoluminescence emission peak of GaInNAs. The blue shift increases with Tg, being 10 meV for Tg=400 °C and reaching 40 meV when Tg approaches 500 °C [28]. The blue shift is caused by changes in the short range ordering of GaInNAs crystal during thermal annealing. The changes in the short range ordering are rapid with annealing but further changes take place after the atomic rearrangement [29]. For the annealed samples, the band-gaps of the GaInNAs layers with N compositions of 1% and 3% were approximately 1.25 eV, 1.14 eV and 1.06 eV, respectively. As it can be seen in Fig. 5, the p-i-n samples grown at 415 °C have the highest PL intensities for all compositions. The PL intensity dropped rapidly on both sides of 415 °C. Moreover, higher Tg resulted in longer PL wavelengths for the annealed samples. For samples with N fluxes targeting nominal composition of 3%, the PL wavelength increased linearly from 395 °C to 410 °C. Since the In incorporation in MBE does not depend on the Tg within the studied temperature range [32] and since the In flux was fixed during the experiment, the red-shift of the PL wavelength is associated with an increase of the N concentration with increasing the Tg. Using the band anticrossing model [33] we have estimated the change of N-composition corresponding to this wavelength shift to be close to ~0.42 meV percentage points which is in a good agreement with the XRD analysis that provided an estimation of 0.33 percentage points for N increase (see previous section). This phenomenon has also been confirmed by other samples and measurement methods [30].

Furthermore, we performed low temperature PL (LTPL) measurements at 30 K for the p-i-n samples with 3% N; these measurements are summarized in Fig. 6. We found that the PL peak splits into two components and the split is dependent on the Tg [33]. For compositions below 3% we did not observe any clear evidence of spectral splitting in this Tg range. The linewidths of the PL peaks were also dependent on the Tg; they were broadened at the low Tg and the high Tg ranges. At high Tg, the PL lines broadened due to spectral splitting while the individual peaks remained quite narrow. The splitting of the spectrum is considered to be an indication of partial phase separation of GaInNAs into In and N rich areas. The peak splitting observed for samples grown at high Tg is in a good agreement with previously observed peak splitting of 40 meV for phase separated compressive Ga0.92In0.08N0.03As QW [34]. In our case, the splitting is between 6 meV and 66 meV (70 nm) depending on the Tg. Phase separation growth at ~450 °C [30]. Furthermore, we have used AFM for the surface structure and roughness analysis. We measured AFM in tapping mode and the presented roughness values are arithmetic averages. These measurements were done for samples where GaInNAs was the top-most layer. The results are summarized in Fig. 4. Clear minima of the surface roughness were detected near 440 °C for the samples with 3% N. For higher N composition and higher Tg the surface roughness increases; in fact we observed formation of surface pits elongated along the [0–1–1] as revealed in Fig. 4. This leads to a conclusion that higher nitrogen content shifts the 2D growth temperature window to lower temperatures.

The optical quality of the as-grown and thermally annealed GaInNAs p-i-n structures was assessed by measuring the PL properties. The room temperature PL and carrier lifetime improved remarkably with annealing for the entire N composition range between 1% and 3% [31]. Annealing also caused a slight blue shift of the photoluminescence emission peak of GaInNAs. The blue shift increases with Tg, being 10 meV for Tg=400 °C and reaching 40 meV when Tg approaches 500 °C [28]. The blue shift is caused by changes in the short range ordering of GaInNAs crystal during thermal annealing. The changes in the short range ordering are rapid with annealing but further changes take place after the atomic rearrangement [29]. For the annealed samples, the band-gaps of the GaInNAs layers with N compositions of 1% and 3% were approximately 1.25 eV, 1.14 eV and 1.06 eV, respectively. As it can be seen in Fig. 5, the p-i-n samples grown at 415 °C have the highest PL intensities for all compositions. The PL intensity dropped rapidly on both sides of 415 °C. Moreover, higher Tg resulted in longer PL wavelengths for the annealed samples. For samples with N fluxes targeting nominal composition of 3%, the PL wavelength increased linearly from 395 °C to 410 °C. Since the In incorporation in MBE does not depend on the Tg within the studied temperature range [32] and since the In flux was fixed during the experiment, the red-shift of the PL wavelength is associated with an increase of the N concentration with increasing the Tg. Using the band anticrossing model [33] we have estimated the change of N-composition corresponding to this wavelength shift to be close to ~0.42 meV percentage points which is in a good agreement with the XRD analysis that provided an estimation of 0.33 percentage points for N increase (see previous section). This phenomenon has also been confirmed by other samples and measurement methods [30].

Furthermore, we performed low temperature PL (LTPL) measurements at 30 K for the p-i-n samples with 3% N; these measurements are summarized in Fig. 6. We found that the PL peak splits into two components and the split is dependent on the Tg [33]. For compositions below 3% we did not observe any clear evidence of spectral splitting in this Tg range. The linewidths of the PL peaks were also dependent on the Tg; they were broadened at the low Tg and the high Tg ranges. At high Tg, the PL lines broadened due to spectral splitting while the individual peaks remained quite narrow. The splitting of the spectrum is considered to be an indication of partial phase separation of GaInNAs into In and N rich areas. The peak splitting observed for samples grown at high Tg is in a good agreement with previously observed peak splitting of 40 meV for phase separated compressive Ga0.92In0.08N0.03As QW [34]. In our case, the splitting is between 6 meV and 66 meV (70 nm) depending on the Tg. Phase separation
could also explain why the compositional changes of N deter-
m定了 by XRD and PL measurements differ by about 0.09 ... to the web version of
this article.)
3.2. Properties of the GaInNAs solar cells

3.2.1. The general effect of N composition and annealing on SC performance

For the processed p-i-n structures (second set of samples), we performed UV measurements with a Xenon simulator and 900 nm high-pass filter to reveal how thermal annealing and nitrogen incorporation affect the cell parameters. In general, with differential comparison of the cells, the annealing has a drastic effect on the open circuit voltage (Voc). For optimized parameters, Voc was roughly doubled. After the annealing, the band-gap-voltage offset (Woc−Wfi−Voc) was 0.58 V which is only 0.18 V higher than the typical experimental value (0.4 V) for high quality SCs at one sun [35]. Typical Voc values for GaInNAs SC are close to 0.6 V [35]. Annealing improved the fill factors of the SCs remarkably—an increase of about 20% was observed for all samples. On the other hand, increasing the nitrogen content from 1% to 3% reduced the fill factors of annealed samples from 74% to 68%. Based on dark-voltage analysis, the improvements in fill factor and Voc of 1% GaInNAs SCs are due to a decrease of the dark current by about 10–15 times, an increase of the shunt resistance from 10–100 kΩ to 1–5 MΩ, and a small improvement of the series resistance. By far, the largest effect on Voc, Jsc, and Fill factor improvements at one sun is the decrease of the dark current.

3.2.2. The effect of the growth temperature on LIV characteristics, EQE and the annealing time required to achieve maximum power

For all compositions the short circuit current (Isc) of annealed samples increased up to Tg = 440 °C and then saturated. We found that Isc for annealed samples grown at 440 °C was about doubled when compared to samples grown at 355 °C; this was valid for the nominal N compositions 1%, 2% and 3% as it can be seen in Fig. 7(a), the PL wavelength for a certain nominal composition of N increases with Tg towards to increased N incorporation. Accordingly, we observe the nominal N composition and Tg for annealed p-i-n SCs as shown in Fig. 7(b), except for the lowest Tg of 395 °C where Isc drops rapidly and highest Tg of 490 °C where the Isc growth saturates.

The Voc results as a function of the growth temperature are presented in Fig. 8. As-grown samples with less than 2% N showed a maximum Voc when grown at the highest Tg. As seen in Fig. 8, the Voc for not-annealed samples grown at low Tg is not as strongly dependent on the N composition as it is for the samples grown at higher Tg. The Voc for the not-annealed samples with 3% N degraded with increasing Tg. The Voc is higher for growth temperatures between 395 °C and 440 °C. Moreover, SCs grown at high Tg have clearly lower Voc compared to samples grown at temperatures below 450 °C.

The maximum output powers (Pmax) of the SCs as a function of Tg and annealing time are summarized in Fig. 9(a) and (b). The main findings of this analysis are: (i) the Pmax was found to be dependent on the Tg and related to annealing time. Fig. 9(b) reveals that the optimized annealing time needed to achieve maximum power is 1000 nm.

The main findings of this analysis are: (i) the Pmax was found to be dependent on the Tg and related to annealing time. Fig. 9(b) reveals that the optimized annealing time needed to achieve maximum power is 1000 nm.

The main findings of this analysis are: (i) the Pmax was found to be dependent on the Tg and related to annealing time. Fig. 9(b) reveals that the optimized annealing time needed to achieve maximum power is 1000 nm.
the whole measured spectral range starting from 800 nm. Fig. 10 (b) also shows the dependence of EQE for 3% N SCs grown at different temperatures. EQE increased rapidly when T_{g} was increased up to 440 °C and decreased after that. For 1% and 2% N compositions, we did not detect a significant drop of EQE at high T_{g} and the EQE remained almost constant in T_{g} range from 415 °C to 490 °C. In general, the EQEs were quite low. This is understandable as the thickness of the light absorbing undoped GaInNAs layer was only 320 nm and no antireflection coating was used. Moreover, the test samples did not have any back-surface field (BSF) or window layers that would also have further improved the EQE [36]. Ultimately we would also expect some decrease of EQE due to detrimental effects related to N incorporation [10].

3.3. Combined analysis of structural, optical, and electrical measurements

For the as-grown samples with less than 2% N, the V_{oc} increased with T_{g}, which can be explained by fewer point defects generated during the growth. The drastic increase of V_{oc} and the decrease of dark currents for annealed samples are directly related to the amelioration or transformations of point defects or defect complexes in GaInNAs [10]. The V_{oc} difference between the as-grown samples with different nitrogen composition also gets smaller when the T_{g} is lowered. This presumably indicates that not only nitrogen-related defects are limiting the V_{oc} and that unusual Ga-interstitial formation [37] or As antisites should be also taken into account. The reason for this behavior could be the high group V flux and the lack of thermal energy for the surface migration of group III atoms. Poor room temperature PL signal, broadening of LTPL peak, rapid decrease of I_L and decrease of EQE for the samples grown at lowest T_{g} are all related to the increase of the defect density.

Generally, the increase of I_L with higher growth temperatures can be explained by the shift of the absorption edge to longer wavelengths, which is revealed by PL and EQE measurements. Although the EQE decreases on both ends of the T_{g} range (see Fig. 10(b)), for samples with 3% N the efficiency decrease at highest T_{g} compensated the effect of band gap reduction (due to increased N incorporation) leading to saturation of I_L. This behaviour has been confirmed by calculated I_L from the EQE data. The reason for lower EQE for SC grown at T_{g} of 490 °C is considered to be partial phase separation. The onset of phase separation is clearly seen as increased surface roughness detected by spotly RHEED during the growth and ex-situ AFM measurements. No phase separation could be detected for the 1% and 2% N SCs even at high T_{g}; accordingly, we did not observe a drop in EQE and peak broadening of the LTPL signal. This is indeed expected when considering that the T_{g} limit for the phase separation shifts to higher temperatures when the N composition is decreased [9]. The effect of high T_{g} in annealed SCs is still seen as lower V_{oc} for all compositions from 1 to 3%. For SCs with 1% and 2% N, we assume that lower V_{oc} of samples grown at high T_{g} are caused by the short range ordering towards Ga–N and In–As rich configuration [38], which finally leads to observable phase separation in samples with higher N content. This phenomenon leads to a need to lower the T_{g} for the GaInNAs SCs with high N compositions.

The optimal annealing time for maximizing the P_{max} was the shortest within the growth temperature range of 415 °C to 440 °C.

Generally, the increase of I_L with higher growth temperatures can be explained by the shift of the absorption edge to longer wavelengths, which is revealed by PL and EQE measurements. Although the EQE decreases on both ends of the T_{g} range (see Fig. 10(b)), for samples with 3% N the efficiency decrease at highest T_{g} compensated the effect of band gap reduction (due to increased N incorporation) leading to saturation of I_L. This behaviour has been confirmed by calculated I_L from the EQE data. The reason for lower EQE for SC grown at T_{g} of 490 °C is considered to be partial phase separation. The onset of phase separation is clearly seen as increased surface roughness detected by spotly RHEED during the growth and ex-situ AFM measurements. No phase separation could be detected for the 1% and 2% N SCs even at high T_{g}; accordingly, we did not observe a drop in EQE and peak broadening of the LTPL signal. This is indeed expected when considering that the T_{g} limit for the phase separation shifts to higher temperatures when the N composition is decreased [9]. The effect of high T_{g} in annealed SCs is still seen as lower V_{oc} for all compositions from 1 to 3%. For SCs with 1% and 2% N, we assume that lower V_{oc} of samples grown at high T_{g} are caused by the short range ordering towards Ga–N and In–As rich configuration [38], which finally leads to observable phase separation in samples with higher N content. This phenomenon leads to a need to lower the T_{g} for the GaInNAs SCs with high N compositions.

The optimal annealing time for maximizing the P_{max} was the shortest within the growth temperature range of 415 °C to 440 °C.
Phase separated quantum dot (QD) like areas are far away from each other compared to low \(T_g \) point defects resulting in the need for a longer annealing. Similar behavior has been observed for GaInNAs/GaAs structures [38]. The QD-like areas lower the effective band gap [23] resulting in lower \(V_{oc} \) and \(I_{sc} \). On the other hand, the Ga-N bond rich material leads to reduced bandgap, since it has been addressed to have high recombination currents [39]. Therefore, we conclude that the 415–440 °C is the growth temperature window where the defect populations in the GaInNAs crystal can be efficiently suppressed by annealing resulting in highest quality GaInNAs crystal.

3.4. The performance of growth-optimized GaInNAs solar cells

For GaInP/GaAs/GaInNAs multi junction SC, the thickness of i-GaInNAs and its band gap has to be optimized in order to achieve about 34 mA/cm\(^2\) current matching at AM 1.5 G. Based on the photon flux at AM1.5G illumination, the average EQE of the junction with \(E_g=0.89 \) eV has to be only –70% instead of 100% for \(E_g=1.04 \) eV for current matching. As the growth of GaInNAs with SS N is already challenging we propose that the optimal N concentration SCs should be close to 4 G. Based on this target and growth temperature optimization presented in this paper, we prepared an AR-coated single p-i-n structure on p-GaAs(1 0 0) with 1300 nm thick undoped GaInNAs region and 4 °N. The LIV curve shown in Fig. 10(a) reveals promising short-circuit current densities (\(J_{sc} \)). When referred to the total illuminated area, the \(J_{sc-total} \) was 25 mA/cm\(^2\). The \(J_{sc-total} \) in respect to the metal-less effective area was 33.8 mA/cm\(^2\). The measurements were performed at real sun illumination level of 1004 W/m\(^2\) and AM1.52 (Fig. 11). The \(V_{oc} \) and fill factor values were 0.37 V and 68%, respectively. The band-gap-voltage offset for this SC was only 0.55 V while for thin p-i-n structures it was 0.58 V (see Section 3.2.1). The band-gap of GaInNAs for the junction edge is well below the bandgap observed in EQE characteristics (see Fig. 11(b)) and it was -0.01 eV. When calculated from EQE, GaInNAs p-i-n produces a \(J_{sc} \) of 9 mA/cm\(^2\) for spectrum filtered by GaAs (1.42 eV) and 32 mA/cm\(^2\) with the whole AM1.5G illumination spectrum.

Finally, the optimized GaInNAs sub-junction was embedded into a SiN(Si)/Si AR-coated GaInP/GaAs/GaInNAs triple junction SC in which AlInP and GaInP (\(E_g=1.18 \) eV) were lattice-matched to GaAs. The SC was grown at 470 W and am3.2 real sun illumination [41], produced a \(J_{sc-total} \) of 8.4 mA/cm\(^2\), a fill factor of 82%, and an efficiency of 2.6% (see Fig. 12 for details). If the power level is normalized to 1000 W, it would give a \(J_{sc-total} \) of 30.3 mA/cm\(^2\), which correlates well with the 31% current calculated from EQE. Even though MBE was current limited by GaInNAs SC to 10 mA/cm\(^2\), we were able to integrate the GaInNAs SC to triple junction device without sacrificing the GaInNAs SC current generation. We estimate that the \(J_{sc} \) of single and triple junction SCs were limited by the background doping level of the dilute nitride i-region (estimated by Hall effect measurements to be \(\sim 10^{16} \) cm\(^{-3}\)), the non-ideal AR-coating reflectivity (≤10%), and partly by the charge carrier lifetimes (\(\sim 0.5 \) ns). For current matching, the background doping level for GaInNAs i-region has to be in the range of \(\sim 10^{17} \text{ cm}^{-3} \) and charge carrier lifetime needs to be over 0.5 ns [42]. We demonstrate these parameters as feasible for MBE technology.

4. Conclusion

We have performed a thorough study to identify the effects of growth temperature and N composition on the quality of lattice matched GaInNAs solar cells. We observed that the optimal \(T_g \) window is 415–440 °C and that, for samples grown at 395 °C, the high \(T_g \) was strongly affected by low temperature point defects. Another result, however, is the opposite. The need for longer annealing is presumably caused by partial phase separation and the increase in the number of Ga-N and In-As bonds in GaInNAs grown at high \(T_g \) because of the reduced point defect density. The result, however, is the opposite. The need for longer annealing is presumably caused by partial phase separation and the increase in the number of Ga-N and In-As bonds in GaInNAs grown at high \(T_g \).

The need for longer annealing time, for samples grown at 395 °C, can be explained by a rapid increase of low temperature point defects. Assuming that the optimal annealing time is only proportional to the number of defect species, it should decrease for samples grown at high \(T_g \) because of the reduced point defect density. The result, however, is the opposite. The need for longer annealing is presumably caused by partial phase separation and the increase in the number of Ga-N and In-As bonds in GaInNAs grown at high \(T_g \).
post growth annealing is needed for all compositions in order to improve material quality. This growth temperature window is the best compromise to reduce the density of point defects associated with vacancy formation. The lattice parameters at high growth temperatures, as well as short range ordering effects may also affect the point defect density. Tg must be kept at low enough levels to limit the SC current generation. These defects are most likely not originated from N since the V_d difference between the samples is very small. Due to this reason, a high growth temperature, high Tg crystal ordering and phase separation clusters limit the V_d and IQE at high N compositions. At high Tg the surface roughness increases and phase separation clusters limit the therefore planar growth of crystal with 5% N is difficult even at 440 °C. It is clear that it would be challenging to grow the top junctions on such material, especially if a realistic lower growth temperature is used. We believe that a realistic simulation of lattice-matched GaNAs junctions to be incorporated in GaInP/GaAs/GaInNAs solar cell further work would be directed towards optimization of the triple junction solar cell design, related AR coating, and contacts technology.

Acknowledgments

The authors would like to thank Juha Tommila, Andreas Schramm, Alexander Gubanov, Wenxin Zhang, Miki Tavast, Pekka Hynninen, Juha Salmi, and Jukka Kolehmainen for their helpful discussions and providing material samples. Financial support was obtained from Finnish Funding Agency for Technology and Innovation.—TEKES (project 40120/09 Solar III-V), County Administrative Board of Ostrobothnia, Finnish Funding Agency for Technology and Innovation, Emil Aaltonen Foundation, and Walttö Foundation.

References

© 2014 American Institute of Physics. Reproduced with permission.
I. INTRODUCTION

Plasma-assisted molecular beam epitaxy (PAMBE) is an attractive technique for growing III-V-N alloys and has been used for growing a wide range of heterostructures. In particular, the MBE growth has led to state-of-the-art demonstrations of GaNAs-based solar cells. However, the N incorporation processes using RF plasma-assisted MBE have been presented, but they are not practical on a daily basis, since they do not predict the dissociation efficiency of N as a function of the RF power (P RF). In this paper, we introduce a Maxwell-Boltzmann electron energy distribution based rate equation predicting the N composition as a function of PAMBE parameters, namely, the N flow and RF power, and group III growth rate.

II. THEORY AND MODEL

In an RF plasma source, the N2 molecules are bombarded with RF powered electrons; the RF oscillation mainly energizes the electrons and leaves the ions unperturbed due to a large mass to charge ratio. The electron oscillation intensity is increased when the RF power is increased leading eventually to excitation, dissociation, and ionization of N2 species. RF plasma activated N incorporates to the crystal mainly in the form of atomic N, but also the other plasma activated N species contribute to the growth. In general, the N RF plasma consists of electrons and the following N species (ordered descending in terms of their amount): neutral molecules (N2), excited molecule radicals, neutral atoms, molecular ions, and atomic ions, with formation energies ~6–8, 9.7, 15.8, and 14.5 eV, respectively. To establish a model for the incorporation of N, we first need to estimate the electron energy distribution and the average energy of the electrons in nitrogen plasma. The electrons are approximated to be nearly free and to move in a loop trajectory confined into a symmetric volume V L with a loop cross-section A L and a loop length L e. The plasma electrons are confined by a time variable magnetic field induced by a solenoid coil of the plasma source and the strength of the field is dependent on the intensity of the transmitted RF power (P RF). The average free electron energy E e can be expressed as:

\[
E_e = \frac{E_{\text{RF-plasma}}}{n_e V_L} = kT_e,
\]

where n e is the free electron density, E RF-plasma is the time-averaged total transmitted RF energy, T e is the average electron temperature, and k is the Boltzmann constant. If we assume the plasma loop as a conductor, where the electrons carry the current with mobility μ e, we can estimate n e from the plasma resistance:

\[
R_p = \frac{L_e}{en_e \mu_e A_L},
\]

where \(R_p \) is the Boltzmann electron energy distribution based rate equation predicting the N composition as a function of PAMBE parameters, namely, the N flow and RF power, and group III growth rate.
where we define \(C(P_p, T) \) as an effective electron confinement factor dependent on \(P_p \) and RF oscillation period \(T \). In the case of low pressure plasma, a collisionless plasma approximation can be used and therefore the energy distribution of electrons is assumed to follow a Maxwell-Boltzmann distribution, otherwise electrons follow a Drudevsteyn distribution. In our case, the pressure of the plasma system is low and therefore it is justified to use Maxwell-Boltzmann distribution for the modelling.\(^{16}\) The dissociation rate \(R_d \) of the molecules becomes\(^{16}\)

\[
R_d = N_d\delta\left\{\frac{8kT_m}{\pi m}\right\}^{1/2} \frac{A_d}{N_m}. \tag{4}\]

Then by using Eq. (3), we get

\[
R_d = N_d\delta\left\{\frac{8kT_m}{\pi m}\right\}^{1/2} \frac{A_d}{N_m} \frac{e^{\frac{E_d}{kT}}}{\mu R_Rp} \tag{5}\]

where \(\delta \) is the absorption cross section for inelastic electron collision processes in \(N_2, N_2 \) is the density of nitrogen molecules, and \(E_d \) is the activation energy for \(N_2 \) dissociation. \(N_d \) can be solved from the ideal gas law

\[
p_{\text{O}_2}V = N_dkT_m/2. \tag{6}\]

and the Knudsen equation\(^{19}\)

\[
dN/dt = \lambda(p_{\text{O}_2}) - \lambda(p_{\text{N}_2}) \frac{N_{\text{N}_2}}{2\pi m V^2} - \frac{N_{\text{N}_2}}{2\pi m V^2} \tag{7}\]

where \(V \) is the plasma source volume, \(p_{\text{O}_2} \) is the plasma chamber equilibrium pressure, \(p_{\text{N}_2} \) is MBE system pressure, and \(A \) is the plasma source aperture area; here, we assume that

\[
p_{\text{O}_2} = p_{\text{N}_2} = V = n = v_m. \tag{8}\]

where \(n \) is the concentration of \(N_2 \) molecules in moles and \(v_m \) is the molar volume \((22.4 \, \text{liters/mole})\). By differentiating Eq. (8) with respect to time, a relation between the molecular flows \(F(\text{scm}) \) and \(\text{dz} \) is found

\[
\frac{dN}{dt} = \frac{F}{V} \frac{\text{dz}}{60\text{min}/\text{m}^3} \tag{9}\]

resulting in

\[
\frac{dN}{dt} = \frac{F}{60\text{min}/\text{m}^3} \tag{10}\]

where \(N_o \) is the Avagadro constant. Next, we combine Eqs. (7) and (10) yielding

\[
N_o = \frac{F(\text{scm}) \times N_o \times V}{60\text{min}/\text{m}^3 \times A \times V \times kT_m} \frac{N_o}{2\pi m V^2} \tag{11}\]

From Eqs. (5) and (11), we obtain

\[
R_d = F(\text{scm}) \times V \times \left(\frac{8kT_m}{\pi m}\right)^{1/2} \frac{e^{\frac{E_d}{kT}}}{\mu R_Rp} \tag{12}\]

where \(E_d \) is the energy transfer efficiency.

