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Abstract. Today’s production systems need to adapt rapidly to changing product 

requirements. Adaptation can be eased by formal models, representing product 

requirements and system capabilities, which convey the needed information for the 

adaptation planning activities. This paper presents an adaptation approach, which is based 

on matching the product requirements to the resource capabilities, and applies it to a 

practical case study in TUT-microfactory environment. The main emphasis is placed 

firstly on introducing the ontological resource description, which facilitates the 

representation of resource capabilities. Secondly, the rules, according to which the 

information about the product requirements and resource capabilities are compared to 

find the match, are highlighted. The proposed approach facilitate automatic filtering, 

reasoning and generation of alternative adaptation scenarios from a vast amount of 

resource information. As a result, less manual information handling and reasoning is 

required