Next, we need to link the \(R_d \) and \(P_p \) to the system primary resistance \(R_p \) and \(P_{\text{RF}} \). The changes in the \(R_d \) as a function of \(P_{\text{RF}} \) and \(F \) can be estimated from the primary circuit, and the changes in the system primary resistance \(R_p \) is directly related to the power transferred to the plasma.\(^{20}\) Here, we use the plasma transformer formalism for the estimation of \(R_p \).\(^{21}\) In this model, the primary coil has \(n \) turns and the plasma itself can be modeled as a single turn coil. In an ideal transformer, where the plasma loop is modeled with a single loop coil, \(R_p \) is seen on the primary circuit as a transformed resistance\(^{21}\)

\[
R_p = n^2 R_d. \tag{13}\]

We therefore get

\[
R_d = R_t = n^2 R_p. \tag{14}\]

where \(R_t \) is the resistance that simulates the RF matcher and system losses. \(P_{\text{RF}} \) can also be estimated from the system resistances with the relation\(^{22}\)

\[
p_{\text{RF}} = P_{\text{RF}} = \frac{e^{\frac{E_d}{kT}}}{\mu R_Rp} \tag{15}\]

and the Knudsen equation\(^{19}\)

\[
dN/dt = \lambda(p_{\text{O}_2}) - \lambda(p_{\text{N}_2}) \frac{N_{\text{N}_2}}{2\pi m V^2} - \frac{N_{\text{N}_2}}{2\pi m V^2} \tag{16}\]

where \(V \) is the plasma source volume, \(p_{\text{O}_2} \) is the plasma chamber equilibrium pressure, \(p_{\text{N}_2} \) is MBE system pressure, and \(A \) is the plasma source aperture area; here, we assume that

\[
p_{\text{O}_2} = p_{\text{N}_2} = V = n = v_m. \tag{17}\]

where \(n \) is the concentration of \(N_2 \) molecules in moles and \(v_m \) is the molar volume \((22.4 \, \text{liters/mole})\). By differentiating Eq. (8) with respect to time, a relation between the molecular flows \(F(\text{scm}) \) and \(\text{dz} \) is found

\[
\frac{dN}{dt} = \frac{F}{V} \frac{\text{dz}}{60\text{min}/\text{m}^3} \tag{9}\]

resulting in

\[
\frac{dN}{dt} = \frac{F}{60\text{min}/\text{m}^3} \tag{10}\]

where \(N_o \) is the Avagadro constant. Next, we combine Eqs. (7) and (10) yielding

\[
N_o = \frac{F(\text{scm}) \times N_o \times V}{60\text{min}/\text{m}^3 \times A \times V \times kT_m} \frac{N_o}{2\pi m V^2} \tag{11}\]

From Eqs. (5) and (11), we obtain

\[
R_d = F(\text{scm}) \times V \times \left(\frac{8kT_m}{\pi m}\right)^{1/2} \frac{e^{\frac{E_d}{kT}}}{\mu R_Rp} \tag{12}\]

where \(E_d \) is the energy transfer efficiency.

Next, we need to link the \(R_d \) and \(P_p \) to the system primary resistance \(R_p \) and \(P_{\text{RF}} \). The changes in the \(R_d \) as a function of \(P_{\text{RF}} \) and \(F \) can be estimated from the primary circuit, and the changes in the system primary resistance \(R_p \) is directly related to the power transferred to the plasma.\(^{20}\) Here, we use the plasma transformer formalism for the estimation of \(R_p \).\(^{21}\) In this model, the primary coil has \(n \) turns and the plasma itself can be modeled as a single turn coil. In an ideal transformer, where the plasma loop is modeled with a single loop coil, \(R_p \) is seen on the primary circuit as a transformed resistance\(^{21}\)

\[
R_p = n^2 R_d. \tag{13}\]

We therefore get

\[
R_d = R_t = n^2 R_p. \tag{14}\]

where \(R_t \) is the resistance that simulates the RF matcher and system losses. \(P_{\text{RF}} \) can also be estimated from the system resistances with the relation\(^{22}\)

\[
p_{\text{RF}} = P_{\text{RF}} = \frac{e^{\frac{E_d}{kT}}}{\mu R_Rp} \tag{15}\]

where \(E_d \) is the energy transfer efficiency.
III. EXPERIMENTS

In order to verify the model, we grew a series of samples with two MBE systems: Veeco GEN20 and VG Semicon V80. Both systems were equipped with Veeco Sumo cells for In and Veeco SIRONI-B bulb automated RF (13.56 MHz) N plasma source. The plasma systems contained a commercial automatic matcher unit with L-topology. The matcher units are used for the compensation of plasma and coil reactance ensuring maximum power transfer from the RF power source to the plasma.

The GEN20 samples consisted of 200 nm thick GaInNAs layers, which were grown on n-GaAs(100) wafers. Before the epitaxial growth of GaInNAs, desorption of the native oxides was performed at 620 °C followed by growth of a GaAs buffer at 580 °C. The growth rate was 0.75 μm/h, the beam equivalent pressure ratio of As and group III atoms was 10, and the growth temperature setpoint was 440 °C. The indium composition was calibrated to 8% by separately grown GaInAs/GaAs superlattice samples. After calibration of the In composition, multiple samples were grown with different N fluxes. The active N flux was varied by changing both F_{As} and F_{N}. The F_{As} was varied between 150 and 350 W, while F_{N} varied from 0.15 to 0.63 sccm. The N plasma system primary resistance was estimated from the RF power-voltage data with different powers and fluxes collected from the GEN20 reactor.

The samples grown at the V80 MBE system were 3-period GaAs/GaInNAs superlattice structures composed of 20 nm GaAs and 50 nm GaInNAs layers. The superlattices were grown on semi-insulating n-doped GaAs(100). The growth rate was 0.5 μm/h and the growth temperature setpoint was 475 °C for the superlattice region. F_{N} was varied from 0.05 to 0.25 sccm and F_{PRF} from 250 to 450 W. All the samples were grown in a short period of time to minimize fluctuations in the growth parameters.

X-Ray diffraction (XRD) spectra from (004) planes for both sets of samples were measured with either Philips’ triple-axis or BEDE’s double crystal x-ray diffractometers. The N compositions were obtained by fitting the measured XRD data to rocking curves simulated by the BEDE RADS software using dynamical theory. The N composition values were fitted to Eq. (17) using the Levenberg-Marquardt algorithm. After the fitting, the model was tested by growing three GaInNAs quantum well samples (QW) with a nitrogen concentration of 1.2% with the GEN20 reactor, while varying the plasma parameters to following values: 150 W and 0.45 sccm; 227 W and 0.17 sccm; 304 W and 0.15 sccm. The quality of QW samples and corresponding emission wavelengths were compared by photoluminescence (PL) measurements. A second test with the GEN20 reactor was made for lattice matched bulk samples with 0%-6% N composition. In these samples, the In composition was tuned to 2.7 times the N composition ensuring lattice matching to GaAs.

IV. RESULTS AND DISCUSSION

First the measured RF power-voltage-data for the GEN20 reactor was analyzed; the data are summarized in Fig. 1(a). The calculation primary resistances for different F values are presented in Fig. 1(b). Primary resistance was found to be a function of F_{As} and nearly independent of the F_{PRF}. Therefore, for the incorporation model, a linear interpolation for plasma resistance as a function of F_{As} was used as shown in Fig. 1(b).

The nearly monotonic decrease of plasma system resistance with F_{As} could be explained by the fact that every new nitrogen molecule inserted to the system can free more electrons to the plasma. Eventually, we expect that the resistance would start to rise as a reduction of the electron mobility in the plasma at higher flows.

The measured N compositions for the samples grown with two MBE systems and the corresponding fitted curves are presented in Fig. 2. The curves follow the N incorporation rate reported elsewhere. The incorporation shows a linear growth at low F values followed by a saturation region at high F. The fitted dependence also predicts that the incorporation rate should start to decrease for the high fluxes.

This is actually seen for the samples grown with 150 W RF power on Gen20 reactor. With our plasma systems, the descending sides were not studied thoroughly due to plasma instability in this parameter range, which often leads to unwanted plasma shut-off. However, the decrease of the primary resistance as a function of N_{As}-flow.

FIG. 1. (a) Square of the RF plasma voltage as a function of the plasma RF power. The linear behavior indicates that the plasma primary resistance remains constant as a function of F_{PRF}, but depends on the nitrogen flow. (b) Primary resistance as a function of N_{As}-flow.
GaAsN, which has been observed to deviate from Vegard’s law at high N compositions (although we note that in this study all but one GaAsN sample had N composition below 3% so a clear deviation is not expected\(^{17}\)). The curves in Fig. 2 have only 2.6% and 0.2% deviations from the measured values in average for GEN20 and V80 reactors, respectively.

The fitting parameters \(B \) and \(E_{\text{ad}} \) are plotted in Fig. 3 as a function of \(\text{PRF} \) for the V80 reactor was adopted from the GEN20 reactor, they were not separately measured. The fitting parameters are assumed to be independent of \(F \). In other words, the electrons are assumed to be free and only the RF power can affect the average thermal energy of the electrons. This assumption is well supported by the measured system primary resistance. In order to clarify the power dependencies of the \(B(\text{PRF}) \) and \(E_{\text{ad}}(\text{PRF}) \) parameters, we used exponential fitting functions. The functions are

\[
B(\text{PRF}) = a_{B}\exp(P_{\text{RF}}t_{B}) + b_{B} \tag{18}
\]

and

\[
E_{\text{ad}}(\text{PRF}) = a_{E}\exp(P_{\text{RF}}t_{E}) + b_{E}. \tag{19}
\]

where \(a_{B}, b_{B}, b_{E}, t_{B}, \) and \(t_{E} \) are constants. For simplicity, we use here unity power transfer efficiency and \(n=1 \) for the primary coil. Fitting parameters for the GEN20 and V80 reactors are presented in Table I and Fig. 3. The fitting parameters can be interpolated accurately by the exponential functions described above. The \(\delta \) parameter for both reactors decreases monotonically as a function of power, which could be linked to changes in the absorption cross section or to a power dependent plasma chamber pressure. The shape differences between the GEN20 and V80H curves may be linked to different plasma source aperture nozzles. The power dependence of \(E_{\text{ad}} \) could be explained by changes in the effective activation energy \(E_{\text{ad}} \) or by the fact that the plasma is tighter confined when the \(\text{PRF} \) is increased. The latter is considered the most probable reason. The fitting parameters also include the effect of the RF power and the N flow on the power transfer efficiency, which can be significantly lower at low plasma powers and low flows\(^{20-22}\).

To test the accuracy of the model, we used it to predict the N composition in grown crystals. To this end, we grew three QW samples with different combinations of \(P_{\text{RF}} \) and \(F \), yet all aimed at having the same N composition. In the same way, we forecasted the compositions of five lattice matched incorporation rate at high flows has been reported elsewhere in connection with the growth of GaN\(^{17}\).

Using the nominal \(F \) values for the V80 reactor, the curves could not be fitted with the requirement that they start from zero incorporation. Therefore, a constant offset of \(+0.10 \) sccm was added to the \(F \) values for the V80 reactor. This offset could be caused by an inherent offset in the N mass flow controller. For the GEN20, no offset was used. The shape differences between the curves also arise from different N-source nozzles, \(R_{i} \) values, reactor geometries, and configurations. Additionally, the V80 samples comprised of GaAsN, which has been observed to deviate from Vegard’s law at high N compositions (although we note that in this study all but one GaAsN sample had N composition below 3% so a clear deviation is not expected\(^{17}\)). The curves in Fig. 2 have only 2.6% and 0.2% deviations from the measured values in average for GEN20 and V80 reactors, respectively.

The fitting parameters \(B \) and \(E_{\text{ad}} \) are plotted in Fig. 3 as a function of \(\text{PRF} \) for the V80 reactor was adopted from the GEN20 reactor, they were not separately measured. The fitting parameters are assumed to be independent of \(F \). In other words, the electrons are assumed to be free and only the RF power can affect the average thermal energy of the electrons. This assumption is well supported by the measured system primary resistance. In order to clarify the power dependencies of the \(B(\text{PRF}) \) and \(E_{\text{ad}}(\text{PRF}) \) parameters, we used exponential fitting functions. The functions are

\[
B(\text{PRF}) = a_{B}\exp(P_{\text{RF}}t_{B}) + b_{B} \tag{18}
\]

and

\[
E_{\text{ad}}(\text{PRF}) = a_{E}\exp(P_{\text{RF}}t_{E}) + b_{E}. \tag{19}
\]

where \(a_{B}, b_{B}, b_{E}, t_{B}, \) and \(t_{E} \) are constants. For simplicity, we use here unity power transfer efficiency and \(n=1 \) for the primary coil. Fitting parameters for the GEN20 and V80 reactors are presented in Table I and Fig. 3. The fitting parameters can be interpolated accurately by the exponential functions described above. The \(\delta \) parameter for both reactors decreases monotonically as a function of power, which could be linked to changes in the absorption cross section or to a power dependent plasma chamber pressure. The shape differences between the GEN20 and V80H curves may be linked to different plasma source aperture nozzles. The power dependence of \(E_{\text{ad}} \) could be explained by changes in the effective activation energy \(E_{\text{ad}} \) or by the fact that the plasma is tighter confined when the \(\text{PRF} \) is increased. The latter is considered the most probable reason. The fitting parameters also include the effect of the RF power and the N flow on the power transfer efficiency, which can be significantly lower at low plasma powers and low flows\(^{20-22}\).

To test the accuracy of the model, we used it to predict the N composition in grown crystals. To this end, we grew three QW samples with different combinations of \(P_{\text{RF}} \) and \(F \), yet all aimed at having the same N composition. In the same way, we forecasted the compositions of five lattice matched
bulk samples with N composition form 1%-6% grown with different plasma parameters. The results are presented in Fig. 4, in which we can see that the QWs emit at precisely the same emission wavelength. This is a clear indication that all samples have same N composition despite the fact that various combinations of plasma power and flow were used.

The slight differences in the peak intensities can be explained by the differences in the ratio of atomic N and N-ions produced.

For the bulk layers, the targeted N composition corresponds very well to the values from XRD simulations, as revealed in Fig. 5. The values seem to have a small calibration related drift, which becomes smaller when the N composition is increased. Nevertheless, all the samples have a maximum deviation of 6% from the model, and the average deviation is only 4%. The error is mainly systematic and can be easily corrected. After the correction, the prediction would deviate only approximately 1% from the measured values. This means that the N incorporation can be estimated with the same precision as the group III fluxes can be determined from ion gauge measurements. Furthermore, the model has been used on a daily basis at the GEN20 reactor for numerous samples; it has proved to be a helpful tool for complex GaInNAsSb solar cell and laser epitaxy.

V. CONCLUSION

We have derived a Maxwell-Boltzmann electron energy distribution based equation for the incorporation rate of N from a plasma source as a function of RF power, N flow, and group III growth rate. The model was tested for GaInNAs samples grown using Veeco GEN20 and VG Semicon V80 reactors with Veeco UNI-bulb nitrogen RF plasma sources. For both reactors, the model can be used with an absolute deviation better than 6%. The model has also been reliable in the long term use and has proved to be a versatile tool for dilute nitride epitaxy. The model and the same calibration sequence should be applicable to other nitride based PAMBE systems and RF plasma sources.

ACKNOWLEDGMENTS

The authors would like to thank colleagues at Optoelectronics Research Centre for their high-quality experimental support. For the financial support, we would like to thank Finnish Funding Agency for Technology and Innovation—TEKES (Project Nos. #40120/09 “Solar III–V” and #40239/12 “Nextsolar”), Graduate School in Electronics, Telecommunications and Automation, Ulla Tuominen Foundation, Finnish Foundation for Technology Promotion, and Värtiälä Foundation.

TABLE I. Fitting parameters for the GEN20 and V80 reactors.

<table>
<thead>
<tr>
<th>Reactor</th>
<th>α_0 (amu/cycle/V)</th>
<th>α_1 (amu/cycle/V)</th>
<th>h_0 (amu/cycle/V)</th>
<th>ω (N2)</th>
<th>ζ (N2)</th>
<th>t_B (V2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEN20</td>
<td>4.20×10^{-3}</td>
<td>-2.65×10^{-3}</td>
<td>1.35×10^{-3}</td>
<td>1.60×10^{-4}</td>
<td>-1.57×10^{-3}</td>
<td>7.87×10^{-1}</td>
</tr>
<tr>
<td>V80H</td>
<td>5.15×10^{-3}</td>
<td>-9.23×10^{-4}</td>
<td>6.60×10^{-4}</td>
<td>-1.28×10^{-3}</td>
<td>3.10×10^{-3}</td>
<td>1.04×10^{-3}</td>
</tr>
</tbody>
</table>

The slight differences in the peak intensities can be explained by the differences in the ratio of atomic N and N-ions produced.

For the bulk layers, the targeted N composition corresponds very well to the values from XRD simulations, as revealed in Fig. 5. The values seem to have a small calibration related drift, which becomes smaller when the N composition is increased. Nevertheless, all the samples have a maximum deviation of 6% from the model, and the average deviation is only 4%. The error is mainly systematic and can be easily corrected. After the correction, the prediction would deviate only approximately 1% from the measured values. This means that the N incorporation can be estimated with the same precision as the group III fluxes can be determined from ion gauge measurements. Furthermore, the model has been used on a daily basis at the GEN20 reactor for numerous samples; it has proved to be a helpful tool for complex GaInNAsSb solar cell and laser epitaxy.

V. CONCLUSION

We have derived a Maxwell-Boltzmann electron energy distribution based equation for the incorporation rate of N from a plasma source as a function of RF power, N flow, and group III growth rate. The model was tested for GaInNAs samples grown using Veeco GEN20 and VG Semicon V80H reactors with Veeco UNI-bulb nitrogen RF plasma sources. For both reactors, the model can be used with an absolute deviation better than 6%. The model has also been reliable in the long term use and has proved to be a versatile tool for dilute nitride epitaxy. The model and the same calibration sequence should be applicable to other nitride based PAMBE systems and RF plasma sources.

ACKNOWLEDGMENTS

The authors would like to thank colleagues at Optoelectronics Research Centre for their high-quality experimental support. For the financial support, we would like to thank Finnish Funding Agency for Technology and Innovation—TEKES (Project Nos. #40120/09 “Solar III–V” and #40239/12 “Nextsolar”), Graduate School in Electronics, Telecommunications and Automation, Ulla Tuominen Foundation, Finnish Foundation for Technology Promotion, and Värtiälä Foundation.

© 2013 SPIE-The International Society for Optical Engineering. Reproduced with permission.
High current generation in dilute nitride solar cells grown by Molecular Beam Epitaxy
A. Aho, A. Tukiainen, V. Polojärvi, J. Salmin, and M. Guina
Optoelectronics Research Centre, Tampere University of Technology
P.O.B. 692, FIN-33101, Finland

ABSTRACT

We review our recent work concerning the development of dilute nitride solar cells by molecular beam epitaxy. This epitectal technology enables a high level of control of the growth conditions and alleviates known issues related to epitaxy of dilute nitrides ultimately enabling to achieve high quality materials suitable for solar cell developments. In particular, we focus on discussing the mechanisms linking the epitaxial and annealing conditions to the operation of dilute nitride solar cells. We also report operation of a single junction dilute nitride solar cell with a short circuit current density as high as ~39 mA/cm² under 1 sun illumination.

Keywords: multi-junction solar cells, dilute nitrides, molecular beam epitaxy, high efficiency solar cells.

1. INTRODUCTION

Multi-junction (MJ) III-V compound semiconductor solar cells (SC) are the prime choice for efficient solar energy harvesting. MISC based on semiconductor heterostructure made of InGaP/InGaAs/Ge p-n junctions are the core of the satellite solar energy generators and are gaining increased attention also for terrestrial applications. For example, when combined with concentrator photovoltaic (CPV) techniques, high efficiency III-V solar cells offer attractive opportunities for achieving the price target required to make solar energy competitive with traditional energy sources. The high impact of these applications has generated even more need to surpass the current technological barriers that limit the efficiency of 3-junction solar cells to ~30% for 1 sun AM0 condition, and the ~40% range for CPV AM1.5 illumination. In order to surpass these efficiency limits one needs to deploy device architectures with more than three p-n junctions to absorb the solar spectrum more efficiently. One of the most attractive development approaches to increase the number of absorbing junctions is to use GaInNAs, i.e. dilute nitride, alloy integrated with the “standard” lattice matched 3-junction materials [1-3].

Dilute nitrides, are compounds that incorporate a small amount of N, typically below 5%, and exhibit extraordinary optical and electrical properties. Most important for solar cell applications is the fact that their band-gap can be engineered to cover the entire range from 1.4 eV down to 0.8 eV while preserving lattice matching to GaAs. Thus they are ideal candidates for the development of multijunction solar cells; their potential has been proven recently by demonstrating triple-junction solar cells incorporating GaInNAs with a record high conversion efficiency of 44% [4]. Their deployment as a practical development path for high efficiency solar cells has been daunting by difficulties encountered when using metal-organic vapor-phase epitaxy (MOVPE) technology, the standard technique used in industry to fabricate III-V solar cells. On the other hand, dilute nitrides have been intensively studied by using molecular beam epitaxy (MBE), the epitaxial technology widely adopted for research of novel materials. MBE has clear advantages over MOVPE when it comes to epitaxy of dilute nitrides, as it avoids issues related to C-doping and hydrogen related complexes [5]. Moreover, MBE enables a higher level of control of growth conditions; in particular, it enables operation at relatively low growth temperatures to avoid phase separation and clustering effects, while the ratio of group V elements to group III as well as the amount of N available for nucleation can be controlled more accurately.

Despite the proven advantages of MBE for fabrication of GaInNAs alloys, this remains a challenging material that requires optimization of several interdependent fabrication parameters, such as growth temperature (Tg), V/III flux ratio, post growth annealing conditions and nitrogen composition. For example, we have earlier shown that Tg has to be set in a rather narrow window centered at ~440 °C in order to achieve adequate quality for solar cells developments [6, 7]. This window is limited by point defects generated on the low temperature side of the window, and on the other hand, phase Physics, Simulation, and Photonic Engineering of Photovoltaic Devices II, edited by Alexandre Freundlich, Jean-Francois Guillemard, Proc. of SPIE Vol. 8620, 862001-1 © 2013 SPIE
CCC code: 0277-786X/13/$18 · doi: 10.1117/12.2002972

High current generation in dilute nitride solar cells grown by Molecular Beam Epitaxy
A. Aho, A. Tukiainen, V. Polojärvi, J. Salmin, and M. Guina
Optoelectronics Research Centre, Tampere University of Technology
P.O.B. 692, FIN-33101, Finland

ABSTRACT

We review our recent work concerning the development of dilute nitride solar cells by molecular beam epitaxy. This epitectal technology enables a high level of control of the growth conditions and alleviates known issues related to epitaxy of dilute nitrides ultimately enabling to achieve high quality materials suitable for solar cell developments. In particular, we focus on discussing the mechanisms linking the epitaxial and annealing conditions to the operation of dilute nitride solar cells. We also report operation of a single junction dilute nitride solar cell with a short circuit current density as high as ~39 mA/cm² under 1 sun illumination.

Keywords: multi-junction solar cells, dilute nitrides, molecular beam epitaxy, high efficiency solar cells.

1. INTRODUCTION

Multi-junction (MJ) III-V compound semiconductor solar cells (SC) are the prime choice for efficient solar energy harvesting. MISC based on semiconductor heterostructure made of InGaP/InGaAs/Ge p-n junctions are the core of the satellite solar energy generators and are gaining increased attention also for terrestrial applications. For example, when combined with concentrator photovoltaic (CPV) techniques, high efficiency III-V solar cells offer attractive opportunities for achieving the price target required to make solar energy competitive with traditional energy sources. Despite the proven advantages of MBE for fabrication of GaInNAs alloys, this remains a challenging material that requires optimization of several interdependent fabrication parameters, such as growth temperature (Tg), V/III flux ratio, post growth annealing conditions and nitrogen composition. For example, we have earlier shown that Tg has to be set in a rather narrow window centered at ~440 °C in order to achieve adequate quality for solar cells developments [6, 7]. This window is limited by point defects generated on the low temperature side of the window, and on the other hand, phase Physics, Simulation, and Photonic Engineering of Photovoltaic Devices II, edited by Alexandre Freundlich, Jean-Francois Guillemard, Proc. of SPIE Vol. 8620, 862001-1 © 2013 SPIE
CCC code: 0277-786X/13/$18 · doi: 10.1117/12.2002972
separation and segregation effects taking place at higher temperatures. This temperature range was also linked to preferential surface morphology with (1x3) surface reconstruction on GaInNAs surface [8]. We have also demonstrated that the incorporation mechanism is thermally activated and therefore our observations challenge the commonly accepted understanding that N concentration is temperature independent at temperatures below the phase segregation regime. In this paper we provide further insights into physical processes linking the growth parameters and the properties of GaInNAs solar cells. In particular we have analyzed the effect of growth temperature, As/III beam equivalent pressure (BEP), and annealing on the characteristics of dilute nitride solar cells. As a result of the growth optimization steps we demonstrate a 1 eV GaInNAs solar cell exhibiting a short circuit current density of ~39 mA/cm² and a Vₚ of 0.41 V.

2. DESCRIPTION OF EXPERIMENTAL STRUCTURES

The set of GaInNAs p-i-n junctions was grown using a Veeco GEN20 solid source MBE equipped with a Uni-Bulb RF plasma source. A first set of GaInNAs p-i-n structures was grown on n-GaAs(100) substrate. These structures comprised undoped GaInNAs layers placed between 250 nm-thick p-GaAs emitter and a 600-nm-thick n-GaAs buffer layers. The doping levels of the p- and n-GaAs were 1x10¹⁶ cm⁻³ and 5x10¹⁵ cm⁻³, respectively. The thickness of GaInNAs layers was varied from 150 nm to 1200 nm. The structures did not contain window layers; the main purpose of this test set was to study the effect of different growth conditions on the formation of GaInNAs current generation layer without targeting high conversion efficiency. In order to adjust the amount of N required for lattice matching with different In compositions, the N-plasma power was varied between 150 W and 300 W at flow rates between 0.15 and 0.53 sccm; the corresponding amount of N incorporated was varied between 1% and 6%. For the lattice matching In concentration was set to ~ 2.7 x N concentration. The growth temperature used for the epitaxy of GaInNAs layer was varied between 400°C and 500°C. The samples were studied using various methods including reflection high-energy electron diffraction (RHEED), photoluminescence, time-resolved photoluminescence, x-ray diffraction, light-biased current-voltage (LIV) and quantum efficiency (QE) measurements. These samples were processed into solar cell components using a simple shadow mask process.

After optimizing the growth parameter using the set of structures described above, we have fabricated a single-junction GaInNAs solar cell on p-GaAs(100) substrates. The thickness of the undoped GaInNAs i-region was 1300 nm. This was placed between a n-GaAs emitter with a thickness of 100 nm and a 600-nm-thick p-GaAs base layers. In addition, the structure incorporated a p-GaNP back surface field layer with a thickness of 100 nm and an n-AlnP window layer with a thickness of 25 nm. For contacting we have used n⁺GaAs layer with a thickness of 300 nm. The samples were processed in devices with an area of 0.1 cm² using standard photolithography followed by the deposition of a TiO₂/SiO₂ antireflective coating.

As the carrier concentrations and mobilities are strongly linked to solar cell parameters, we have performed standard Hall measurements at room temperature on undoped GaInNAs layers grown on semi-insulating GaAs substrates to determine the carrier concentrations and mobilities corresponding to GaInNAs layers. The undoped GaInNAs turns out to have p-type conduction with carrier concentrations in the range of 10¹⁸ cm⁻³. The mobility for holes was measured to be 100 cm²/Vs, which is in good accordance with published results [9, 10].

separation and segregation effects taking place at higher temperatures. This temperature range was also linked to preferential surface morphology with (1x3) surface reconstruction on GaInNAs surface [8]. We have also demonstrated that the incorporation mechanism is thermally activated and therefore our observations challenge the commonly accepted understanding that N concentration is temperature independent at temperatures below the phase segregation regime. In this paper we provide further insights into physical processes linking the growth parameters and the properties of GaInNAs solar cells. In particular we have analyzed the effect of growth temperature, As/III beam equivalent pressure (BEP), and annealing on the characteristics of dilute nitride solar cells. As a result of the growth optimization steps we demonstrate a 1 eV GaInNAs solar cell exhibiting a short circuit current density of ~39 mA/cm² and a Vₚ of 0.41 V.

2. DESCRIPTION OF EXPERIMENTAL STRUCTURES

The set of GaInNAs p-i-n junctions was grown using a Veeco GEN20 solid source MBE equipped with a Uni-Bulb RF plasma source. A first set of GaInNAs p-i-n structures was grown on n-GaAs(100) substrate. These structures comprised undoped GaInNAs layers placed between 250 nm-thick p-GaAs emitter and a 600-nm-thick n-GaAs buffer layers. The doping levels of the p- and n-GaAs were 1x10¹⁶ cm⁻³ and 5x10¹⁵ cm⁻³, respectively. The thickness of GaInNAs layers was varied from 150 nm to 1200 nm. The structures did not contain window layers; the main purpose of this test set was to study the effect of different growth conditions on the formation of GaInNAs current generation layer without targeting high conversion efficiency. In order to adjust the amount of N required for lattice matching with different In compositions, the N-plasma power was varied between 150 W and 300 W at flow rates between 0.15 and 0.53 sccm; the corresponding amount of N incorporated was varied between 1% and 6%. For the lattice matching In concentration was set to ~ 2.7 x N concentration. The growth temperature used for the epitaxy of GaInNAs layer was varied between 400°C and 500°C. The samples were studied using various methods including reflection high-energy electron diffraction (RHEED), photoluminescence, time-resolved photoluminescence, x-ray diffraction, light-biased current-voltage (LIV) and quantum efficiency (QE) measurements. These samples were processed into solar cell components using a simple shadow mask process.

After optimizing the growth parameter using the set of structures described above, we have fabricated a single-junction GaInNAs solar cell on p-GaAs(100) substrates. The thickness of the undoped GaInNAs i-region was 1300 nm. This was placed between a n-GaAs emitter with a thickness of 100 nm and a 600-nm-thick p-GaAs base layers. In addition, the structure incorporated a p-GaNP back surface field layer with a thickness of 100 nm and an n-AlnP window layer with a thickness of 25 nm. For contacting we have used n⁺GaAs layer with a thickness of 300 nm. The samples were processed in devices with an area of 0.1 cm² using standard photolithography followed by the deposition of a TiO₂/SiO₂ antireflective coating.

As the carrier concentrations and mobilities are strongly linked to solar cell parameters, we have performed standard Hall measurements at room temperature on undoped GaInNAs layers grown on semi-insulating GaAs substrates to determine the carrier concentrations and mobilities corresponding to GaInNAs layers. The undoped GaInNAs turns out to have p-type conduction with carrier concentrations in the range of 10¹⁸ cm⁻³. The mobility for holes was measured to be 100 cm²/Vs, which is in good accordance with published results [9, 10].
3. INFLUENCE OF THE GROWTH PARAMETERS

One of the growth parameters that has a strong influence on the properties of GaInNAs material is the T_g. A number of physical processes taking place on the sample surface during the growth are temperature dependent, including atomic surface migration, desorption, and defect formation. Generally speaking, there are three temperature regions in which the epitaxy is affected by different physical mechanisms [11]. In the low T_g regime, which can be regarded as temperatures below ~420°C, thermal energy of the atoms migrating on the sample surface is not enough to drive them to their right lattice sites, which eventually leads to formation of a large population of point defects. In the high-temperature regime, starting from ~460°C, the segregation and phase separation processes are predominant and lead to formation of very rough sample surfaces during growth [12-13]. In between these ranges there is a narrow window of temperatures at which our test structures exhibited a good materials quality for N content of 1-4%. More precisely we have found that the optimum T_g for solar cells is close to 440 °C [6]. Our interpretation is that at this temperature range the phase separation and segregation are not effective and that temperature is not too low to cause formation of considerable amounts of point defects. The optimal temperature window is revealed in Fig. 2 for a N content of 3%; in this figure we have plotted the normalized output power ($P_{oc,norm}$) of GaInNAs junctions as a function of the growth temperature. There are also other T_g related effects that need to be discussed here in conjunction with the N-content. For example, it is known that the sticking coefficient of In starts to decrease at higher temperatures than those identified as optimal for N incorporation [14]. Also it has been shown that at higher temperatures nitrogen starts to desorb from the sample surface [15] and furthermore annealing at elevated temperatures lead to changes in the N bond environment [16].

Another parameter which directly affects the growth of GaInNAs is the As/III beam equivalent pressure ratio. For good quality GaAs-based materials grown by MBE at 580 °C the optimal BEP ratio values are often in the range of 10 [17, 18]. For the samples studied here we have changed the As/III BEP ratios between 5 and 20 for N contents ranging from 1 to 3 % [19]. As a monitoring parameter used in optimization we have used again the maximum power generated by the cells. The results are summarized by the contour map shown in Fig. 3 which collects all measurements for AM0 illumination. The results show that the lower limit for the BEP ratio is ~7 and the upper limit is ~14. Other observations here are that the more nitrogen is inserted to the material the more sensitive the growth becomes in terms of As-flux.
The amount of N has a direct effect on the bandgap and hence on the current and voltage characteristics; the more nitrogen is introduced, the smaller E_g becomes and the absorption edge shifts towards longer wavelengths enabling higher current production. On the other hand, smaller bandgap decreases the open circuit voltage and therefore the N content should be optimized for specific current matching conditions. However, there are quite strict limitations when it comes to the maximum amount of N that can be incorporated substitutionally: incorporation of N content higher than 4% typically makes extremely challenging the use of material for solar cells applications [6]. Fig. 4 plots the V_{oc} for GaInNAs solar cells with different bandgaps (i.e., N contents). Here the bandgaps are depicted by corresponding maximum of the room temperature photoluminescence emission. Besides the direct effect of the N content on V_{oc} via the bandgap, higher densities of nonradiative recombination centers corresponding to higher N content would lead to a reduction of the V_{oc} compared to the ideal values. As it can be seen in Fig. 3, the V_{oc} dependence on N follows a linear behavior with $V_{oc}=E_g/q\times 0.55$ V indicating good electrical properties of the material.

4. INFLUENCE OF ANNEALING

The properties of GaInNAs are strongly affected by thermal annealing process. In general annealing leads to a significant reduction of the defect densities accompanied also by a change of the N environment. The effect of annealing can be assessed in a simple way by measuring the photoluminescence (PL) intensity in steady-state or time-resolved domains. For example, in non-annealed samples we have measured carrier lifetimes in the range of 10-30 ps reflecting partially the low growth temperature and on the other hand the existence of nitrogen-induced defects in the crystal lattice. However, when the crystal was thermally annealed, we observed a strong increase in the photoluminescence intensity.

Fig. 3. The effect of As/III BEP ratio on the solar cell parameters for different N compositions. Measurements have been performed at AM0 and with a 900 nm long-pass filter.

The amount of N has a direct effect on the bandgap and hence on the current and voltage characteristics; the more nitrogen is introduced, the smaller E_g becomes and the absorption edge shifts towards longer wavelengths enabling higher current production. On the other hand, smaller bandgap decreases the open circuit voltage and therefore the N content should be optimized for specific current matching conditions. However, there are quite strict limitations when it comes to the maximum amount of N that can be incorporated substitutionally: incorporation of N content higher than 4% typically makes extremely challenging the use of material for solar cells applications [6]. Fig. 4 plots the V_{oc} for GaInNAs solar cells with different bandgaps (i.e., N contents). Here the bandgaps are depicted by corresponding maximum of the room temperature photoluminescence emission. Besides the direct effect of the N content on V_{oc} via the bandgap, higher densities of nonradiative recombination centers corresponding to higher N content would lead to a reduction of the V_{oc} compared to the ideal values. As it can be seen in Fig. 3, the V_{oc} dependence on N follows a linear behavior with $V_{oc}=E_g/q\times 0.55$ V indicating good electrical properties of the material.

Fig. 3. The effect of As/III BEP ratio on the solar cell parameters for different N compositions. Measurements have been performed at AM0 and with a 900 nm long-pass filter.

The properties of GaInNAs are strongly affected by thermal annealing process. In general annealing leads to a significant reduction of the defect densities accompanied also by a change of the N environment. The effect of annealing can be assessed in a simple way by measuring the photoluminescence (PL) intensity in steady-state or time-resolved domains. For example, in non-annealed samples we have measured carrier lifetimes in the range of 10-30 ps reflecting partially the low growth temperature and on the other hand the existence of nitrogen-induced defects in the crystal lattice. However, when the crystal was thermally annealed, we observed a strong increase in the photoluminescence intensity.

Fig. 4. V_{oc} values for test GaInNAs single junction devices.
lifetime in particular for samples with a nitrogen content of 2% N; the corresponding lifetime was in the range of 900 ps. For samples with more nitrogen a drastic lifetime increase was also observed but to a lesser amount compared to samples with 2% N. Lifetimes as long as 500 ps and 300 ps were obtained for GaInNAs samples with 3% and 4% nitrogen after thermal annealing, respectively.

In correlation with time-resolved data, the steady-state PL experiences drastic changes upon RTA. We have studied the PL from GaInNAs p-i-n structures with different N-contents and growth parameters subjected to different annealing conditions; in particular we have tried to identify the optimal annealing conditions for samples with different N-contents. These results are summarized in Fig. 4. For example, the samples grown at 415 °C and annealed at 800 °C, exhibited maximum PL after 900 s for N compositions of 1% - 700s for samples with 2% N and 300s for samples with 3% N; the general trend behind the measurements reveal that more N is inserted, the lower is the required time for attaining the maximum PL intensity.

5. SINGLE JUNCTION SOLAR CELL RESULTS AND CONCLUSIONS

The LIV measurement on the optimized GaInNAs solar cell devices were measured using AM1.5 illumination at 1000 W/cm² (a solar simulator calibrated against a set of 1 eV single, dual and triple-junction solar cells, real sun illumination and a Kipp&Zonen pyranometer, model CM11). The LIV and external quantum efficiency (EQE) measurement results are shown in Fig. 6.
As a result of the growth parameter optimization, we have demonstrated single junction GaInNAs SCs with high short circuit current densities of $J_{sc} = 38.8 \text{ mA/cm}^2$ at simulated AM1.5 illumination. The device V_{oc} was 0.41 V. The peak external quantum efficiency of the single junction GaInNAs cell was 90% at 2.2 eV and still almost 80% at the energies just below the bandgap of GaAs. These results are the basis for future integration of the GaInNAs sub-junction in multi-junction solar cell configurations.

ACKNOWLEDGMENTS

The work was financially supported by Finnish Funding Agency for Technology and Innovation – TEKES (projects Solar III-V and NextSolar), the National Graduate School in Electronics, Telecommunications and Automation, Ulla Tuominen Foundation, Finnish Foundation for Technology Promotion and Wärtsilä Foundation.

REFERENCES

© 2012 American Institute of Physics. Reproduced with permission.
Comparison Of GaInNAs And GaInNAsSb Solar Cells
Grown By Plasma-Assisted Molecular Beam Epitaxy

Arto Aho, Antti Tukiainen, Ville-Markus Korpipäivä, Ville Polojärvi, Joel Salmi and Mircea Guina

Tampere University of Technology/Optoelectronics Research Centre, +358 40 198 1076, arto.j.aho@uta.fi, Korkeakoulunkatu 3, FI-33720 Tampere, Finland

Abstract. We compare dilute nitride GaInNAs and GaInNAsSb solar cells grown by molecular beam epitaxy. Single junction p-n diode solar cells were fabricated to test the dilute nitride and antimonide material fabrication process. Triple-junction solar cells were fabricated to test the behavior of single GaInNAs(Sb) junctions in multi-junction configuration. When nitrogen was added to the growth of GaInNAs, good crystal quality was maintained up to 4% of nitrogen at the used growth conditions. Short circuit current densities of the devices could be increased by adding Sb to the growth but at the same time the open circuit voltages decreased due to bandgap shrinkage induced by Sb. In multi-junction configuration, the samples with Sb showed inferior properties to ones without it. Lower currents and voltages of Sb-containing cells may be linked to segregation of Sb and transfer to the upper junctions.

Keywords: Solar cells, Molecular beam epitaxy, III-V semiconductors, dilute nitrides, dilute antimonides.

PACS: 78.55.Cr, 81.15.Hb, 81.05.Ea, 88.40.jp

INTRODUCTION

Dilute nitride (GaInNAs)GaAs materials with a few percent of nitrogen are well suited for sub-junctions of ultra-high efficiency multijunction solar cells (MJSC) used in concentrated photovoltaic (CPV) systems. GaInNAs junctions lattice-matched to GaAs or Ge and tuned to have their absorption edge close to 1 eV or slightly below allow high-quality pseudomorphic fabrication of MJSCs without strain-induced misfit dislocations. When adding more than 4% of nitrogen into GaInNAs it becomes difficult to maintain the crystalline quality good enough for SCs. One option to overcome this problem is to add a small amount of antimony into GaInNAs [1] which enables to reduce the amount of N required for achieving a certain bandgap and also allows fabrication of solar cell active materials with their bandgaps less than 0.9 eV [2]. In this paper we compare the properties of GaInNAs and GaInNAsSb p-i-n SCs with high nitrogen content.

EXPERIMENTAL

The SC structures were grown using RF plasma-assisted molecular beam epitaxy system equipped with Knudsen-type cells for group-III elements and cracker sources for arsenic and phosphorus. Nitrogen was provided from a RF-plasma source. For GaInNAsGaAs materials, the properties of GaInNAs and GaInNAsSb p-i-n SCs with high nitrogen content.

PHOTOLOMINISCENCE

The GaInNAsSb cells were characterized using room temperature photoluminescence. Table 1 lists the emission wavelengths and peak full-width-at-half-maximum (FWHM) values of annealed GaInNAsSb cells with different nitrogen contents. The general observation is that the higher the nitrogen concentration the longer the emission wavelength. Also, GaAs, respectively. The sample structure was the following: 600 nm thick n-GaAs buffer (n=1×10^{18} cm^{-3}) layer was grown onto n-GaAs(100) substrate followed by 324 nm of undoped, nearly lattice-matched, GaNAs, and 250 nm of p-GaAs (p=1×10^{18} cm^{-3}) emitter. On top, a 50 nm thick p+ GaAs contact was grown. GaAs layers were grown at 580 °C whereas GaNAs layers were grown at various temperatures ranging from 390 to 490 °C with AvH/BEP ratio of ~10. With the optimized growth temperature (Tg=440 °C), another set of samples was grown with reverse polarity on p-GaAs(100) and with different nominal antimony compositions of 0.02 and 0.04. In this sample set the thickness of GaInNAs(Sb) layer was 1.3 μm. Top emitter thickness for the latter set was 100 nm and a 2 mm thick AlInP window layer was grown between the emitter layer and the 600 nm thick highly doped contact n-GaAs. Thermal annealing was done ex-situ to reduce the amount of growth-related and nitrogen-related defects [3, 4]. To maintain close lattice matching between the substrate and the GaInNAs layer, the amount of indium in GaInNAs was ~2.7 x [N]. Grid patterns were formed using shadow masks.

PHTOLOMENISCENCE

The GaInNAsSb cells were characterized using room temperature photoluminescence. Table 1 lists the emission wavelengths and peak full-width-at-half-maximum (FWHM) values of annealed GaInNAsSb cells with different nitrogen contents. The general observation is that the higher the nitrogen concentration the longer the emission wavelength. Also, GaAs, respectively. The sample structure was the following: 600 nm thick n-GaAs buffer (n=1×10^{18} cm^{-3}) layer was grown onto n-GaAs(100) substrate followed by 324 nm of undoped, nearly lattice-matched, GaNAs, and 250 nm of p-GaAs (p=1×10^{18} cm^{-3}) emitter. On top, a 50 nm thick p+ GaAs contact was grown. GaAs layers were grown at 580 °C whereas GaNAs layers were grown at various temperatures ranging from 390 to 490 °C with AvH/BEP ratio of ~10. With the optimized growth temperature (Tg=440 °C), another set of samples was grown with reverse polarity on p-GaAs(100) and with different nominal antimony compositions of 0.02 and 0.04. In this sample set the thickness of GaInNAs(Sb) layer was 1.3 μm. Top emitter thickness for the latter set was 100 nm and a 2 mm thick AlInP window layer was grown between the emitter layer and the 600 nm thick highly doped contact n-GaAs. Thermal annealing was done ex-situ to reduce the amount of growth-related and nitrogen-related defects [3, 4]. To maintain close lattice matching between the substrate and the GaInNAs layer, the amount of indium in GaInNAs was ~2.7 x [N]. Grid patterns were formed using shadow masks.

The GaInNAsSb cells were characterized using room temperature photoluminescence. Table 1 lists the emission wavelengths and peak full-width-at-half-maximum (FWHM) values of annealed GaInNAsSb cells with different nitrogen contents. The general observation is that the higher the nitrogen concentration the longer the emission wavelength. Also,
of the cells increases until 440 °C, after which it starts to decrease for all samples with nitrogen contents up to 4%. There seems to be a quite narrow temperature range from ~410 to 450 °C where GaInNAs grows with good crystalline quality. High-resolution x-ray diffraction measurements have shown that the crystal quality starts to deteriorate when nitrogen content exceeds 4% for the used growth parameters [5].

Figure 2b shows the variation of open circuit voltage (Voc) along the PL emission wavelength of GaInNAs/Sb cells with different nominal Sb contents. In general, one observes a clear difference in Voc between GaInNAs and GaInNAsSb samples; samples without Sb have always higher Voc. This originates from the larger material band gap evidenced by the PL peak wavelength. There seems to be a slight offset in Voc between the samples without and with antimony. This offset, ~15-30 meV in total, might be caused by formation of defect states or dopant states in Sb-containing material [6,7]. To test whether this offset is real we plotted into figure 2b a curve showing Voc-Eq/4V, which is the case for high-quality GaN solar cells. At the radiative limit the Voc should be higher compared the expression above and thus the Voc offset to the Eq should be smaller [Vite]. Instead, all the samples with Sb exhibit larger offset ~0.56 V for GaInNAs, 0.575 V for GaInNAsSb0.8 and 0.59 V for GaInNAsSb0.4. Although there is no overlapping points between the PL emission wavelengths of the samples with and without Sb, the results suggest that the additional offset component is there and is related to addition of Sb.

To test the uniformity of GaInNAsSb/Sb on 2” wafers we grew two otherwise identical samples with and without antimony. The composition uniformity of the grown cells is quite good as the PL wavelength varies less than 4 nanometers across the wafers for both samples.

We measured the light I-V characteristics at AM1.5G for the optimized GaInNAs and GaInNAsSb cells (The cell size was 0.117 cm2). The results indicated that uncoated GaInNAs cells produced a short circuit current density (Jsc) of ~25 mA/cm2. The maximum open circuit voltage for the GaInNAs cells was 0.39 V. When Sb was added, there was a 6.4% increase in the short circuit current to 26.6 mA/cm2. The open circuit voltage for GaInNAsSb was reduced to 0.30 V most likely due to reduced bandgap, which is also responsible for higher current generation. Defect formation might explain part of the Voc reduction for the GaInNAsSb cell [1,2,6,7]. Also, it has been found that Sb may increase the dark current of GaInNAs SCs [8].

With SiO2/SiN4 antireflection coatings the optimized GaInNAs cells produced current densities of ~33 mA/cm2 at 950 W/m2 and AM1.5G conditions (Figure 3). At the same conditions, GaInNAsSb cells produced 35.5 mA/cm2.

TABLE 1. Room temperature photoluminescence measurements on GaInNAs(Sb) with different nominal antimony contents.

<table>
<thead>
<tr>
<th>GaInNAs/Sb</th>
<th>PL wavelength (nm)</th>
<th>FWHM (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaInAs</td>
<td>870</td>
<td>42.5</td>
</tr>
<tr>
<td>GaIn0.575As</td>
<td>909</td>
<td>58</td>
</tr>
<tr>
<td>GaIn0.425As</td>
<td>1160</td>
<td>63.5</td>
</tr>
<tr>
<td>GaIn0.25As</td>
<td>1265</td>
<td>64.5</td>
</tr>
<tr>
<td>GaIn0.05As</td>
<td>1500</td>
<td>N.A.</td>
</tr>
<tr>
<td>GaInNAsSb</td>
<td>870</td>
<td>42.5</td>
</tr>
<tr>
<td>GaIn0.575NAsSb</td>
<td>909</td>
<td>58</td>
</tr>
<tr>
<td>GaIn0.425NAsSb</td>
<td>1160</td>
<td>63.5</td>
</tr>
<tr>
<td>GaIn0.25NAsSb</td>
<td>1265</td>
<td>64.5</td>
</tr>
<tr>
<td>GaIn0.05NAsSb</td>
<td>1500</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

FIGURE 1. Room temperature photoluminescence measurements on GaInNAs(Sb) with different nominal antimony contents.

FIGURE 2. Light I-V measurements for the first sample set at AM0 conditions. The results are shown in Figure 2a. When the growth temperature is increased from 390 °C the maximum output power of the cells increases until 440 °C, after which it starts to decrease for all samples with nitrogen contents up to 4%. There seems to be a quite narrow temperature range from ~410 to 450 °C where GaInNAs grows with good crystalline quality. High-resolution x-ray diffraction measurements have shown that the crystal quality starts to deteriorate when nitrogen content exceeds 4% for the used growth parameters [5].

FIGURE 3. Light I-V measurements were done for the first sample set at AM0 conditions. The results are shown in Figure 2a. When the growth temperature is increased from 390 °C the maximum output power of the cells increases until 440 °C, after which it starts to decrease for all samples with nitrogen contents up to 4%. There seems to be a quite narrow temperature range from ~410 to 450 °C where GaInNAs grows with good crystalline quality. High-resolution x-ray diffraction measurements have shown that the crystal quality starts to deteriorate when nitrogen content exceeds 4% for the used growth parameters [5].
GaNNASb sub-junctions. The light I-V results measured for these cells at AM1.5G are shown in Figure 4.

Although GaNNASb single-junction cells had larger J_0 compared to GaNNAS cells, 3J cells fabricated using closely similar GaNNASb sub-junction did not perform well compared to 3J cells with GaNNAS sub-junction. To test which sub-junction is the limiting one, we applied an external monochromatic light with different wavelengths of 488 nm, 690 nm and 980 nm in addition to the AM1.5G excitation. It turned out that the only way to increase the I_L of the devices for samples with and without Sb was using 488 nm light bias. The longer wavelength illuminations did not affect the I_L. These results indicated that the limiting sub-junction in both 3J cells was made of GaNP.

Currently we do not know the exact reason for inferior behavior with Sb but it may be related to segregation of Sb and transfer to the upper junctions. It is known that Sb acts as surfactant on GaNP in MOVPE growth and is able to reduce the degree of ordering in this material [9,10]. In such a case, the subsequent increase in the bandgap could lead to observed reduction in short circuit current (I_{SC}) but not V_{OC} of 3J cell. Furthermore, it is known that Sb reduces the carrier lifetimes in GaNP [11].

In our case we see slight changes in photoluminescence spectrum of the GaNP subjunction when GaNNASb is used for the bottom junction. The main GaNP peak at room temperature is located at 647 nm but for the sample without Sb we see another shoulder (i.e. 655 nm) on the low energy side of the main peak. The position of the main peak does not change when Sb is added to the growth, but the shoulder disappears. This peak can be explained either by disappearance of another ordering variant due to Sb or reduction of slight tensile strain observed for the sample without Sb. We also observed reduction of the integrated luminescence intensity of GaNP top cell with GaNNASb bottom cell. This is the most likely related

The highest F_{OC} value of 0.5 V was obtained for the optimized GaNNAS cell. For GaNNASb cell the highest F_{OC} was 0.35 V. There is not very large difference between the GaNNAS and GaNNASb cells in F_{OC}, and thus it is tempting to think whether it is even necessary to insert Sb into crystal. Provided that one could fabricate GaNNAS cell with high enough current, then one could take the advantage of the high F_{OC} obtained for the cells made out of this material.

To test whether the GaNNASb sub-junctions work in actual MJSICs we prepared GaNP/GaAs/ GaNNASb/3J solar cells with GaNNAS and GaNNASb sub-junctions. The light I-V results measured for these cells at AM1.5G are shown in Figure 4.

Although GaNNASb single-junction cells had larger J_0 compared to GaNNAS cells, 3J cells fabricated using closely similar GaNNASb sub-junction did not perform well compared to 3J cells with GaNNAS sub-junction. To test which sub-junction is the limiting one, we applied an external monochromatic light with different wavelengths of 488 nm, 690 nm and 980 nm in addition to the AM1.5G excitation. It turned out that the only way to increase the I_L of the devices for samples with and without Sb was using 488 nm light bias. The longer wavelength illuminations did not affect the I_L. These results indicated that the limiting sub-junction in both 3J cells was made of GaNP.

Currently we do not know the exact reason for inferior behavior with Sb but it may be related to segregation of Sb and transfer to the upper junctions. It is known that Sb acts as surfactant on GaNP in MOVPE growth and is able to reduce the degree of ordering in this material [9,10]. In such a case, the subsequent increase in the bandgap could lead to observed reduction in short circuit current (I_{SC}) but not V_{OC} of 3J cell. Furthermore, it is known that Sb reduces the carrier lifetimes in GaNP [11].

In our case we see slight changes in photoluminescence spectrum of the GaNP subjunction when GaNNASb is used for the bottom junction. The main GaNP peak at room temperature is located at 647 nm but for the sample without Sb we see another shoulder (i.e. 655 nm) on the low energy side of the main peak. The position of the main peak does not change when Sb is added to the growth, but the shoulder disappears. This peak can be explained either by disappearance of another ordering variant due to Sb or reduction of slight tensile strain observed for the sample without Sb. We also observed reduction of the integrated luminescence intensity of GaNP top cell with GaNNASb bottom cell. This is the most likely related...
to larger amount of point defects generated in GaInP top cells in samples with Sb. The shift of the band edge of GaInP to shorter wavelengths and reduced luminescence efficacy due to defects are the main factors to explain the reduced I_{sc} for the 3J cell with Sb.

Also, the reduction of V_{oc} for 3J cells with Sb is 0.25 V. This is ~61 V more than what would be expected from GaInNAsSb single-junction SC results. Although Sb is known to generate deep level defects in GaAs [12,7] and reduce recombination lifetime in GaInP [11], and we observe that the luminescence efficacy of GaInP is decreased for samples with Sb we are lacking more detailed information about the exact voltage losses inside the 3J cells and thus cannot refer at this point the missing voltage loss to changes in any specific sub-junction. This will be investigated in more detail in further studies.

CONCLUSIONS

We have obtained ~35 mA/cm2 short circuit current density for GaInNAsSb single-junction SCs at ~one sun illumination. When semiconductors with bandgap below 1 eV and high nitrogen contents are needed, replacement of the GaInNAs subcell with optimized GaInNAsSb subcell will provide enhanced flexibility to fulfill the current matching condition required for high-efficiency MScs once problems with possible segregation of Sb and transfer to the upper layers are solved. Also, low open circuit voltages for Sb-containing cells calls for optimization of growth parameters and the amount of Sb in GaInNAsSb.

ACKNOWLEDGMENTS

The authors want to thank the finnish funding agency for technology and innovation (TEKES) and all the other contributors and partners in Solar III-V project (640120/9). Also, Mr. Peppa Malinen is greatly acknowledged for his valuable assistance in MBE and materials characterization related tasks.

REFERENCES

ACKNOWLEDGMENTS

The authors want to thank the finnish funding agency for technology and innovation (TEKES) and all the other contributors and partners in Solar III-V project (640120/9). Also, Mr. Peppa Malinen is greatly acknowledged for his valuable assistance in MBE and materials characterization related tasks.

© 2014 SpringerOpen. Reproduced with permission.
Performance assessment of multijunction solar cells incorporating GaInNAsSb

Arto Aho, Antti Tukkainen, Ville Pölöjärvi and Micea Guina

Abstract

We have measured the characteristics of molecular beam epitaxy grown GaInNAsSb solar cells with different bandgaps using AM1.5G real sun illumination. Based on the solar cell diode characteristics and known parameters for state-of-the-art GaInP/GaAs and GaInP/GaAs/Ge cells, we have calculated the realistic potential efficiency increase for GaInP/GaAs/GaInNAsSb and GaInP/GaAs/GaInNAsSb/Ge multijunction solar cells for different current matching conditions. The analyses reveal that realistic GaInNAsSb solar cell parameters, render possible an extraction efficiency of over 36% at 1-sun AM1.5D illumination.

Keywords: III-V Semiconductor multijunction solar cells; GaInNAsSb solar cells; Molecular beam epitaxy; High efficiency solar cells; Dilute nitrides

PACS: 88.40.hj; 88.40.jm; 88.40.jp; 81.15.Hf

Background

Multijunction solar cells (MJSC) are instrumental in concentrated (CPV) and space photovoltaic systems. The driving force for the material and technological development of MJSCs is the need for higher conversion efficiency in CPV systems, the conversion efficiency is further increased owing to the use of concentrated light and therefore any efficiency gain that can be made by using more suitable materials and advanced design would lead to significant gain in overall system efficiency. The record CPV efficiency for lattice-matched GaInP/GaAs/GaInNAsSb SC is 44% [1]. On the other hand, the best lattice-matched GaInP/GaAs/Ge exhibit a peak efficiency of 43.3% under concentration [2] and 34.1% at 1 sun [3]. Efficiencies as high as 40% have been predicted for cells with a larger number of junctions and high concentration [4]. To this end, a promising approach is to integrate dilute nitrides and standard GaInP/GaAs/Ge. Yet, so far, such heterostructures have exhibited low current generation [5].

The GaInNAs and GaInNAsSb solar cells reported in the literature have typically high bandgap voltage offsets (ΔVoc), indicating poor junction properties [6,7]. The offset can be reduced below 0.5 V [11]. Another peculiar feature of GaInNAs solar cells is their shunt-like junction operation [6,12]. This feature has been associated with clustering in GaInNAs due to phase separation of GaInNAs. Phase separation and shunt-like operation can also be avoided in MBE by the optimizing of the growth parameters [13]. In this paper, we focus on GaInNAsSb-based multijunction SCs, in particular on evaluating the practical bandgap and thickness limitations set by the subjunctions. Using realistic solar cell parameters for GaInNAsSb, based on the diode model and Kirchhoff's laws, we estimate the efficiency of GaInP/GaAs/GaInNAsSb and GaInP/GaAs/GaInNAsSb/Ge solar cells.

Methods

Experimental details and models

The experimental set consisted of single-junction GaInNAsSb p-i-n SCs with bandgaps ranging from 0.84 to 1.0 eV. The structures were grown by solid source MBE, equipped with SUMO cells for group III atoms, thermal crackers for group V elements and RF plasma source for atomic N flux generation. The N composition (y) of GaInNAsSb was 0.035 while the In composition when compared to GaInAs materials exhibiting a Voc of 0.4 V or even lower [4]. Recent studies on GaInNAs grown by molecular beam epitaxy (MBE) have demonstrated that by employing proper fabrication parameters [8-10], the Voc can be reduced below 0.5 V [11]. Another peculiar feature of GaInNAsSb solar cells is their shunt-like junction operation [6,12]. This feature has been associated with clustering in GaInNAs due to phase separation of GaInNAs. Phase separation and shunt-like operation can also be avoided in MBE by the optimizing of the growth parameters [13]. In this paper, we focus on GaInNAsSb-based multijunction SCs, in particular on evaluating the practical bandgap and thickness limitations set by the subjunctions. Using realistic solar cell parameters for GaInNAsSb, based on the diode model and Kirchhoff's laws, we estimate the efficiency of GaInP/GaAs/GaInNAsSb and GaInP/GaAs/GaInNAsSb/Ge solar cells.

The GaInNAs and GaInNAsSb solar cells reported in the literature have typically high bandgap voltage offsets (ΔVoc), indicating poor junction properties [6,7]. The offsets can be higher than 0.6 V, which is a rather high value when compared to GaInAs materials exhibiting a Voc of 0.4 V or even lower [4]. Recent studies on GaInNAs grown by molecular beam epitaxy (MBE) have demonstrated that by employing proper fabrication parameters [8-10], the Voc can be reduced below 0.5 V [11]. Another peculiar feature of GaInNAs solar cells is their shunt-like junction operation [6,12]. This feature has been associated with clustering in GaInNAs due to phase separation of GaInNAs. Phase separation and shunt-like operation can also be avoided in MBE by the optimizing of the growth parameters [13]. In this paper, we focus on GaInNAsSb-based multijunction SCs, in particular on evaluating the practical bandgap and thickness limitations set by the subjunctions. Using realistic solar cell parameters for GaInNAsSb, based on the diode model and Kirchhoff's laws, we estimate the efficiency of GaInP/GaAs/GaInNAsSb and GaInP/GaAs/GaInNAsSb/Ge solar cells.

Methods

Experimental details and models

The experimental set consisted of single-junction GaInNAsSb p-i-n SCs with bandgaps ranging from 0.84 to 1.0 eV. The structures were grown by solid source MBE, equipped with SUMO cells for group III atoms, thermal crackers for group V elements and RF plasma source for atomic N flux generation. The N composition (y) of GaInNAsSb was 0.035 while the In composition
(a) was approximately 2.7 times the N composition to ensure lattice matching to GaAs. The GaInNAsSb samples were also closely lattice-matched to GaAs using Sb compositions of up to 0.04. For all structures, the lattice matching was verified by X-ray diffraction measurements.

We also fabricated a GaInP/GaAs/GaInNAs triple-junction test SC structure including a GaInNAs subjunction with a bandgap of 0.9 eV. The triple-junction solar cell and the fabrication details are described elsewhere [10]. After the MBE process, the samples were processed to solar cells using metal contacts on n- and p-sides and NiGeAu for the n-side. Then the surface was coated with a two-layer TiO/SiO antireflection (AR) coating. The current–voltage (I–V) characteristics of single- and multijunction solar cells were measured at the real sun (AM1.5G).

The real sun intensity level was measured with a Kipp&Zonen CM11 pyranometer (Delft, the Netherlands). The external quantum efficiency (EQE) of the GaInNAs SC was also measured. Our EQE system was calibrated using NIST-calibrated Si and Ge detectors. Moreover, we measured the room-temperature photo-luminescence (PL) spectra to determine the bandgaps of GaInNAsSb subjunction materials. The solar cell measurements and calculations are performed for one sun illumination unless otherwise stated when data is presented.

The theoretical efficiency of the multijunction solar cells incorporating 1 eV GaInNAsSb materials, was estimated using standard diode equations and AM1.5G/J current generation limits set by the absorbed light, bandgap value, and average EQE (EQEav) of each junction. The equations below were used to estimate the I–V characteristics, and were derived from series-connected diodes with two terminals using Kirchhoff’s laws.

\[
I = I_0 + \frac{I_{SC} \cdot V}{V_{OC}}
\]

\[
V = \frac{I \cdot R_S}{P_{ill}} + \frac{I \cdot R_P}{P_{ill}}
\]

Here, \(I\) is the current of the multijunction device which contains one to four junctions inside, \(I_0\) is the current through an individual solar cell, \(V/\Omega\) is the voltage of single-junction device, \(I_0\) is the quality factor of the ith diode, \(k_B\) is the Boltzmann coefficient, \(T\) is the device temperature (\(T = 300 \, \text{K}\)), \(I_{SC}\) is the current generated by the junction \(I_{SC}\) is the bandgap (300 K) of the ith junction, \(I_{SC}\) is the reverse saturation current of the ith junction at 300 K, \(R_S\) is the device total series resistance, and \(V\) is the device total voltage. We have neglected the shunt resistance for simplicity, which is a good approximation for most of the high-quality SC devices. Here, we have also approximated the tunnel junctions as ideal lossless contacts between the solar cell junctions. One should keep in mind that this approximation is not valid at extremely high concentrations; the concentration limit depends strongly on the quality of the tunnel junctions.

Measurements

The I–V characteristics of single-junction GaInNAs SC, for AM1.5G real-sun illumination, are shown in Figure 1a. Measurements were done with and without a 900-nm long-pass filter inserted before the SC. The filter was used for simulating the light absorption into top junctions present in a multijunction device. The open circuit voltage \(V_{OC}\) and short-circuit current \(I_{SC}\) values for the GaInNAs SCs were 0.416 V and approximately 40 mA/cm², and 0.368 V and approximately 10 mA/cm², with and without a long-pass filter, respectively. The spectral behavior of PL and EQE is shown in Figure 1b. The bandgap of the GaInNAs was estimated from the PL peak maximum wavelength to be approximately 1 eV.

Examples of the measured PL spectra for GaInNAsSb structures with different amounts of Sb are presented in Figure 2a. As it can be seen, the bandgap of GaInNAsSb can be decreased down to 0.83 eV (1,500 nm). The I–V characteristics of a GaInNAs SC with \(E_g = 0.9\) eV measured under real sun excitation at AM1.5G are presented in Figure 2b.

From the data presented in Figures 1 and 2b, we have calculated the \(I_{SC}\) values for selected GaInNAs and GaInNAsSb single-junction SCs. For GaInNAs SC with \(E_g = 1\) eV the \(I_{SC}\) was 0.58 V and for GaInNAsSb with \(E_g = 0.9\) eV, the \(I_{SC}\) was 0.59 V. The best \(I_{SC}\) we have achieved so far from GaInNAs single-junction SCs is 0.49 V [11]. The observations made here are in accordance with previously published reports which indicate that the Sb-based solar cells have a slightly higher \(I_{SC}\) values compared to GaInNAs SCs [6,9].

The \(I_{SC}\) values at AM1.5G for GaInNAsSb solar cells are summarized in Table 1. The performance of the GaInP/GaAs/GaInNAs SC, which we used for initial estimation, was current limited to 12 mA/cm² [10]; we note here that 14 mA/cm² would be needed for current matching with the two top junctions. Based on the \(I_{SC} = 12\) mA/cm², we calculate that in our triple-junction SCs, the EQEav of GaInNAs subjunction below a thick GaAs filter is approximately 0.6. For the current matching of this particular type of triple-junction device, one would need an EQEav of 0.7. The \(I_{SC}\) improvement from double- to triple-junction SC due to adding GaInNAs subjunction was 0.35 V. Using this information and our (a) was approximately 2.7 times the N composition to ensure lattice matching to GaAs. The GaInNAsSb samples were also closely lattice-matched to GaAs using Sb compositions of up to 0.04. For all structures, the lattice matching was verified by X-ray diffraction measurements.

We also fabricated a GaInP/GaAs/GaInNAs triple-junction test SC structure including a GaInNAs subjunction with a bandgap of 0.9 eV. The triple-junction solar cell and the fabrication details are described elsewhere [10]. After the MBE process, the samples were processed to solar cells using TiAu contacts on p- and n-sides and NiGeAu for the n-side. Then the surface was coated with a two-layer TiO/SiO antireflection (AR) coating. The current–voltage (I–V) characteristics of single- and multijunction solar cells were measured at the real sun (AM1.5G).

The real sun intensity level was measured with a Kipp&Zonen CM11 pyranometer (Delft, the Netherlands). The external quantum efficiency (EQE) of the GaInNAs SC was also measured. Our EQE system was calibrated using NIST-calibrated Si and Ge detectors. Moreover, we measured the room-temperature photo-luminescence (PL) spectra to determine the bandgaps of GaInNAsSb subjunction materials. The solar cell measurements and calculations are performed for one sun illumination unless otherwise stated when data is presented.

The theoretical efficiency of the multijunction solar cells incorporating 1 eV GaInNAsSb materials, was estimated using standard diode equations and AM1.5G/J current generation limits set by the absorbed light, bandgap value, and average EQE (EQEav) of each junction. The equations below were used to estimate the I–V characteristics, and were derived from series-connected diodes with two terminals using Kirchhoff’s laws.

\[
I = I_0 + \frac{I_{SC} \cdot V}{V_{OC}}
\]

\[
V = \frac{I \cdot R_S}{P_{ill}} + \frac{I \cdot R_P}{P_{ill}}
\]

Here, \(I\) is the current of the multijunction device which contains one to four junctions inside, \(I_0\) is the current through an individual solar cell, \(V/\Omega\) is the voltage of single-junction device, \(I_0\) is the quality factor of the ith diode, \(k_B\) is the Boltzmann coefficient, \(T\) is the device temperature (\(T = 300 \, \text{K}\)), \(I_{SC}\) is the current generated by the junction \(I_{SC}\) is the bandgap (300 K) of the ith junction, \(I_{SC}\) is the reverse saturation current of the ith junction at 300 K, \(R_S\) is the device total series resistance, and \(V\) is the device total voltage. We have neglected the shunt resistance for simplicity, which is a good approximation for most of the high-quality SC devices. Here, we have also approximated the tunnel junctions as ideal lossless contacts between the solar cell junctions. One should keep in mind that this approximation is not valid at extremely high concentrations; the concentration limit depends strongly on the quality of the tunnel junctions.

Measurements

The I–V characteristics of single-junction GaInNAs SCs, for AM1.5G real-sun illumination, are shown in Figure 1a. The measured \(I_{SC}\) values at AM1.5G are presented in Table 1. The performance of the GaInNAs SCs were 0.416 V and approximately 40 mA/cm², and 0.368 V and approximately 10 mA/cm², with and without a long-pass filter, respectively. The spectral behavior of PL and EQE is shown in Figure 1b. The bandgap of the GaInNAs was estimated from the PL peak maximum wavelength to be approximately 1 eV.

Examples of the measured PL spectra for GaInNAs structures with different amounts of Sb are presented in Figure 2a. As it can be seen, the bandgap of GaInNAsSb can be decreased down to 0.83 eV (1,500 nm). The I–V characteristics of a GaInNAs SC with \(E_g = 0.9\) eV measured under real sun excitation at AM1.5G are presented in Figure 2b.

From the data presented in Figures 1 and 2b, we have calculated the \(I_{SC}\) values for selected GaInNAs and GaInNAsSb single-junction SCs. For GaInNAs SC with \(E_g = 1\) eV the \(I_{SC}\) was 0.58 V and for GaInNAsSb with \(E_g = 0.9\) eV, the \(I_{SC}\) was 0.59 V. The best \(I_{SC}\) we have achieved so far from GaInNAs single-junction SCs is 0.49 V [11]. The observations made here are in accordance with previously published reports which indicate that the Sb-based solar cells have a slightly higher \(I_{SC}\) values compared to GaInNAs SCs [6,9].

The \(I_{SC}\) values at AM1.5G for GaInNAsSb solar cells are summarized in Table 1. The performance of the GaInP/GaAs/GaInNAs SC, which we used for initial estimation, was current limited to 12 mA/cm² [10]; we note here that 14 mA/cm² would be needed for current matching with the two top junctions. Based on the \(I_{SC} = 12\) mA/cm², we calculate that in our triple-junction SCs, the EQEav of GaInNAs subjunction below a thick GaAs filter is approximately 0.6. For the current matching of this particular type of triple-junction device, one would need an EQEav of 0.7. The \(I_{SC}\) improvement from double- to triple-junction SC due to adding GaInNAs subjunction was 0.35 V. Using this information and our...
model, we can approximate the behavior of the pure GaInNAs subjunction at different illumination conditions. At 1/3 suns - situation which occurs when a lattice-matched triple-junction cell is illuminated by 1 sun - the \(\text{W}_{oc} \) of GaInNAs subjunction is 0.56 V. At 1-sun illumination, which corresponds to a 3-sun illumination of a triple-junction device, the \(\text{W}_{oc} \) of GaInNAs subjunction is 0.53 V.

Theoretical and practical limits for current generation in GaInNAsSb SC

In order to estimate the performance of realistic MJSC incorporating GaInNAsSb materials, one would need to use realistic data concerning current generation and current matching. The current generation in the GaInNAsSb subjunction has to be high enough to satisfy the current matching conditions of GaInP/GaAs/GaInNAsSb and GaInP/GaAs/GaInNAsSb/Ge solar cells. The current matching condition depending on the illumination spectrum, thickness, bandgap, and the EQEav of GaInNAsSb sub-cell and the thickness of top subjunctions. The calculated \(\text{J}_{sc} \) for GaInNAsSb at AM1.5G [14] are shown in Figure 3a. Again, in this case, it was considered that the dilute nitride cell is covered by a thick GaAs window layer, which practically absorbs all the photons with energy above 1.42 eV, to simulate the MJSC operation.

The theoretical upper limit for the bandgap of GaInNAsSb in GaInP/GaAs/GaInNAsSb solar cell operating at AM1.5G is 1.04 eV. In practice, the bandgap needs to be slightly smaller than this because the EQEav target of approximately 100% is impractical for GaInNAsSb. EQEav limits for approximately 90% have been achieved for GaInN, GaAs, and Ge junctions [12,15], and thus, we set the EQEav = 90% as a practical upper limit for GaInNAs subjunction operation which sets the upper limit for the GaInNAsSb bandgap to 1.02 eV. The current matching limits for different bandgaps of GaInNAsSb are presented in Figure 3b, where N compositions were calculated using the Vegard law and the band anti-crossing model [16].

To be usable for triple-junction SCs, the GaInNAsSb subjunction should produce higher \(\text{V}_{oc} \) than Ge. Therefore, model, we can approximate the behavior of the pure GaInNAs subjunction at different illumination conditions. Again, in this case, it was considered that the dilute nitride cell is covered by a thick GaAs window layer, which practically absorbs all the photons with energy above 1.42 eV, to simulate the MJSC operation.

The theoretical upper limit for the bandgap of GaInNAsSb in GaInP/GaAs/GaInNAsSb solar cell operating at AM1.5G is 1.04 eV. In practice, the bandgap needs to be slightly smaller than this because the EQEav target of approximately 100% is impractical for GaInNAsSb. EQEav limits for approximately 90% have been achieved for GaInN, GaAs, and Ge junctions [12,15], and thus, we set the EQEav = 90% as a practical upper limit for GaInNAs subjunction operation which sets the upper limit for the GaInNAsSb bandgap to 1.02 eV. The current matching limits for different bandgaps of GaInNAsSb have been achieved for GaInP/GaAs/GaInNAsSb and GaInP/GaAs/GaInNAsSb/Ge solar cells. The current matching condition depending on the illumination spectrum, thickness, bandgap, and the EQEav of GaInNAsSb sub-cell and the thickness of top subjunctions. The calculated \(\text{J}_{sc} \) for GaInNAsSb at AM1.5G [14] are shown in Figure 3a. Again, in this case, it was considered that the dilute nitride cell is covered by a thick GaAs window layer, which practically absorbs all the photons with energy above 1.42 eV, to simulate the MJSC operation.

The theoretical upper limit for the bandgap of GaInNAsSb in GaInP/GaAs/GaInNAsSb solar cell operating at AM1.5G is 1.04 eV. In practice, the bandgap needs to be slightly smaller than this because the EQEav target of approximately 100% is impractical for GaInNAsSb. EQEav limits for approximately 90% have been achieved for GaInN, GaAs, and Ge junctions [12,15], and thus, we set the EQEav = 90% as a practical upper limit for GaInNAs subjunction operation which sets the upper limit for the GaInNAsSb bandgap to 1.02 eV. The current matching limits for different bandgaps of GaInNAsSb have been achieved for GaInP/GaAs/GaInNAsSb and GaInP/GaAs/GaInNAsSb/Ge solar cells. The current matching condition depending on the illumination spectrum, thickness, bandgap, and the EQEav of GaInNAsSb sub-cell and the thickness of top subjunctions. The calculated \(\text{J}_{sc} \) for GaInNAsSb at AM1.5G [14] are shown in Figure 3a. Again, in this case, it was considered that the dilute nitride cell is covered by a thick GaAs window layer, which practically absorbs all the photons with energy above 1.42 eV, to simulate the MJSC operation.
the break-even limit for GaInP/GaAs/GaInNAsSb compared to GaInP/GaAs/Ge depends on the W_{oc} of GaInNAsSb subjunction. Note that the thickness and bandgap of GaInNAsSb can be rather freely optimized to fulfill the current matching criteria for a triple-junction device. However, the situation is very different when GaInP/GaAs/GaInNAsSb/Ge devices are considered. In GaInP/GaAs/GaInNAsSb/Ge devices, the total I_{sc} produced by photons with energies between 1.4 eV and approximately 0.7 eV needs to be shared equally by the GaInNAsSb and Ge regions.

Table 1 Characteristics of GaInNAsSb p-i-n diodes at different illumination conditions

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>Device</th>
<th>J_{sc} (mA/cm²)</th>
<th>J_{sc} (mA/cm²)</th>
<th>I_{mp} (mA/cm²)</th>
<th>V_{mp} (V)</th>
<th>FF</th>
<th>η</th>
<th>I_{oc} (mA/cm²)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM1.5G</td>
<td>GaInNAs (1 eV)</td>
<td>3.9</td>
<td>48.12</td>
<td>0.83</td>
<td>0.416</td>
<td>70%</td>
<td>11.6%</td>
<td>1.20E-03</td>
<td>1.55</td>
</tr>
<tr>
<td>AM1.5G (90 min LP)</td>
<td>GaInNAs (1 eV)</td>
<td>9.9</td>
<td>16.48</td>
<td>0.61</td>
<td>0.368</td>
<td>68%</td>
<td>2.5%</td>
<td>1.20E-03</td>
<td>1.58</td>
</tr>
<tr>
<td>AM1.5G</td>
<td>GaAs/Ge (935 eV)</td>
<td>35.0</td>
<td>51.61</td>
<td>0.68</td>
<td>0.383</td>
<td>65%</td>
<td>7.2%</td>
<td>1.70E-02</td>
<td>1.60</td>
</tr>
</tbody>
</table>

Efficiency estimations

For the efficiency simulation of MJSCs, we used the measured results for GaInNAsb and parameters for state-of-the-art GaInP/GaAs [17] and GaInP/Ga(In)As/Ge [3] SCs with standard bandgaps of 1.9/1.4/0.70 eV. The calculated multijunction SC characteristics with GaInNAsb subjunctions are based on the data presented in Tables 1 and 2 and the diode Equations 1 to 3.

Figure 3

![Figure 3](image-url)
Figure 3 Calculated J_{sc} for GaInNAsb sub-cell (a) and realistic AM1.5G current matching window for GaInP/GaAs/GaInNAs SC (b).
Table 2 Ideal and practical J_{sc} values for GaInP/GaAs/GaInNAsSb and GaInP/GaAs/GaInNAsSb/Ge SCs

<table>
<thead>
<tr>
<th></th>
<th>$J_{sc(GaInP)}$ (mA/cm²)</th>
<th>$J_{sc(GaAs)}$ (mA/cm²)</th>
<th>$J_{sc(GaInNAsSb)}$ (mA/cm²)</th>
<th>$J_{sc(GaInNAsSb/Ge)}$ (mA/cm²)</th>
<th>Difference (mA/cm²)</th>
<th>J_{sc current matched 3J$} (mA/cm²)</th>
<th>J_{sc current matched 4J$} (mA/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM1.5G</td>
<td>30.3</td>
<td>28.4</td>
<td>2.9</td>
<td>17.75</td>
<td>-1.9</td>
<td>13.35</td>
<td>13.5</td>
</tr>
<tr>
<td>AM1.5D</td>
<td>30.0</td>
<td>36.1</td>
<td>6.9</td>
<td>14.52</td>
<td>2.9</td>
<td>17.5</td>
<td>17.0</td>
</tr>
</tbody>
</table>

J_{sc} values shared by GaInP/GaAs and GaInNAsSC junctions for different spectra at 300 K [12] and the current matching J_{sc} values with EQEav = 0.91 for GaInP/GaAs/GaInNAs and GaInP/GaAs/GaInNAs/Ge. The J_{sc} differences between the two top junctions and the two bottom junctions are also given.

Results and discussion

According to our measurements and calculations, it would be beneficial to design the GaInNAs junction to overproduce current (see Figure 4a). Our calculations show that when GaInNAs junction generates more current than other junctions one would get approximately 1 percentage points higher efficiency compared to exactly current-matched triple-junction device. This is in line with reported data for GaInP/GaAs/GaInNAsSb triple-junction cells [19].

The efficiency improvement upon adding GaInNAsSb junction to a double- or triple-junction cell shows clear dependence on the illumination spectrum. When GaInP/GaAs/Ge triple-junction cells are compared with GaInP/GaAs/GaInNAs one observes that at AM1.5G, the efficiency is 0.4 to 1.4 percentage points better when GaInNAs subjunction is used, depending on the design and the GaInNAs subjunction performance. However, it turns out that a four-junction SC with 1 eV GaInNAs, does not perform well at AM1.5G illumination. The added Ge junction does not improve the efficiency when compared to its triple junction reference (GaInP/GaAs/GaInNAs cell). This is simply due to the fact that the subjunctions of GaInP/GaAs/GaInNAs ($E_g = 1$ eV) Ge SCs do not have the optimum bandgaps for current matching at AM1.5G conditions. Therefore, such a device is measured at AM1.5D, the situation changes and due to less blue rich spectrum, the multijunction device has better current matching between the subjunctions [12]. The studied four-junction device can have 1.6- to 1.7-percentage point higher efficiency at 1-sun than its GaInNAsSb triple-junction reference depending on the current matching. We have also compared the effect of bandgap on the efficiency of triple-junction devices. When a GaInNAsSb subjunction with $E_g = 0.9$ eV instead of GaInNAs with $E_g = 1.0$ eV is used at AM1.5D, the obtainable efficiency drops a 1.4 percentage points but since a device would be easier to realize with generation of excess current, the drop in practice would be smaller (see Figure 4a).

We have made a preliminary estimate for the performance of GaInP/GaAs/GaInNAsSb/Ge SC under concentrated sunlight at AM1.5D using GaInP/GaAs/Ge parameters from reference [20]. When compared to 1-sun results, the benefit of using a GaInNAs junction starts to be significant at concentrated sunlight. We estimate that GaInP/GaAs/GaInNAsSb triple-junction SCs operated at a concentration of 300 times have up to 3- to 6-percentage point higher efficiencies than GaInP/GaAs/Ge SCs. The situation gets even more favorable for GaInNAs when four-junction devices are considered. Our calculations show that the efficiency can be further improved by approximately 3.5 percentage points compared with a GaInP/GaAs/GaInNAs triple-junction device by adding the fourth junction.
Another important aspect that needs to be addressed to make sure of these advantages is the AR coating. The four-junction devices are already very demanding from the AR coating point of view since even the lowest short circuit current density of 13.79 mA/cm² used in the calculations requires an EQEav of 91%. Commonly used AR coatings on GaP/GaAs/Ge should be improved since the reflectance has traditionally been optimized for GaP and GaAs subjunction current generation. This can be done in GaP/GaAs/Ge SCs with almost no additional loss as Ge produces excess current that is able to accommodate the loss due to inappropriate AR coating. This leads to the fact that many Ge-based multijunction devices have EQEav less than 90%. To improve the AR coating, one needs to adopt new schemes. One potential candidate is the moth eye pattern fabricated onto window layers of multijunction SCs. Such AR coatings are able to provide low reflectivity throughout the entire absorption spectrum of multijunction SCs [11].

Four-junction SCs are also sensitive to changes in spectral conditions since the photons need to be shared more equally than in Ge-based triple-junction devices. However, calculations have proved that inserting the fourth junction [12,15] or even more junctions would in fact be beneficial from the total yearly produced energy point of view, even if the changing spectral conditions were considered. Another positive factor for the GaP/GaAs/GaInNAsSb/Ge SCs is the fact that the top cells can be made thin to obtain current matching. This will bring clear savings in fabrication costs, especially for CPV cells. There are indications that by using thin subjunctions, the epitaxial costs could be even cut by half [18]. The multijunction SC approach easily gets cost limited by the substrate costs and thus substrate recycling would be obvious companion to this approach. Therefore, the optimal GaP/GaAs/GaInNAsSb/Ge structure would depend on the device efficiency, the cost of epitaxy and the cost of substrate and environment where the SC would be operated. The efficiency improvements to GaP/GaAs/GaInNAsSb SC after adding the Ge junction calculated in this paper may seem small but when calculating the SC system costs and generated energy factor, the grid-connected systems would provide better values since the total system costs do not increase too much [5]. In this paper, we have not estimated the effect of the lower Ge junction current generation on Voc of Ga junction in the four-junction device. It was dropped out because of the lack of information on Ge subjunction performance in high-quality GaP/GaAs/Ge SC. This might bias our results towards slightly overestimated Voc and FF values for the four-junction SCs. On the other hand, in four-junction SCs, the quantum defect is lower in the Ge subjunction and the overall temperature of the whole SC will be lower, especially in CPV operation. In practice, this makes higher efficiencies and higher Voc possible at high concentrations.

Another important aspect that needs to be addressed to make sure of these advantages is the AR coating. The four-junction devices are already very demanding from the AR coating point of view since even the lowest short circuit current density of 13.79 mA/cm² used in the calculations requires an EQEav of 91%. Commonly used AR coatings on GaP/GaAs/Ge should be improved since the reflectance has traditionally been optimized for GaP and GaAs subjunction current generation. This can be done in GaP/GaAs/Ge SCs with almost no additional loss as Ge produces excess current that is able to accommodate the loss due to inappropriate AR coating. This leads to the fact that many Ge-based multijunction devices have EQEav less than 90%. To improve the AR coating, one needs to adopt new schemes. One potential candidate is the moth eye pattern fabricated onto window layers of multijunction SCs. Such AR coatings are able to provide low reflectivity throughout the entire absorption spectrum of multijunction SCs [11].

Four-junction SCs are also sensitive to changes in spectral conditions since the photons need to be shared more equally than in Ge-based triple-junction devices. However, calculations have proved that inserting the fourth junction [12,15] or even more junctions would in fact be beneficial from the total yearly produced energy point of view, even if the changing spectral conditions were considered. Another positive factor for the GaP/GaAs/GaInNAsSb/Ge SCs is the fact that the top cells can be made thin to obtain current matching. This will bring clear savings in fabrication costs, especially for CPV cells. There are indications that by using thin subjunctions, the epitaxial costs could be even cut by half [18]. The multijunction SC approach easily gets cost limited by the substrate costs and thus substrate recycling would be obvious companion to this approach. Therefore, the optimal GaP/GaAs/GaInNAsSb/Ge structure would depend on the device efficiency, the cost of epitaxy and the cost of substrate and environment where the SC would be operated.

The efficiency improvements to GaP/GaAs/GaInNAsSb SC after adding the Ge junction calculated in this paper may seem small but when calculating the SC system costs and generated energy factor, the grid-connected systems would provide better values since the total system costs do not increase too much [5]. In this paper, we have not estimated the effect of the lower Ge junction current generation on Voc of Ga junction in the four-junction device. It was dropped out because of the lack of information on Ge subjunction performance in high-quality GaP/GaAs/Ge SC. This might bias our results towards slightly overestimated Voc and FF values for the four-junction SCs. On the other hand, in four-junction SCs, the quantum defect is lower in the Ge subjunction and the overall temperature of the whole SC will be lower, especially in CPV operation. In practice, this makes higher efficiencies and higher Voc possible at high concentrations.

Table 3 Estimated 1-sun efficiencies for GaInNAsSb multijunction solar cells at AM1.5D

<table>
<thead>
<tr>
<th>Structure</th>
<th>Spectrum</th>
<th>Jsc (mA/cm²)</th>
<th>Voc (V)</th>
<th>FF</th>
<th>η (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 J-GaInP/GaAs/GaInNAs (15.5 mA/cm²) AM1.5D</td>
<td>13.75</td>
<td>2.87</td>
<td>82.97</td>
<td>36.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 J-GaInP/GaAs/GaInNAs/Ge AM1.5D</td>
<td>13.35</td>
<td>3.11</td>
<td>82.71</td>
<td>34.36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4 Estimated 1-sun efficiencies for GaInNAsSb multijunction solar cells at AM1.5G

<table>
<thead>
<tr>
<th>Structure</th>
<th>Spectrum</th>
<th>Jsc (mA/cm²)</th>
<th>Voc (V)</th>
<th>FF</th>
<th>η (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 J-GaInP/GaAs/GaInNAsSb (0.90 eV) AM1.5D</td>
<td>13.79</td>
<td>2.76</td>
<td>82.52</td>
<td>31.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 J-GaInP/GaAs/GaInNAsSb/Ge AM1.5D</td>
<td>13.35</td>
<td>3.11</td>
<td>82.71</td>
<td>34.36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 Estimated 1-sun efficiencies for GaInNAsSb multijunction solar cells at AM1.5G

<table>
<thead>
<tr>
<th>Structure</th>
<th>Spectrum</th>
<th>Jsc (mA/cm²)</th>
<th>Voc (V)</th>
<th>FF</th>
<th>η (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 J-GaInP/GaAs/GaInNAs (15.5 mA/cm²) AM1.5G</td>
<td>13.75</td>
<td>2.87</td>
<td>82.97</td>
<td>36.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 J-GaInP/GaAs/GaInNAs/Ge AM1.5G</td>
<td>13.35</td>
<td>3.11</td>
<td>82.71</td>
<td>34.36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4 Estimated 1-sun efficiencies for GaInNAsSb multijunction solar cells at AM1.5D

<table>
<thead>
<tr>
<th>Structure</th>
<th>Spectrum</th>
<th>Jsc (mA/cm²)</th>
<th>Voc (V)</th>
<th>FF</th>
<th>η (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 J-GaInP/GaAs/GaInNAsSb (0.90 eV) AM1.5D</td>
<td>13.79</td>
<td>2.76</td>
<td>82.52</td>
<td>31.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 J-GaInP/GaAs/GaInNAsSb/Ge AM1.5D</td>
<td>13.35</td>
<td>3.11</td>
<td>82.71</td>
<td>34.36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
We have presented our GaInNAsSb diode characteristics with different N and Sb compositions and estimated the efficiency of GaInP/GaInNAsSb and GaInGa/ GaInAsSb/GaSb solar cells. Our calculations based on measurements and a diode model reveal that at AM1.5G and at current matching condition, the use of GaInNAsSb as the bottom junction of a triple junction cell can increase the efficiency by approximately 4 percentage points compared to GaInP/GaAs double junction SC and have 1.4 percentage points higher efficiency than a GaInN/ GaAsSb SC. At AM1.5D, the GaInNAsSb-based four-junction cell has a potential to show 1.7 percentage points higher efficiency than the GaInP/GaInNAsSb triple-junction device. The achievable efficiencies for GaInNAsSb four-junction solar cells at AM1.5D 1-sun illumination are estimated to be over 36%. Our future target is to increase the GaInNAsSb EQE close to 100%, minimize the losses in front surface reflectance and develop low-loss junctions.

Conclusion

We have presented our GaInNAsSb diode characteristics with different N and Sb compositions and estimated the efficiency of GaInP/GaInNAsSb and GaInGa/ GaInAsSb/GaSb solar cells. Our calculations based on measurements and a diode model reveal that at AM1.5G and at current matching condition, the use of GaInNAsSb as the bottom junction of a triple junction cell can increase the efficiency by approximately 4 percentage points compared to GaInP/GaAs double junction SC and have 1.4 percentage points higher efficiency than a GaInN/ GaAsSb SC. At AM1.5D, the GaInNAsSb-based four-junction cell has a potential to show 1.7 percentage points higher efficiency than the GaInP/GaInNAsSb triple-junction device. The achievable efficiencies for GaInNAsSb four-junction solar cells at AM1.5D 1-sun illumination are estimated to be over 36%. Our future target is to increase the GaInNAsSb EQE close to 100%, minimize the losses in front surface reflectance and develop low-loss junctions.

References

© 2014 American Institute of Physics. Reproduced with permission.
Moth Eye Antireflection Coated GaInP/GaAs/GaInNAs Solar Cell

Arto Aho, Juha Tommila, Antti Tukiainen, Ville Poloijärvi, Tapio Niemi, and Mircea Guina

Optoelectronics Research Centre, Tampere University of Technology, P.O.Box 692, FIN-33101 Tampere, Finland, email: arto.j.aho@tut.fi

Abstract. The performance of a GalnP/GaAs/GaInNAs solar cell incorporating AlInP moth eye antireflection coating is reported and compared with the performance of a similar cell comprising TiO2/SiO2 antireflection coating. The moth eye coating exhibits an average reflectance of only 2% within the spectral range from 400 nm to 1600 nm. EQE measurements revealed absorption-related losses in the AlInP moth eye coating at wavelengths below 510 nm. Short wavelength absorption decreases the current generation in the top GalnP junction by 10%. Despite the absorption losses, the moth eye patterned GalnP/GaAs/GaInNAs solar cell exhibited higher current generation under AM1.5G real sun illumination.

Keywords: Antireflection coating, AlInP moth eye, GaInNAs, multijunction solar cell, MBE

PACS: 88.40.jp, 88.40.jm, 88.40.hj, 78.20.-e

INTRODUCTION

The efficient utilization of the broad solar spectrum in multijunction solar cells (MJC) calls for the development of advanced antireflection coatings (ARCs) that operate in a broad spectral range [1]. The development of advanced antireflection coatings (ARCs) that operate in a broad spectral range [1]. The MJC design approach is to integrate an AlInP moth eye ARC with a single junction dilute nitride solar cell with a bandgap (Eg) of 1 eV [4]. For the sake of generality we note that there are also other materials that can be used as bio-mimicked “moth eye” nanostructures processed on top of the MJC. The advantages of using such nanostructures fabricated in AlnP, which is typically used as a window layer on GaAs based MJs, have already demonstrated [3, 4]. Moreover, we have also demonstrated a moth eye ARC fabricated on top of a single junction dilute nitride solar cell with a bandgap (Eg) of 1 eV [4]. For the sake of generality we note that there are also other materials that can be used as the basis for the moth eye pattern, for example, polymers, semiconductor nanowires and patterned dielectrics [5, 6, 8, 9, 10, 11, 12]. In this paper, we utilized the nanoimprint lithography (NIL) technique to integrate an AlInP moth eye ARC with a multijunction GaInP/GaAs/GaInNAs solar cell and we compared its performance against a GaInP/GaAs/GaInNAs solar cell comprising a TiO2/SiO2 ARC.

EXPERIMENTS

The GaInP/GaAs/GaInNAs MJSCs were grown by molecular beam epitaxy (MBE). The band gaps of the active regions were 1.9, 1.4 and 1 eV for the GaInP, GaAs and GaInNAs junctions, respectively. After the MBE growth the wafers were processed and moth eye ARC patterns were fabricated using NIL technique. The moth eye coating was fabricated directly on the monolithically grown AlInP surface of the triple junction MJC. Prior patterning, the thickness of the AlInP window layer was 700 nm. The reference sample consisted of a similar triple junction solar cell with the only difference being a thinner AlInP window of only 40 nm. The reference sample was e-beam coated with a TiO2/SiO2 ARC. Details of the MJSC growth and the moth eye ARC fabrication have been reported elsewhere [3, 4, 13]. NiGe/Au contact fingers and the Ti/Au back contact were deposited by e-beam evaporation on the n-side and p-side, respectively. The solar cells were characterized by measuring the reflectance, the current-voltage (I–V) characteristics, and the external quantum efficiency (EQE). The textures of the patterned surfaces were studied using scanning electron microscopy (SEM). The reflectance was measured with an automated Accent RPM 2000 photoluminescence mapping tool calibrated with a gold mirror. Real sun I–V characteristics were measured at AM1.5G solar spectral conditions. The corresponding radiation power density was 860 W/m² as determined with a Kipp & Zonen 1M6 International Conference on Concentrator Photovoltaic Systems
© 2014 ASIP Publishing LLC 978-0-7556-1255-8/20 00

Moth Eye Antireflection Coated GaInP/GaAs/GaInNAs Solar Cell

Arto Aho, Juha Tommila, Antti Tukiainen, Ville Poloijärvi, Tapio Niemi, and Mircea Guina

Optoelectronics Research Centre, Tampere University of Technology, P.O.Box 692, FIN-33101 Tampere, Finland, email: arto.j.aho@tut.fi

Abstract. The performance of a GalnP/GaAs/GaInNAs solar cell incorporating AlInP moth eye antireflection coating is reported and compared with the performance of a similar cell comprising TiO2/SiO2 antireflection coating. The moth eye coating exhibits an average reflectance of only 2% within the spectral range from 400 nm to 1600 nm. EQE measurements revealed absorption-related losses in the AlInP moth eye coating at wavelengths below 510 nm. Short wavelength absorption decreases the current generation in the top GalnP junction by 10%. Despite the absorption losses, the moth eye patterned GalnP/GaAs/GaInNAs solar cell exhibited higher current generation under AM1.5G real sun illumination.

Keywords: Antireflection coating, AlInP moth eye, GaInNAs, multijunction solar cell, MBE

PACS: 88.40.jp, 88.40.jm, 88.40.hj, 78.20.-e

INTRODUCTION

The efficient utilization of the broad solar spectrum in multijunction solar cells (MJC) calls for the development of advanced antireflection coatings (ARCs) that operate in a broad spectral range [1]. The MJC design approach is to integrate an AlInP moth eye ARC with a single junction dilute nitride solar cell with a bandgap (Eg) of 1 eV [4]. For the sake of generality we note that there are also other materials that can be used as the basis for the moth eye pattern, for example, polymers, semiconductor nanowires and patterned dielectrics [5, 6, 8, 9, 10, 11, 12]. In this paper, we utilized the nanoimprint lithography (NIL) technique to integrate an AlInP moth eye ARC with a multijunction GaInP/GaAs/GaInNAs solar cell and we compared its performance against a GaInP/GaAs/GaInNAs solar cell comprising a TiO2/SiO2 ARC.

EXPERIMENTS

The GaInP/GaAs/GaInNAs MJCSCs were grown by molecular beam epitaxy (MBE). The band gaps of the active regions were 1.9, 1.4 and 1 eV for the GaInP, GaAs and GaInNAs junctions, respectively. After the MBE growth the wafers were processed and moth eye ARC patterns were fabricated using NIL technique. The moth eye coating was fabricated directly on the monolithically grown AlInP surface of the triple junction MJC. Prior patterning, the thickness of the AlInP window layer was 700 nm. The reference sample consisted of a similar triple junction solar cell with the only difference being a thinner AlInP window of only 40 nm. The reference sample was e-beam coated with a TiO2/SiO2 ARC. Details of the MJSC growth and the moth eye ARC fabrication have been reported elsewhere [3, 4, 13]. NiGe/Au contact fingers and the Ti/Au back contact were deposited by e-beam evaporation on the n-side and p-side, respectively. The solar cells were characterized by measuring the reflectance, the current-voltage (I–V) characteristics, and the external quantum efficiency (EQE). The textures of the patterned surfaces were studied using scanning electron microscopy (SEM). The reflectance was measured with an automated Accent RPM 2000 photoluminescence mapping tool calibrated with a gold mirror. Real sun I–V characteristics were measured at AM1.5G solar spectral conditions. The corresponding radiation power density was 860 W/m² as determined with a Kipp & Zonen 1M6 International Conference on Concentrator Photovoltaic Systems
© 2014 ASIP Publishing LLC 978-0-7556-1255-8/20 00
CM11 pyranometer. The measurements were performed in Tampere Finland. We performed the EQE measurements with an in-house build monochromator-based measurement system, which was calibrated using NIST-calibrated Si and Ge reference cells. All measurements were done at 300 K.

RESULTS, SIMULATION AND DISCUSSION

The AlInP moth eye structure processed on top of the MJSC was characterized first by SEM. The SEM picture in Fig. 1 reveals the pattern, with periodicity of 500 nm, arranged into a triangular lattice. The surface reflection properties of the AlInP moth eye are compared with the TiO2/SiO2 reference structure in Fig. 2. Both ARCs show good antireflection properties but at wavelengths above 1200 nm the moth eye ARC shows clearly lower reflectivity.

Table 1. Reflectivities of ARC on MJSCs.

<table>
<thead>
<tr>
<th>ARC Structure</th>
<th>Average reflectivity 400-1000 nm (%)</th>
<th>Average reflectivity 1000-1700 nm (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlInP moth eye, measured [this work]</td>
<td>2.09</td>
<td>1.62</td>
</tr>
<tr>
<td>AlInP moth eye simulation [3]</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>TiO2/SiO2 [this work]</td>
<td>4.24</td>
<td>5.83</td>
</tr>
<tr>
<td>TiO2 or SiNx nanostructure [6]</td>
<td>7.28</td>
<td>7.28</td>
</tr>
<tr>
<td>Patterned PVC film [9]</td>
<td>9.08</td>
<td>-</td>
</tr>
<tr>
<td>SiO2 moth eye on conventional ARC [7]</td>
<td>3.45</td>
<td>4.25</td>
</tr>
<tr>
<td>4 layer ARC (simulation) [14]</td>
<td>4.16</td>
<td>3.80</td>
</tr>
<tr>
<td>SiO2 nanopillars on conventional ARC [5]</td>
<td>11.4</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1 shows the performance of the ARCs fabricated in our study and performance of various ARCs reported in literature. We have also included corresponding reflectance simulation results for our AlInP moth eye structure. In addition to the simulated reflectance in Ref. [4], the angular performance of the moth-eye-patterned 1 eV GaInNAs SC was also evaluated. The reflectance was found to remain below 5% up to incident angles of 45° and less than 10% even up to 60°. Such low reflectance in a wide angular range is an important figure of merit for CPV solar cell performance.

RESULTS, SIMULATION AND DISCUSSION

The AlInP moth eye structure processed on top of the MJSC was characterized first by SEM. The SEM picture in Fig. 1 reveals the pattern, with periodicity of 500 nm, arranged into a triangular lattice. The surface reflection properties of the AlInP moth eye are compared with the TiO2/SiO2 reference structure in Fig. 2. Both ARCs show good antireflection properties but at wavelengths above 1200 nm the moth eye ARC shows clearly lower reflectivity.

Figure 2. Reflectance measurements of the GaInP/GaAs/GaInNAs solar cells with AlInP moth eye and TiO2/SiO2 ARC.

Figure 2. Reflectance measurements of the GaInP/GaAs/GaInNAs solar cells with AlInP moth eye ARC and TiO2/SiO2 ARC measured at AM1.5G.

Figure 3. IV-characteristics of GaInP/GaAs/GaInNAs SC coated with AlInP moth eye ARC and TiO2/SiO2 ARC measured at AM1.5G.
The I–V performance of the GaInP/GaAs/GaInNAs solar cells with AlInP moth eye and TiO2/SiO2 ARC are shown in the Fig. 3. In real sun measurement conditions, the moth eye patterned cell outperforms the TiO2/SiO2 coated reference structure. The active area efficiencies of the processed solar cells are 24% for the moth eye cell and 22% for the TiO2/SiO2 coated structure.

The spectral responses of the sub-junctions were estimated from the EQE measurements. The results are presented in the Fig. 4. The results reveal that the AlInP moth eye pattern is performing well at long wavelengths above 510 nm but at short wavelengths, collected by the GaNp SC, we see a drop of EQE. The largest advantage of using AlInP moth eye in this comparison is seen for the GaAs sub-cell. Also one can see that the close band gap is has been enhanced for every sub-cell, especially for GaPp SC.

One possible reason for the decreased performance of the GaInP cell at short wavelengths, besides the absorption losses, could be the difference in surface recombination rate at AlInP based surface. Based on the geometry, we estimate that the surface area of the moth eye structure is approximately three times larger than that for the TiO2/SiO2 reference structure [3]. However, based on PCID simulations with different AlInP window thicknesses, we did not see remarkable differences even when a recombination velocity as high as 107 cm/s was considered instead of more typical 105 cm/s to 106 cm/s rates [15]. We believe that the most of the losses are caused by the absorption losses of AlInP [3]. Therefore, for future developments the AlInP layer thickness should be optimized to maximize the current generation in the top junction.

Table 2 summarizes the calculated current densities (Jsc) based on the EQE measurements and AM1.5G reference spectrum [16]. The calculated Jsc values are slightly lower than Jsc values obtained from real sun I–V measurements, especially for the AlInP moth eye cell. Based on these calculations, the MISC with AlInP moth eye ARC is currently limited by the GaInNAs bottom cell. Moreover, based on the EQE analysis, the MISC with TiO2/SiO2 ARC should produce ~5% more current at AM1.5G conditions. However, as it is shown in Fig. 3, for the real sun conditions the AlInP moth eye ARC MISC produces 3% higher current. This could be explained by an EQE calibration error or by the fact that the SCs operate differently with direct EQE beam signal and with wide incident angle of the AM1.5G global spectra. Therefore, we have made additional I–V measurements for AM1.5G and AM1.5 semi-direct spectrum conditions (a cone installed in front of the SC with 20° acceptance angle). We observed that the moth eye ARC solar cell operates better with AM1.5G conditions than the MISC with TiO2/SiO2 ARC. With direct configuration, both SCs had the same Jsc. For the AM1.5G illumination, the MISC with AlInP moth eye had again 3% higher current. The benefits of the AlInP moth eye structure are clearly at long wavelengths and the situation could get more favorable if one would consider GaPp/GaAs/GaInNAs/Ge four junction designs. The flat low reflection band starting from 400 nm can have clear design advantage if the current generation of the top cell at short wavelength can be further boosted. By comparing the studied ARCs for the operation band of Ge SC (from 1240 nm to 1600 nm) the average reflectivities are 2% and 8% for the AlInP moth eye ARC and TiO2/SiO2 ARC respectively. This would give approximately 0.8 mA/cm2 higher current density and 2.0 percentage point higher efficiency for a moth eye patterned four junction cell operating at AM1.5G. The corresponding numbers for AM1.5D are 0.9 mA/cm2 and 2.3 percentage point higher efficiency. These estimations are based on the calculations presented in the literature [1].

Table 2. Calculated AM1.5G current densities from EQE measurements for GaInP, GaAs and GaInNAs sub-cells with AlInP moth eye ARC and TiO2/SiO2 ARC.

<table>
<thead>
<tr>
<th>ARC Sub-cell</th>
<th>Calculated AM1.5G Jsc (mA/cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlInP moth eye GaPp</td>
<td>10.1</td>
</tr>
<tr>
<td>AlInP moth eye GaAs</td>
<td>13.9</td>
</tr>
<tr>
<td>AlInP moth eye GaInNAs</td>
<td>10.4</td>
</tr>
<tr>
<td>TiO2/SiO2 GaPp</td>
<td>11.0</td>
</tr>
<tr>
<td>TiO2/SiO2 GaAs</td>
<td>11.3</td>
</tr>
<tr>
<td>TiO2/SiO2 GaInNAs</td>
<td>10.6</td>
</tr>
</tbody>
</table>

The spectral responses of the sub-junctions were estimated from the EQE measurements. The results are presented in the Fig. 4. The results reveal that the AlInP moth eye pattern is performing well at long wavelengths above 510 nm but at short wavelengths, collected by the GaNp SC, we see a drop of EQE. The largest advantage of using AlInP moth eye in this comparison is seen for the GaAs sub-cell. Also one can see that the close band gap has been enhanced for every sub-cell, especially for GaNp SC.

One possible reason for the decreased performance of the GaInP cell at short wavelengths, besides the absorption losses, could be the difference in surface recombination rate at AlInP based surface. Based on the geometry, we estimate that the surface area of the moth eye structure is approximately three times larger than that for the TiO2/SiO2 reference structure [3]. However, based on PCID simulations with different AlInP window thicknesses, we did not see remarkable differences even when a recombination velocity as high as 107 cm/s was considered instead of more typical 105 cm/s to 106 cm/s rates [15]. We believe that the most of the losses are caused by the absorption losses of AlInP [3]. Therefore, for future developments the AlInP layer thickness should be optimized to maximize the current generation in the top junction.
CONCLUSION

We have demonstrated the performance of AlInP moth eye ARC structure fabricated on a thick AlInP window layer of a MSC. The performance comparison between moth-eye and TiO₂/SiO₂ ARC shows that the AlInP moth eye has excellent anti-reflection performance starting from 510 nm exhibiting an average reflectivity of only 2% within the spectral range from 400 nm to 1600 nm. This is significantly lower than the 5% average reflectance of the TiO₂/SiO₂ ARC. Low average reflectivity in a wide wavelength range brings clear advances when four junction GaInP/GaAs/GaInNAs/Ge solar cells are considered. Below 510 nm, the absorption of the AlInP moth eye layer limits the GaNP top junction current generation by approximately 10%. Based on the EQE measurements, the SC with TiO₂/SiO₂ ARC should generate higher current but in practice it was observed that the SC with an AlInP moth eye ARC generates 3% higher current under AM1.5G conditions. This is caused by the better response of the moth eye coating for wide incident angle photons.

ACKNOWLEDGMENTS

The authors acknowledge the financial support provided by the Finnish Funding Agency for Technology and Innovation, Tekes (projects ‘Solar III- V’ #40120/09 and ‘Nextsolar’ #40239/12). A. Aho also acknowledges the Graduate School in Electronics, Telecommunications and Automation, Würtzil Foundation, Finnish Foundation for Technology Promotion, and Ulla Tuominen Foundation for financial support. For the technical support, the authors acknowledge: Mr. Joel Salmi and Mr. Pekka Allsopp, W. N. Wang, and S. Abbott, Applied Physics Letters 94, 263118 (2009). For the technical support, the authors acknowledge: Mr. Joel Salmi and Mr. Pekka Allsopp, W. N. Wang, and S. Abbott, Applied Physics Letters 94, 263118 (2009). For the technical support, the authors acknowledge: Mr. Joel Salmi and Mr. Pekka Allsopp, W. N. Wang, and S. Abbott, Applied Physics Letters 94, 263118 (2009).

REFERENCES

CONCLUSION

We have demonstrated the performance of AlInP moth eye ARC structure fabricated on a thick AlInP window layer of a MSC. The performance comparison between moth-eye and TiO₂/SiO₂ ARC shows that the AlInP moth eye has excellent anti-reflection performance starting from 510 nm exhibiting an average reflectivity of only 2% within the spectral range from 400 nm to 1600 nm. This is significantly lower than the 5% average reflectance of the TiO₂/SiO₂ ARC. Low average reflectivity in a wide wavelength range brings clear advances when four junction GaInP/GaAs/GaInNAs/Ge solar cells are considered. Below 510 nm, the absorption of the AlInP moth eye layer limits the GaNP top junction current generation by approximately 10%. Based on the EQE measurements, the SC with TiO₂/SiO₂ ARC should generate higher current but in practice it was observed that the SC with an AlInP moth eye ARC generates 3% higher current under AM1.5G conditions. This is caused by the better response of the moth eye coating for wide incident angle photons.

ACKNOWLEDGMENTS

The authors acknowledge the financial support provided by the Finnish Funding Agency for Technology and Innovation, Tekes (projects ‘Solar III-V’ #40120/09 and ‘Nextsolar’ #40239/12). A. Aho also acknowledges the Graduate School in Electronics, Telecommunications and Automation, Würtzil Foundation, Finnish Foundation for Technology Promotion, and Ulla Tuominen Foundation for financial support. For the technical support, the authors acknowledge: Mr. Joel Salmi and Mr. Pekka Allsopp, W. N. Wang, and S. Abbott, Applied Physics Letters 94, 263118 (2009).

REFERENCES

© 2015 American Institute of Physics. Reproduced with permission.
Temperature Coefficients for GaInP/GaAs/GaInNAsSb Solar Cells

Arto Aho, Riku Isoaho, Antti Tukiainen, Ville Polojärvi, Timo Aho, Marianna Raapanna and Mircea Guina
Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere, Finland
Corresponding author: arto.j.aho@tut.fi

Abstract. We report the temperature coefficients for MBE-grown GaInP/GaAs/GaInNAsSb multijunction solar cells and the corresponding single junction sub-cells. Temperature-dependent current-voltage measurements were carried out using a solar simulator equipped with a 1000 W Xenon lamp and a three-band AM1.5D simulator. The triple-junction cell exhibited an efficiency of 31% at AM1.5G illumination and an efficiency of 37-39% at 70x real sun concentration. The external quantum efficiency was also measured at different temperatures. The temperature coefficients up to 80°C, for the open circuit voltage, the short circuit current density, and the conversion efficiency were determined to be -7.5 mV/°C, -0.040 mA/cm²/°C, and -0.09%/°C, respectively.

INTRODUCTION

Dilute nitride antimonides offer a great potential for efficiency improvement in concentrated photovoltaics (CPV) and space photovoltaic panels using multijunction solar cells architectures [1-4]. In the quest for optimizing the multijunction structure for specific application, it is essential to understand the temperature dynamics of the performance for the integrated cell and its sub-cells. This is particularly important for GaInP/GaAs/GaInNAsSb architectures since the corresponding absorption bands are significantly narrower than those for GaInP/GaAs/Ge cells, where Ge generates significantly more current than the top cells [1]. Additionally, air humidity plays also a significant role for the current generation in GaInNAsSb sub-cell; this is due to the presence of two water absorption bands in the spectral range from 1.0 eV to 1.4 eV, covered by GaInNAsSb absorption [5]. GaInP top cell on the other hand is more sensitive to the changes in the UV spectral band, which is dependent at least on the ozone level in the upper atmosphere [6, 7]. Moreover, for space applications, a proper balance between the current generated by the sub-junctions at different temperatures is instrumental for the achieving the highest average efficiency and highest energy production. Generally speaking, for single junction solar cells, the voltage decreases with the temperature increase and the generated current increases due to band gap narrowing with temperature increase. These effects result in typically lower cell efficiencies at higher temperatures. In this paper, the temperature behavior of the current voltage (I–V) and external quantum efficiency (EQE) characteristics, for molecular beam epitaxy (MBE) grown single and triple-junction GaInP/GaAs/GaInNAsSb solar cells are reported.

EXPERIMENTS

The solar cells were grown by plasma assisted solid source MBE. The structures were processed into cells with metal contact grid on the n-side and were coated with a TiO₂/SiO₂ antireflection film. More detailed description of the growth and processing can be found elsewhere [8-10]. The EQE measurements were performed with a monochromator based measurement system which was calibrated using NIST-calibrated Si and Ge reference cells. Suitable combinations of long-pass and short-pass optical filters were used for different spectral band investigations. For EQE measurements, the temperature was varied from 22°C (room temperature) to 80°C. The I–V characteristics

Temperature Coefficients for GaInP/GaAs/GaInNAsSb Solar Cells

Arto Aho, Riku Isoaho, Antti Tukiainen, Ville Polojärvi, Timo Aho, Marianna Raapanna and Mircea Guina
Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere, Finland
Corresponding author: arto.j.aho@tut.fi

Abstract. We report the temperature coefficients for MBE-grown GaInP/GaAs/GaInNAsSb multijunction solar cells and the corresponding single junction sub-cells. Temperature-dependent current-voltage measurements were carried out using a solar simulator equipped with a 1000 W Xenon lamp and a three-band AM1.5D simulator. The triple-junction cell exhibited an efficiency of 31% at AM1.5G illumination and an efficiency of 37-39% at 70x real sun concentration. The external quantum efficiency was also measured at different temperatures. The temperature coefficients up to 80°C, for the open circuit voltage, the short circuit current density, and the conversion efficiency were determined to be -7.5 mV/°C, -0.040 mA/cm²/°C, and -0.09%/°C, respectively.

INTRODUCTION

Dilute nitride antimonides offer a great potential for efficiency improvement in concentrated photovoltaics (CPV) and space photovoltaic panels using multijunction solar cells architectures [1-4]. In the quest for optimizing the multijunction structure for specific application, it is essential to understand the temperature dynamics of the performance for the integrated cell and its sub-cells. This is particularly important for GaInP/GaAs/GaInNAsSb architectures since the corresponding absorption bands are significantly narrower than those for GaInP/GaAs/Ge cells, where Ge generates significantly more current than the top cells [1]. Additionally, air humidity plays also a significant role for the current generation in GaInNAsSb sub-cell; this is due to the presence of two water absorption bands in the spectral range from 1.0 eV to 1.4 eV, covered by GaInNAsSb absorption [5]. GaInP top cell on the other hand is more sensitive to the changes in the UV spectral band, which is dependent at least on the ozone level in the upper atmosphere [6, 7]. Moreover, for space applications, a proper balance between the current generated by the sub-junctions at different temperatures is instrumental for the achieving the highest average efficiency and highest energy production. Generally speaking, for single junction solar cells, the voltage decreases with the temperature increase and the generated current increases due to band gap narrowing with temperature increase. These effects result in typically lower cell efficiencies at higher temperatures. In this paper, the temperature behavior of the current voltage (I–V) and external quantum efficiency (EQE) characteristics, for molecular beam epitaxy (MBE) grown single and triple-junction GaInP/GaAs/GaInNAsSb solar cells are reported.

EXPERIMENTS

The solar cells were grown by plasma assisted solid source MBE. The structures were processed into cells with metal contact grid on the n-side and were coated with a TiO₂/SiO₂ antireflection film. More detailed description of the growth and processing can be found elsewhere [8-10]. The EQE measurements were performed with a monochromator based measurement system which was calibrated using NIST-calibrated Si and Ge reference cells. Suitable combinations of long-pass and short-pass optical filters were used for different spectral band investigations. For EQE measurements, the temperature was varied from 22°C (room temperature) to 80°C. The I–V characteristics
of the cells were measured in three different conditions: (i) using a 1000 W Oriel solar simulator equipped with an AM1.5G filter, (ii) using real sun illumination at one sun and ~100 suns and (iii) using an in-house build three-band solar simulator calibrated with single junction GaInP, GaAs and GaInNAsSb solar cells. The short circuit current densities of single junction cells were calibrated by EQE measurements. For the real sun measurements, the corresponding global radiation power density was measured using a Kipp & Zonen CM11 pyranometer. All the measurements were performed in Tampere, Finland. During the real sun measurements the integrated spectral irradiance was close to 1000 W/m² and the air mass was close to 1.5. For the real sun measurements, the temperature of the sample mount was set to 25°C. For simulator based measurements, the cell temperature was varied from 25°C to 150°C. For the short circuit current density (J_{sc}) and efficiency calculations, ASTM G173–03 spectrum [11] and EQE measurement data were used. For the concentrated real sun measurements, a simple lens and tracking device was used, which in practice limited the concentration to 76-100 suns. The potential efficiency trends and cell temperature under CPV operation were estimated by utilization of projective diode model for the GaInP/GaAs/GaInNAsSb cell [1].

RESULTS AND DISCUSSION

First the temperature dependent I–V characteristics of a GaInP/GaAs/GaInNAsSb triple-junction cell and GaInP, GaAs, GaInNAsSb single junction cells were determined at one sun conditions. Figure 1a summarizes the temperature dependencies of open circuit voltages (V_{oc}) for studied GaInP/GaAs/GaInNAsSb, GaInP/GaAs, GaInP, GaAs and GaInNAsSb cells. The V_{oc} measurements for single junction cells were carried out using one band Oriel solar simulator, equipped with an AM1.5G filter, calibrated close to one sun. For the triple-junction cell, the temperature dependencies of V_{oc} were measured by three-band solar simulator calibrated to AM1.5D; the temperature dependent I–V characteristics for the triple-junction cell are presented in Figure 1b.

![FIGURE 1. (a) Temperature dependence of V_{oc} for the GaInP/GaAs/GaInNAsSb multijunction cell and single junction cells in the temperature range from 25°C to 90°C. All the cells were measured at AM1.5D except the triple junction cell which was measured at AM1.5D. (b) Measured I–V characteristics of GaInP/GaAs/GaInNAsSb cell with a three-band solar simulator set to AM1.5D in the temperature range of 30°C to 150°C.](image1)

In order to understand the measured I–V characteristics of the GaInP/GaAs/GaInNAsSb cell, temperature dependent EQE measurements were also done. The EQE data taken at 22°C and at 80°C are presented in Figure 1b. The corresponding J_{sc} values were obtained by integrating the product of EQE values and the spectral irradiance values at each wavelength for each sub-cell at each temperature. The integration was done by using AM1.5D ASTM G173–03 reference spectrum [11]. The calculated J_{sc} values are presented in Figure 2b, which also presents the measured current densities for the GaInP/GaAs/GaInNAsSb cell illuminated by the three-band solar simulator. The current densities for the GaInP, GaAs, and GaInP/GaAs/GaInNAsSb devices show linear increase of J_{sc} as a function of temperature, but for GaInNAsSb sub-cell the slope of J_{sc} is negative. This observation can be understood

![FIGURE 1. (a) Temperature dependence of V_{oc} for the GaInP/GaAs/GaInNAsSb multijunction cell and single junction cells in the temperature range from 25°C to 90°C. All the cells were measured at AM1.5D except the triple junction cell which was measured at AM1.5D. (b) Measured I–V characteristics of GaInP/GaAs/GaInNAsSb cell with a three-band solar simulator set to AM1.5D in the temperature range of 30°C to 150°C.](image2)
by analysing the properties of the AM1.5D spectrum in the wavelength range from 900 nm to 1350 nm, where the operation band of GaInNAsSb sub-cell is set. A portion of the AM1.5D spectrum [11] is also included in Figure 2a to support the discussion. In this wavelength range, two H2O related absorption bands are visible [6, 7, 11]. The H2O absorption band on the shorter wavelengths is close to the spectral boundary between GaAs and GaInNAsSb sub-cells on the GaInNAsSb cell side. Therefore, when the GaAs cell temperature increases and the band edge of GaAs shifts towards longer wavelengths the usable band for GaInNAsSb narrows down. On the other hand, more photons can be collected from the long wavelengths near 1300 nm due to red-shifting absorption edge of GaInNAsSb at least up to ~100°C when yet another water absorption peak begins to reduce the current production of GaInNAsSb cell [12]. This dependence makes the designing of the triple-junction cells particularly challenging for different geographical locations with different combinations of humidity and temperature. For robust cell operation in different conditions it is suggested that the GaInNAsSb cell should be designed to over-generate current. It would also be important to further improve the near band edge EQE of the GaInNAsSb sub-cell, which is currently limited by the used antireflection coating materials and coating design. Ultimately, the non-ideality of the GaInNAsSb sub-cell also limits the near band edge performance of the triple-junction device [8].

The temperature slopes for the J_{sc} and V_{oc} are summarized in Table 1. The obtained V_{oc} slope for GaInP/GaAs/GaInNAsSb cell is similar to those reported earlier for GaInP/GaAsGe cells [13, 14]. The measured J_{oc} values are slightly higher than the J_{oc} values calculated from the EQEs of the limiting GaAs sub-cell. The measured and estimated values however are close to each other and the differences possibly arising from the calibration accuracy of the triple band simulator would not lead to significant variation of the total cell efficiency. By using three-band AM1.5D simulation at 900 W/m², the cell efficiency temperature coefficient was -0.09%/°C. This dependence makes the designing of the triple-junction cells particularly challenging for different geographical locations with different combinations of humidity and temperature. For robust cell operation in different conditions it is suggested that the GaInNAsSb cell should be designed to over-generate current. It would also be important to further improve the near band edge EQE of the GaInNAsSb sub-cell, which is currently limited by the used antireflection coating materials and coating design. Ultimately, the non-ideality of the GaInNAsSb sub-cell also limits the near band edge performance of the triple-junction device [8].

The temperature slopes for the J_{sc} and V_{oc} are summarized in Table 1. The obtained V_{oc} slope for GaInP/GaAs/GaInNAsSb cell is similar to those reported earlier for GaInP/GaAsGe cells [13, 14]. The measured J_{sc} values are slightly higher than the J_{sc} values calculated from the EQEs of the limiting GaAs sub-cell. The measured and estimated values however are close to each other and the differences possibly arising from the calibration accuracy of the triple band simulator would not lead to significant variation of the total cell efficiency. By using three-band AM1.5D simulation at 900 W/m², the cell efficiency temperature coefficient was -0.09%/°C.

<table>
<thead>
<tr>
<th>Sub-cell</th>
<th>J_{sc} slope (mA/cm²)</th>
<th>V_{oc} slope from 1J cells (mV/°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaInNAsSb</td>
<td>-0.031 mA/°C/cm²</td>
<td>-2.0 mV/°C</td>
</tr>
<tr>
<td>GaAs</td>
<td>0.073 mA/°C/cm²</td>
<td>-2.2 mV/°C</td>
</tr>
<tr>
<td>GaInP</td>
<td>0.063 mA/°C/cm²</td>
<td>-2.5 mV/°C</td>
</tr>
<tr>
<td>GaInP/GaAs/GaInNAsSb</td>
<td>0.040 mA/°C/cm²</td>
<td>-7.5 mV/°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sub-cell</th>
<th>J_{sc} slope (mA/cm²)</th>
<th>V_{oc} slope from 1J cells (mV/°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaInNAsSb</td>
<td>-0.031 mA/°C/cm²</td>
<td>-2.0 mV/°C</td>
</tr>
<tr>
<td>GaAs</td>
<td>0.073 mA/°C/cm²</td>
<td>-2.2 mV/°C</td>
</tr>
<tr>
<td>GaInP</td>
<td>0.063 mA/°C/cm²</td>
<td>-2.5 mV/°C</td>
</tr>
<tr>
<td>GaInP/GaAs/GaInNAsSb</td>
<td>0.040 mA/°C/cm²</td>
<td>-7.5 mV/°C</td>
</tr>
</tbody>
</table>
The performance assessment of the fabricated GaInP/GaAs/GaInNAsSb cell was also done under concentrated light conditions. For this, a simple test bench was built in which light concentration level up to 70 suns could be achieved. The measurement for 70 suns concentration is presented in Figure 3a – the concentration level was determined by assuming linear dependence between J_{sc} and concentration factor. For the measurement system, higher concentrations were not possible without sacrificing the beam uniformity and quality. During the measurement the stage temperature was set at 25°C and continuous real sun illumination was used. The measured I–V characteristics are presented in Figure 3a. The Figure 3a also shows the I–V measurements done at one sun (AM1.5G, 1000 W/m2) and at concentrated illumination. The spectral irradiance was measured by pyranometer and the I–V-curves shown in Figure 3a are normalized to 1000 W/m2. Due to uncertainty of the real cell junction temperature and concentration during the CPV measurement, there is some margin in the estimated efficiencies. The estimation indicated that the lower limit for the cell efficiency was 37% when the cell temperature was assumed to match that of the stage. In reality, the junction temperature most likely is somewhat higher under concentrated illumination. Junction temperature of 40°C was estimated from the diode analysis done on the cells at different temperatures. This gives the upper limit for the efficiency to be 39% at 70 suns. The diode analysis was also used for estimating the lower and upper limits for the series resistance of the cell. Thus, the efficiency trends for the measured cell at different concentration levels with lower and upper limits of the cell series resistance could be calculated and they are shown in Figure 3b.

The efficiency for the active area of the triple-junction solar cell was estimated to be 31% at AM1.5G. Heating the cell reduced the cell efficiency and the temperature coefficient for conversion efficiency of a triple-junction GaInP/GaAs/GaInNAsSb cell was -0.09%/°C for AM1.5D (900 W/m2) excitation. For the same device, the temperature coefficient for the open circuit voltage was -7.5 mV/°C, which is close to the -7 mV/°C reported for lattice-matched GaInP/GaAs/GaInAs solar cells [14]. The temperature coefficient for J_{sc} of the triple-junction cell was -0.09%/°C for AM1.5D (900 W/m2) excitation. For the same device, the temperature coefficient for the open circuit voltage was -7.5 mV/°C, which is close to the -7 mV/°C reported for lattice-matched GaInP/GaAs/GaInAs solar cells [14]. The temperature coefficient for V_{oc} of the triple-junction cell was -0.09%/°C for AM1.5D (900 W/m2) excitation. For the same device, the temperature coefficient for the short circuit current was -0.09%/°C for AM1.5D (900 W/m2) excitation. For the same device, the temperature coefficient for the short circuit current was -0.09%/°C for AM1.5D (900 W/m2) excitation.

For the future development steps, we expect to get further improvements for the cell efficiency from better current matching between the cells through anti-reflection coating optimization, improved cell design and by integrating GaInP/GaAs/GaInNAsSb structures into four-junction cells grown on germanium [1]. For GaInP/GaAs/GaInNAsSb four-junction solar cells thorough understanding of the temperature dependence of the sub-cell current generation balance would be even more critical, especially when efficiencies reaching 50% are targeted.

CONCLUSION

The efficiency for the active area of the triple-junction solar cell was estimated to be 31% at AM1.5G. Heating the cell reduced the cell efficiency and the temperature coefficient for conversion efficiency of a triple-junction GaInP/GaAs/GaInNAsSb cell was -0.09%/°C for AM1.5D (900 W/m2) excitation. For the same device, the temperature coefficient for the open circuit voltage was -7.5 mV/°C, which is close to the -7 mV/°C reported for lattice-matched GaInP/GaAs/GaInAs solar cells [14]. The temperature coefficient for J_{sc} of the triple-junction cell was -0.09%/°C for AM1.5D (900 W/m2) excitation. For the same device, the temperature coefficient for the open circuit voltage was -7.5 mV/°C, which is close to the -7 mV/°C reported for lattice-matched GaInP/GaAs/GaInAs solar cells [14]. The temperature coefficient for V_{oc} of the triple-junction cell was -0.09%/°C for AM1.5D (900 W/m2) excitation. For the same device, the temperature coefficient for the short circuit current was -0.09%/°C for AM1.5D (900 W/m2) excitation. For the same device, the temperature coefficient for the short circuit current was -0.09%/°C for AM1.5D (900 W/m2) excitation.

For the future development steps, we expect to get further improvements for the cell efficiency from better current matching between the cells through anti-reflection coating optimization, improved cell design and by integrating GaInP/GaAs/GaInNAsSb structures into four-junction cells grown on germanium [1]. For GaInP/GaAs/GaInNAsSb four-junction solar cells thorough understanding of the temperature dependence of the sub-cell current generation balance would be even more critical, especially when efficiencies reaching 50% are targeted.

CONCLUSION
0.04 mA/cm²/°C. The temperature coefficient for the short circuit current was positive for GaInP and GaAs sub-cells and negative for GaInNAsSb sub-cell. This dependence is caused by changes in GaInN/GaAs/GaInNAsSb absorption bands with respect to the H₂O absorption bands in the AM1.5D spectrum. At 70 suns, the cell efficiency was estimated to be 37–39%.

ACKNOWLEDGMENTS

The authors would like to thank colleagues at Optoelectronics Research Centre for their high-quality experimental support, in particular we acknowledge the support of Ville-Markus Korpijärvi and Pekka Malinen. For the financial support, we would like to thank Finnish Funding Agency for Technology and Innovation—TEKES (project #40120/09 ‘Solar III-V’ and #40239/12 ‘Nextsolar’), Graduate School in Electronics, Telecommunications and Automation, Ulla Tuominen Foundation, Finnish Foundation for Technology Promotion, and Wärtsilä Foundation.

REFERENCES

Aho, A., Korpijärvi, V.-M., Isoaho, R., Malinen, P., Tukiainen, A., Honkanen, M. & Guina, M.,
Determination of composition and energy gaps of GaInNAsSb layers grown by MBE,
(Submitted to Journal of Crystal Growth).

ABSTRACT: We report on growth parameter optimization for fabrication GaInNAs materials with nitrogen concentrations ranging from 1 to 6%. These compounds, referred as dilute nitrides, are a promising choice for designing multi-junction solar cells. Specifically, we have compared the effects of growth temperature and thermal annealing onto optical and structural properties of GaInNAs p-i-n diodes lattice matched to GaAs. When used in a 3-junction GaInP/GaAs/GaInNAs solar cell, the dilute nitride structure could generate a short-circuit current density of ~12 mA/cm^2 measured in outdoor conditions.

Keywords: III-V Semiconductors, Gallium Arsenide Based Solar Cells, Dilute Nitride Materials, Multijunction Solar Cell, Molecular Beam Epitaxy
to 4% N, but for 5 and 6% N the diffraction peaks are getting wider. Also, the diffraction peak intensity drops drastically for samples with 5 and 6% nitrogen. Wider and smaller diffraction peaks mean inferior crystalline quality and can be related to either phase separation or segregation effects that set in for the used growth parameters with higher N concentrations [10-13].

Annealing introduced a complex N-composition and growth parameter dependent PL wavelength blue shift (BS). Optimized annealing process for GaInNAs with 2% and 4% N increased the PL lifetimes from $\tau_{c}\sim20$ ps to $\tau_{c}\sim900$ ps and $\sigma_{c}\sim500$ ps, respectively. Such TRPL lifetimes are among the longest ever reported for GaInNAs material lattice-matched to GaAs with 2% and 4%-nitrogen.

Figure 2: XRD rocking curves for GaInNAs with 1-6% nitrogen. The diffraction peaks remain sharp up to temperature even after annealing. XRD measurements are shown in Figure 2. The peak widths (FWHM) were increasing from 42.5 to 64.5 meV for samples with 5 and 6% nitrogen. Wider getting wider. Also, the diffraction peak intensity drops drastically for samples with 5 and 6% nitrogen. Wider and smaller diffraction peaks mean inferior crystalline quality and can be related to either phase separation or segregation effects that set in for the used growth parameters with higher N concentrations [10-13].

Annealing introduced a complex N-composition and growth parameter dependent PL wavelength blue shift (BS). Optimized annealing process for GaInNAs with 2% and 4% N increased the PL lifetimes from $\tau_{c}\sim20$ ps to $\tau_{c}\sim900$ ps and $\sigma_{c}\sim500$ ps, respectively. Such TRPL lifetimes are among the longest ever reported for GaInNAs material lattice-matched to GaAs with 2% and 4%-nitrogen.

Figure 3: Light-biased current-voltage measurements for annealed GaInNAs material with 0-4% N-content. The FWHM value of the PL signal are given in the inset.

Figure 3: Light-biased current-voltage measurements for annealed GaInNAs material with 0-4% N-content. The FWHM value of the PL signal are given in the inset.

Figure 3: Light-biased current-voltage measurements for annealed GaInNAs/GaAs p-i-n diodes at AM0 simulation. No antireflection coating was applied on the samples.

Figure 3: Light-biased current-voltage measurements for annealed GaInNAs/GaAs p-i-n diodes at AM0 simulation. No antireflection coating was applied on the samples.
The effect of annealing on GaInNAs p-i-n diodes with 4% nitrogen is shown in Figure 4. We compared as-grown samples with and without standard 2-layer antireflection (AR) coating made of SiN/SiO₂ and samples with and without closely optimized annealing under AM0 simulation. The AR-coating increased the short circuit current density >30%. Annealing was found to drastically increase the I_{sc} in annealed samples F_2, was doubled from ~0.23V to 0.47 V. The increase in I_{sc} can be linked to improvements in quantum efficiency whereas the improvement in F_2, upon annealing is related to reduction of number of defects characteristic to GaInNAs material [2].

After multiple optimization rounds of separate GaInNAs p-i-n diodes, we included a GaInNAs sub-junction within a GaInP/GaAs/GaInNAs 3-junction solar cell. The real one sun characteristics of the device are shown in Figure 5. The measured I_{sc} was 11.8 mA/cm². On the downside, the LIV measurement shows detrimental effects related to current mismatch between the sub-junctions and carrier leakage. This was confirmed by shining 808 nm laser light on the structure to generate more current in the GaAs sub-cell.

Nevertheless, we have demonstrated a 3J solar cell with GaInNAs-containing subjunction which produces a current density of almost 12 mA/cm² with additional of Sh [17].

4 CONCLUSIONS

In conclusion, we report on optimization of GaInNAs material for multi-junction solar cell. GaInNAs materials and p-i-n solar cells with 1-6% nitrogen were studied. Fabrication of good quality GaInNAs material requires thermal annealing which reduces the number of defects in the material and causes growth parameter dependent blueshift. Optimized GaInNAs was used in a GaInP/GaAs/GaInNAs 3J solar cell to demonstrate its capabilities for multi-junction devices. The short-circuit current of the 3J solar cell was doubled from ~0.23V to 0.47 V. The increase in I_{sc} can be linked to improvements in quantum efficiency whereas the improvement in F_2, upon annealing is related to reduction of number of defects characteristic to GaInNAs material [2].

After multiple optimization rounds of separate GaInNAs p-i-n diodes, we included a GaInNAs sub-junction within a GaInP/GaAs/GaInNAs 3-junction solar cell. The real one sun characteristics of the device are shown in Figure 5. The measured I_{sc} was 11.8 mA/cm². On the downside, the LIV measurement shows detrimental effects related to current mismatch between the sub-junctions and carrier leakage. This was confirmed by shining 808 nm laser light on the structure to generate more current in the GaAs sub-cell.

Nevertheless, we have demonstrated a 3J solar cell with GaInNAs-containing subjunction which produces a current density of almost 12 mA/cm² with additional of Sh [17].

4 CONCLUSIONS

In conclusion, we report on optimization of GaInNAs material for multi-junction solar cell. GaInNAs materials and p-i-n solar cells with 1-6% nitrogen were studied. Fabrication of good quality GaInNAs material requires thermal annealing which reduces the number of defects in the material and causes growth parameter dependent blueshift. Optimized GaInNAs was used in a GaInP/GaAs/GaInNAs 3J solar cell to demonstrate its capabilities for multi-junction devices. The short-circuit current of the 3J solar cell was doubled from ~0.23V to 0.47 V. The increase in I_{sc} can be linked to improvements in quantum efficiency whereas the improvement in F_2, upon annealing is related to reduction of number of defects characteristic to GaInNAs material [2].

After multiple optimization rounds of separate GaInNAs p-i-n diodes, we included a GaInNAs sub-junction within a GaInP/GaAs/GaInNAs 3-junction solar cell. The real one sun characteristics of the device are shown in Figure 5. The measured I_{sc} was 11.8 mA/cm². On the downside, the LIV measurement shows detrimental effects related to current mismatch between the sub-junctions and carrier leakage. This was confirmed by shining 808 nm laser light on the structure to generate more current in the GaAs sub-cell.

Nevertheless, we have demonstrated a 3J solar cell with GaInNAs-containing subjunction which produces a current density of almost 12 mA/cm² with additional of Sh [17].

5 ACKNOWLEDGEMENTS

This work was supported by the Finnish Funding Agency for Technology and Innovation (TEKES) project Solar III-V (2010024). A. Aho wants to thank National Graduate School in Materials Physics for financial support.

6 REFERENCES

5 ACKNOWLEDGEMENTS

This work was supported by the Finnish Funding Agency for Technology and Innovation (TEKES) project Solar III-V (2010024). A. Aho wants to thank National Graduate School in Materials Physics for financial support.

6 REFERENCES

Vol. 67 (1995) 279

MBE GROWTH OF HIGH CURRENT DILUTE III-V SINGLE AND TRIPLE JUNCTION SOLAR CELLS

Arto Aho, Antti Tukiainen, Ville Poljoki, Joel Salma, Mireia Guina
Tampere University of Technology, Optoelectronics Research Centre
Kortekoulunkatu 3, FI-33720 Tampere, Finland.

ABSTRACT: We report on the optimization of growth temperature and As flux for fabrication of 1 eV GaInNAs solar cell using plasma assisted molecular beam epitaxy. Two sets of samples were grown at different temperatures and As beam equivalent pressures, keeping the As flux fixed in the first set and the growth temperature in the other. The p-i-n solar-cell structures were grown on n-GaAs(100) substrates. The output power exhibited a clear maximum within a narrow growth temperature and As beam pressure window. Based on this optimization, an AlInP-windowed GaInNAs p-i-n solar cell was grown on p-GaAs(100) substrate; the specific growth temperature was 440°C and the As beam pressure was 0.05 mbar. The specific growth temperature ratio was 10. This solar cell exhibited a short circuit current density of ~29 mA/cm². Moreover, we demonstrated a GaPb/GaAs/GaInNAs triple junction solar cell that exhibited a short circuit current density of 12 mA/cm² under real sun illumination.

Keywords: III-V semiconductors, epitaxy, multijunction solar cell

1 Introduction

Multijunction solar cells (MJSCs) produce efficiencies over 40% in concentrator applications [1]. Further improvement of MJSC efficiency requires development of a new sub-junction material to be combined with the conventional GaInP, GaAs and Ge semiconductors. An attractive option is the lattice matched 1 eV GaInNAs SC material, which has so far led to promising output power values within high current densities [2-7] much higher than the best growth parameters were combined in a AlInP-windowed GaInNAs single junction solar cell and a GaInP/GaAs/GaInNAs triple-junction solar cell, which exhibited a high Voc of ~0.5 V [11, 15].

In this paper we present a systematic study focused on optimizing the growth parameters of GaInNAs SC, in particular concerning the effect of the growth temperature and As pressure.

2 Experiments

The solar cell structures were grown by PAMBE using Sumocells for group III atoms, an RF plasma source for As and N, and valved crucibles for Ar and Pb. The substrate native oxide was desorbed at 600°C and then an n-doped (Si) GaAs buffer layer was grown at 580°C on the n-GaAs(100) substrate to smooth the growth front. The GaAs buffer was followed by a 320 nm thick GaInNAs i-region. Two different sample sets were grown at growth temperatures ranging from 395°C to 490°C and AsV/BeF3 ratio ranging from 5 to 20. As flux was kept fixed for the first set while the growth temperature was constant for the other. The GaInNAs regions were capped with 300 nm p-GaAs doped with Be.

After the growth, rapid thermal annealing (RTA) was carried out at 800°C for 300 s. The RTA was followed by processing of contacts using e-beam and shadow mask. Ni/Ga/As metals were used as back contacts on the n-side. For the front side contact we used an Au/Ge top grid metal. The grid metal coverage was 25%, therefore in this paper we report only active area current densities and efficiencies.

The SCs were studied with light-biased current-voltage measurements (I-V) using a 1000 W solar simulator from Thermo Oriel equipped with an AM0 filter. The AM0 spectrum was further filtered using a 900 nm high pass filter to simulate the operation of the 1-eV junction inside a MJSC. After the measurements, the best growth parameter set were combined in a AlInP-windowed GaInNAs single junction solar cell and a GaPb/GaAs/GaInNAs triple-junction solar cell, which can be seen for instance as remarkable improvement of the Voc [11]. When combined with appropriate growth parameters, annealing results in significant improvements of SC performance. One example is the demonstration of a 1 eV GaInNAs SC exhibiting a high Voc of ~0.5 V [11, 15].

1 Introduction

Multijunction solar cells (MJSCs) produce efficiencies over 40% in concentrator applications [1]. Further improvement of MJSC efficiency requires development of a new sub-junction material to be combined with the conventional GaInP, GaAs and Ge semiconductors. An attractive option is the lattice matched 1 eV GaInNAs SC material, which has so far led to promising output power values within high current densities [2-7] much higher than the best growth parameters were combined in a AlInP-windowed GaInNAs single junction solar cell and a GaInP/GaAs/GaInNAs triple-junction solar cell, which exhibited a high Voc of ~0.5 V [11, 15].

In this paper we present a systematic study focused on optimizing the growth parameters of GaInNAs SC, in particular concerning the effect of the growth temperature and As pressure.

2 Experiments

The solar cell structures were grown by PAMBE using Sumocells for group III atoms, an RF plasma source for N, and valved crucibles for As and Pb. The substrate native oxide was desorbed at 620°C and then an n-doped (Si) GaAs buffer layer was grown at 580°C on the n-GaAs(100) substrate to smooth the growth front. The GaAs buffer was followed by a 320 nm thick GaInNAs i-region. Two different sample sets were grown at growth temperatures ranging from 395°C to 490°C and AsV/BeF3 ratio ranging from 5 to 20. As flux was kept fixed for the first set while the growth temperature was constant for the other. The GaInNAs regions were capped with 300 nm p-GaAs doped with Be.

After the growth, rapid thermal annealing (RTA) was carried out at 800°C for 300 s. The RTA was followed by processing of contacts using e-beam and shadow mask. Ni/Ga/As metals were used as back contacts on the n-side. For the front side contact we used an Au/Ge top metal. The metal coverage was 25%, therefore in this paper we report only active area current densities and efficiencies.

The SCs were studied with light-biased current-voltage measurements (I-V) using a 1000 W solar simulator from Thermo Oriel equipped with an AM0 filter. The AM0 spectrum was further filtered using a 900 nm high pass filter to simulate the operation of the 1-eV junction inside a MJSC. After the measurements, the best growth parameter set were combined in a AlInP-windowed GaInNAs single junction solar cell and a GaPb/GaAs/GaInNAs triple-junction solar cell, which can be seen for instance as remarkable improvement of the Voc [11]. When combined with appropriate growth parameters, annealing results in significant improvements of SC performance. One example is the demonstration of a 1 eV GaInNAs SC exhibiting a high Voc of ~0.5 V [11, 15].

In this paper we present a systematic study focused on optimizing the growth parameters of GaInNAs SC, in particular concerning the effect of the growth temperature and As pressure.

2 Experiments

The solar cell structures were grown by PAMBE using Sumocells for group III atoms, an RF plasma source for N, and valved crucibles for As and Pb. The substrate native oxide was desorbed at 620°C and then an n-doped (Si) GaAs buffer layer was grown at 580°C on the n-GaAs(100) substrate to smooth the growth front. The GaAs buffer was followed by a 320 nm thick GaInNAs i-region. Two different sample sets were grown at growth temperatures ranging from 395°C to 490°C and AsV/BeF3 ratio ranging from 5 to 20. As flux was kept fixed for the first set while the growth temperature was constant for the other. The GaInNAs regions were capped with 300 nm p-GaAs doped with Be.

After the growth, rapid thermal annealing (RTA) was carried out at 800°C for 300 s. The RTA was followed by processing of contacts using e-beam and shadow mask. Ni/Ga/As metals were used as back contacts on the n-side. For the front side contact we used an Au/Ge top metal. The metal coverage was 25%, therefore in this paper we report only active area current densities and efficiencies.

The SCs were studied with light-biased current-voltage measurements (I-V) using a 1000 W solar simulator from Thermo Oriel equipped with an AM0 filter. The AM0 spectrum was further filtered using a 900 nm high pass filter to simulate the operation of the 1-eV junction inside a MJSC. After the measurements, the best growth parameter set were combined in a AlInP-windowed GaInNAs single junction solar cell and a GaPb/GaAs/GaInNAs triple-junction solar cell, which can be seen for instance as remarkable improvement of the Voc [11]. When combined with appropriate growth parameters, annealing results in significant improvements of SC performance. One example is the demonstration of a 1 eV GaInNAs SC exhibiting a high Voc of ~0.5 V [11, 15].

In this paper we present a systematic study focused on optimizing the growth parameters of GaInNAs SC, in particular concerning the effect of the growth temperature and As pressure.
both were grown on p-GaAs(100) substrates. For comparison, we grew a GaInP/GaAs reference tandem SC using the same growth parameters as for the triple junction SC.

3 Results and discussion

The LIV measurements revealed a clear power optimum in a narrow growth temperature range, as shown in Fig. 1. We believe that near 440°C the combination of the intrinsic GaInNAs defects population enhances favourable the post growth annealing processes.

The lower limit for the As/III ratio was observed to be between 8 and 10, we could achieve up to 3-times higher maximum power levels as compared to As/III ratio of 20. The lower limit for the As/III ratio was observed to be between 8 and 5. With an As/III ratio of 5 the SC performance can be considered poor and this is clearly too small value for the GaInNAs epitaxy even for an optimal growth temperature.

The maximum power for the GaInNAs SC as the function of the growth temperature. The best SC performance is achieved when the growth temperature was 440°C for the annealed samples.

We observed that the maximum power is highly sensitive to the As/III-ratio (see Fig. 2 below). These measurements are summarized in Fig. 2. Using a ratio between 8 and 10, we could achieve up to 3-times higher maximum power levels as compared to As/III ratio of 20. The lower limit for the As/III ratio was observed to be between 8 and 5. With an As/III ratio of 5 the SC performance can be considered poor and this is clearly too small value for the GaInNAs epitaxy even for an optimal growth temperature.

Table 1 lists the \(J_{sc} \), \(V_{oc} \), and fill factor (FF) corresponding to AM1.5G measurements. It also shows how GaInP/GaAs and GaInP/GaAs/GaInNAs SCs are producing almost the same current, which indicates that adding GaInNAs sub-cell does not significantly limit the current in our multi-junction SC under AM1.5 simulated spectra.

Table 1: IV results for AM1.5G simulated spectrum

<table>
<thead>
<tr>
<th>SC</th>
<th>(J_{sc}) (mA/cm²)</th>
<th>(V_{oc}) (V)</th>
<th>FF (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaInNAs</td>
<td>29</td>
<td>0.38</td>
<td>69</td>
</tr>
<tr>
<td>GaInP/GaAs</td>
<td>9</td>
<td>2.2</td>
<td>86</td>
</tr>
<tr>
<td>GaInP/GaAs/GaInNAs</td>
<td>9</td>
<td>2.5</td>
<td>81</td>
</tr>
</tbody>
</table>

The GaInP/GaAs/GaInNAs SC was also tested with real sun illumination. In this case, the current matching was not perfect (FF-70%), but the \(J_{sc} \) increased to 12 mA/cm². The illumination intensity was estimated by Kipp & Zonen CM11 pyranometer, both air mass and AM1.5G. This measurement is presented in Fig. 3.

The LIV measurements revealed a clear power optimum in a narrow growth temperature range, as shown in Fig. 1. We believe that near 440°C the combination of the intrinsic GaInNAs defects population enhances favourable the post growth annealing processes.

3 Results and discussion

The LIV measurements revealed a clear power optimum in a narrow growth temperature range, as shown in Fig. 1. We believe that near 440°C the combination of the intrinsic GaInNAs defects population enhances favourable the post growth annealing processes.

The optimized p-i-n GaInNAs heterostructure was also incorporated into a GaInP/GaAs/GaInNAs triple junction SC. For this we have achieved a \(J_{sc} \) of 9 mA/cm² under AM1.5G simulation (see Fig. 4 below).

The optimization GaInNAs growth. SCs are illuminated with simulated AM1.5G spectrum. Table 1 lists the \(J_{sc} \), \(V_{oc} \), and fill factor (FF) corresponding to AM1.5G measurements. It also shows how GaInP/GaAs and GaInP/GaAs/GaInNAs SCs are producing almost the same current, which indicates that adding GaInNAs sub-cell does not significantly limit the current in our multi-junction SC under AM1.5 simulated spectrum.

Table 1: IV results for AM1.5G simulated spectrum

<table>
<thead>
<tr>
<th>SC</th>
<th>(J_{sc}) (mA/cm²)</th>
<th>(V_{oc}) (V)</th>
<th>FF (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaInNAs</td>
<td>29</td>
<td>0.38</td>
<td>69</td>
</tr>
<tr>
<td>GaInP/GaAs</td>
<td>9</td>
<td>2.2</td>
<td>86</td>
</tr>
<tr>
<td>GaInP/GaAs/GaInNAs</td>
<td>9</td>
<td>2.5</td>
<td>81</td>
</tr>
</tbody>
</table>

The GaInP/GaAs/GaInNAs SC was also tested with real sun illumination. In this case, the current matching was not perfect (FF-70%), but the \(J_{sc} \) increased to 12 mA/cm². The illumination intensity was estimated by Kipp & Zonen CM11 pyranometer, both air mass and AM1.5G.
illumination intensity were close to AM1.5 and 1000 W/m² [16]. We believe that with further optimization steps and current matching studies the SC efficiency can be significantly improved reaching the current matching target of ~14 mA/cm².

4 Conclusions

In summary, we have performed a PAMBE growth parameter optimization of 1 eV GaInNAs SC material. As a result we observed a rather narrow growth window with the optimum growth temperature of 440°C and the As/Ill III BEP ratio of 10. With these growth parameters a high JSC of 29 mA/cm² was demonstrated for the single junction p-i-n. A triple junction GaP/GaAs/GaInNAs SC produced a JSC of 12 mA/cm² with real sun illumination.

Acknowledgements

The authors would like to thank, Wenzin Zhang, Ville-Markus Korpijärvi and Pekka Malinen for their experimental support. For the financial support, we would like to thank Finnish Funding Agency for Technology and Innovation – TEKES (project 4012009 Solar III-V), County Administrative Board of Oulu for ENNA Project (project number 511249), National Graduate School in Material Physics, Graduate School in Electronics, Telecommunications and Automation, Ulla Tuominen Foundation, Finnish Foundation for Technology Promotion, and Wartsila Foundation.

References

[16] Real sun measurement, Co-ordinates: 61.26°N, 23.51°E Date: 08.5.2012 Time: 15:00-16:00 (GMT+2), Solar zenith angle 54°, Temperature: ~14°C, Normal incidence

References

[16] Real sun measurement, Co-ordinates: 61.26°N, 23.51°E Date: 08.5.2012 Time: 15:00-16:00 (GMT+2), Solar zenith angle 54°, Temperature: ~14°C, Normal incidence

© 2014 ESA Communications. Reproduced with permission.
ABSTRACT

The use of 1 eV band gap GaInNAs heterostructures is an important step towards the development of monolithic solar cells with more than three junctions. We report current-voltage and external quantum efficiency characteristics of GaInNAs single-junction solar cells. Using known characteristics for standard double and triple-junction solar cells, we estimate the AM0 efficiency for GaInP/GaAs/GaInNAs and GaInP/GaAs/GaInNAs/Ge solar cells. The improvement in conversion efficiency upon adding the 1 eV GaInNAs sub-junction would correspond to at least 3 percentage points compared to state-of-the-art GaInP/GaAs and GaInP/GaAs/Ge solar cells.

1. INTRODUCTION

The development of GaAs based materials is currently reaching a level at which the triple junction solar cells (SC) are highly optimized and the AM0 beginning-of-life conversion efficiencies are leveling at ~30% [1]. The efficiency can be further increased by using lattice-matched ~1 eV band gap GaInNAs(Sb) and 1.4-2.0 eV (AlGaInN) materials to form 4-6 junctions [2]. The drawback in using GaInNAs(Sb) is related to challenges in material fabrication [3, 4] and defect population control [5]. Both these challenges easily lead to poor current generation [6] and low open circuit voltages [2]. However, recent development steps in molecular beam epitaxy (MBE) of dilute nitride SCs have overcome the most critical performance limits [7, 8, 9] and led to demonstration of record conversion efficiencies [10]. In this paper, we focus on evaluating the characteristics of GaInNAs SCs grown by MBE. Based on the experimental results we estimate the performance rendered possible by GaInNAs materials, when used in four-junction solar cells operating at AM0 conditions.

2. EXPERIMENTS

The structures consisted of a single junction GaInNAs p-i-n and a triple junction GaInP/GaAs/GaInNAs SC. Both GaInNAs junctions had a 1 eV band gap and thickness of 1.3 μm. The SC structures were fabricated by solid source MBE equipped with an RF plasma source for incorporation of atomic nitrogen. The layers were grown on p-GaAs(100) substrates and the wafers were processed into 4x4 mm² solar cells. TiAu and NiGeAu were used for contacts, on p- and n-side, respectively. The metal finger patterns were made using photolithography. The structures were antireflection (AR) coated with TiOₓ/SiOₓ. More detailed information about the SCs and fabrication is provided elsewhere [3, 8, 9].

3. RESULTS AND DISCUSSION

The EQE of the GaInNAs cell is shown in Fig. 1a. From the EQE the estimated short circuit current density (Jsc) at AM1.5G conditions is 36.8 mA/cm², for the full spectrum excitation, and 11.2 mA/cm² when light is filtered by GaAs. The corresponding Jsc values for AM0 ASTM E490 are 45.2 mA/cm² and 14.1 mA/cm², respectively.

The development of GaAs based materials is currently reaching a level at which the triple junction solar cells (SC) are highly optimized and the AM0 beginning-of-life conversion efficiencies are leveling at ~30% [1]. The efficiency can be further increased by using lattice-matched ~1 eV band gap GaInNAs(Sb) and 1.4-2.0 eV (AlGaInN) materials to form 4-6 junctions [2]. The drawback in using GaInNAs(Sb) is related to challenges in material fabrication [3, 4] and defect population control [5]. Both these challenges easily lead to poor current generation [6] and low open circuit voltages [2]. However, recent development steps in molecular beam epitaxy (MBE) of dilute nitride SCs have overcome the most critical performance limits [7, 8, 9] and led to demonstration of record conversion efficiencies [10]. In this paper, we focus on evaluating the characteristics of GaInNAs SCs grown by MBE. Based on the experimental results we estimate the performance rendered possible by GaInNAs materials, when used in four-junction solar cells operating at AM0 conditions.

2. EXPERIMENTS

The structures consisted of a single junction GaInNAs p-i-n and a triple junction GaInP/GaAs/GaInNAs SC. Both GaInNAs junctions had a 1 eV band gap and thickness of 1.3 μm. The SC structures were fabricated by solid source MBE equipped with an RF plasma source for incorporation of atomic nitrogen. The layers were grown on p-GaAs(100) substrates and the wafers were processed into 4x4 mm² solar cells. TiAu and NiGeAu were used for contacts, on p- and n-side, respectively. The metal finger patterns were made using photolithography. The structures were antireflection (AR) coated with TiOₓ/SiOₓ. More detailed information about the SCs and fabrication is provided elsewhere [3, 8, 9]. The current-voltage (I-V) characteristics were measured using real sun conditions at light intensities close to 1000 W/m² and air masses close to 1.5. During the real sun measurements the temperature of the SCs was 300 K. The external quantum efficiency (EQE) was measured using a system incorporating a halogen lamp, a monochromator, lock-in technique, and Si and Ge reference cells. For the diode curve fitting and efficiency calculation, we used diode equations for multijunction solar cells [11] and the current density limits corresponding to band gaps of GaInP, GaAs, GaInNAs and at AM0 excitation [12].

1. INTRODUCTION

The development of GaAs based materials is currently reaching a level at which the triple junction solar cells (SC) are highly optimized and the AM0 beginning-of-life conversion efficiencies are leveling at ~30% [1]. The efficiency can be further increased by using lattice-matched ~1 eV band gap GaInNAs(Sb) and 1.4-2.0 eV (AlGaInN) materials to form 4-6 junctions [2]. The drawback in using GaInNAs(Sb) is related to challenges in material fabrication [3, 4] and defect population control [5]. Both these challenges easily lead to poor current generation [6] and low open circuit voltages [2]. However, recent development steps in molecular beam epitaxy (MBE) of dilute nitride SCs have overcome the most critical performance limits [7, 8, 9] and led to demonstration of record conversion efficiencies [10]. In this paper, we focus on evaluating the characteristics of GaInNAs SCs grown by MBE. Based on the experimental results we estimate the performance rendered possible by GaInNAs materials, when used in four-junction solar cells operating at AM0 conditions.

2. EXPERIMENTS

The structures consisted of a single junction GaInNAs p-i-n and a triple junction GaInP/GaAs/GaInNAs SC. Both GaInNAs junctions had a 1 eV band gap and thickness of 1.3 μm. The SC structures were fabricated by solid source MBE equipped with an RF plasma source for incorporation of atomic nitrogen. The layers were grown on p-GaAs(100) substrates and the wafers were processed into 4x4 mm² solar cells. TiAu and NiGeAu were used for contacts, on p- and n-side, respectively. The metal finger patterns were made using photolithography. The structures were antireflection (AR) coated with TiOₓ/SiOₓ. More detailed information about the SCs and fabrication is provided elsewhere [3, 8, 9]. The current-voltage (I-V) characteristics were measured using real sun conditions at light intensities close to 1000 W/m² and air masses close to 1.5. During the real sun measurements the temperature of the SCs was 300 K. The external quantum efficiency (EQE) was measured using a system incorporating a halogen lamp, a monochromator, lock-in technique, and Si and Ge reference cells. For the diode curve fitting and efficiency calculation, we used diode equations for multijunction solar cells [11] and the current density limits corresponding to band gaps of GaInP, GaAs, GaInNAs and at AM0 excitation [12].
The measured I-V-characteristics of a single junction GaInNAs SC with and without a 900 nm long-pass filter at AM1.5G excitation are presented in Fig. 1b. Based on the EQE and using a simple diode model to fit the AM1.5G I-V-characteristics, we also calculated the AM0 performance of this device with and without long-pass filter (Fig. 1b). The AM0 saturation current (I₀) and the ideality factor (n) values were taken from the fitted AM1.5G diode curves. The AM0 generation currents were calculated from EQE. The measured and calculated I-V-results and fitting parameters for the single GaInNAs junction are summarized in Tab. 1.

The performance of the GaInP/GaAs/Ge SCs is compared against an un-optimized double junction SC in Fig. 2a. The real sun AM1.5G measurements at 1000 W/m² reveal that the triple junction cell is current limited by GaInNAs to 12 mA/cm². The fill factors (FF) of the double and triple junction SCs are 82% and 76%, respectively. The open circuit voltage (Vₘₐₓ) increase, owing to incorporation of GaInNAs, was 0.42 V.

The potential of the GaInNAs for developing multijunction SCs was then analyzed by using the obtained fitting parameters and assuming state-of-the-art double-junction GaInP/GaAs and triple-junction GaInP/GaAs/Ge SCs as a starting point. The AM0 I-V characteristics of current-matched SCs were calculated for Jₘₐₓ=14.1 mA/cm² (corresponds to the measured GaInNAs SCs) and Jₘₐₓ=17.7 mA/cm² (the condition at which current matching would be fulfilled for state-of-the-art SC). Estimation was based on the characteristics given in [1] and [13] and the diode equations given in [11]. The results of the calculations are shown in Fig. 2b and Tab. 2. To fulfill the current matching requirement of Jₘₐₓ=17.7 mA/cm² by using 1 eV GaInNAs an average EQE of ~90% is needed.

Table 1. The I-V-results and fitting parameters for GaInNAs SC at different excitations.

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>AM0</th>
<th>AM1.5G</th>
<th>900 nm EP filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iₘₐₓ (mA/cm²)</td>
<td>Vₘₐₓ (V)</td>
<td>FF</td>
<td>q</td>
</tr>
<tr>
<td>AM0</td>
<td>13.5</td>
<td>0.55</td>
<td>0.75</td>
</tr>
<tr>
<td>AM1.5G</td>
<td>17.7</td>
<td>0.72</td>
<td>0.88</td>
</tr>
<tr>
<td>900 nm EP filter</td>
<td>14.1</td>
<td>0.58</td>
<td>0.75</td>
</tr>
</tbody>
</table>

The calculations show that adding the 1 eV GaInNAs junction the efficiency of double and triple-junction SC can be increased by ~3 percentage points assuming current matching. However, in the four-junction structure, the EQEs for 1 eV GaInNAs and Ge junctions would need to be over 93% throughout the whole cell absorption spectral range. The absolute improvement can be even higher than 3 percentage points, since the GaInNAs SC used in the calculations did not have the highest open circuit voltage; it was chosen because of the best Jₘₐₓ [8]. We believe that with further optimization we can get up to ~0.10 V higher \(Vₜₐₜ \) for GaInNAs junctions. This and FF improvements can lead to additional 1-3 percentage points gain in efficiency at AM0.

4. CONCLUSIONS AND FUTURE WORK

We have fabricated GaInNAs single and GaInP/GaAs/GaInNAs triple-junction SCs which were measured at AM1.5G. Using the measured EQE, I-V characteristics at AM1.5G, and a diode model we estimated the behaviour of the GaInNAs junction at AM0 conditions. The data was then used to assess the potential of using the GaInNAs sub-junction as a part of triple and four-junction solar cells. If the average EQE of GaInNAs junction can be increased to ~90%, the efficiency of state-of-the-art triple-junction and four-junction SCs could be increased by at least 3 percentage points. Our future work aims at improving the performance of standard GaInP/GaAs cell, the EQE of

The measured I-V-characteristics of a single junction GaInNAs SC with and without a 900 nm long-pass filter at AM1.5G excitation are presented in Fig. 1b. Based on the EQE and using a simple diode model to fit the AM1.5G I-V-characteristics, we also calculated the AM0 performance of this device with and without long-pass filter (Fig. 1b). The AM0 saturation current (I₀) and the ideality factor (n) values were taken from the fitted AM1.5G diode curves. The AM0 generation currents were calculated from EQE. The measured and calculated I-V-results and fitting parameters for the single GaInNAs junction are summarized in Tab. 1.

Table 2. Performance of reference SCs (red background) and estimated performance for GaInP/GaAs/GaInNAs SCs.

<table>
<thead>
<tr>
<th>Structure</th>
<th>(mA/cm²)</th>
<th>FF</th>
<th>q</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaInP/GaAs</td>
<td>15.85</td>
<td>2.64</td>
<td>0.75</td>
<td>This work</td>
</tr>
<tr>
<td>GaInP/GaAs/GaInNAs (light blue)</td>
<td>14.1</td>
<td>2.58</td>
<td>0.87</td>
<td>[13]</td>
</tr>
<tr>
<td>GaInP/GaAs/GaInNAs/Ge</td>
<td>14.1</td>
<td>2.58</td>
<td>0.87</td>
<td>[13]</td>
</tr>
<tr>
<td>GaInP/GaAs/GaInNAs (dark blue)</td>
<td>14.1</td>
<td>2.58</td>
<td>0.87</td>
<td>[13]</td>
</tr>
</tbody>
</table>

The calculations show that adding the 1 eV GaInNAs junction the efficiency of double and triple-junction SC can be increased by ~3 percentage points assuming current matching. However, in the four-junction structure, the EQEs for 1 eV GaInNAs and Ge junctions would need to be over 93% throughout the whole cell absorption spectral range. The absolute improvement can be even higher than 3 percentage points, since the GaInNAs SC used in the calculations did not have the highest open circuit voltage; it was chosen because of the best Jₘₐₓ [8]. We believe that with further optimization we can get up to ~0.10 V higher \(Vₜₐₜ \) for GaInNAs junctions. This and FF improvements can lead to additional 1-3 percentage points gain in efficiency at AM0.

4. CONCLUSIONS AND FUTURE WORK

We have fabricated GaInNAs single and GaInP/GaAs/GaInNAs triple-junction SCs which were measured at AM1.5G. Using the measured EQE, I-V characteristics at AM1.5G, and a diode model we estimated the behaviour of the GaInNAs junction at AM0 conditions. The data was then used to assess the potential of using the GaInNAs sub-junction as a part of triple and four-junction solar cells. If the average EQE of GaInNAs junction can be increased to ~90%, the efficiency of state-of-the-art triple-junction and four-junction SCs could be increased by at least 3 percentage points. Our future work aims at improving the performance of standard GaInP/GaAs cell, the EQE of...
the GaInNAs SC, and to reduce the open circuit voltage band gap offset. Our preliminary results has indicated that the ~90% average EQE for a dilute nitride SC is a feasible target. These optimizations should lead to conversion efficiencies of >35% at AM0 with four-junction SCs.

5. Acknowledgements

The authors acknowledge the financial support provided by the Finnish Funding Agency for Technology and Innovation, Tekes (projects ‘Solar III-V’ #40120/09 and ‘Nextsolar’ #40239/12), and the European Space Agency (project Contract N.: 400010805/13/NL/F/). A. also acknowledges support received from the Graduate School in Electronics, Telecommunications and Automation, Wäretilä Foundation, Finnish Foundation for Technology Promotion, and Ulla Tuominen Foundation for financial support. The authors also acknowledge Dr. Juhu Tommila, Wenzin Zhang, BSc Joel Salmi and BSc Pekka Malinen for their technical support.

6. REFERENCES

16. Aho, A., Tukkainen, A., Polojärvi, V., Salmi, J. & Guina, M. (2013). High current dilute III-V-N single and triple junction solar cells, ‘Nextsolar’ #40239/12, and the European Space Agency (project Contract N.: 400010805/13/NL/F/). A. also acknowledges support received from the Graduate School in Electronics, Telecommunications and Automation, Wärttilä Foundation, Finnish Foundation for Technology Promotion, and Ulla Tuominen Foundation for financial support. The authors also acknowledge Dr. Juhua Tommila, Wenzin Zhang, BSc Joel Salmi and BSc Pekka Malinen for their technical support.
Arto Aho
Dilute Nitride Multijunction Solar Cells Grown by Molecular Beam Epitaxy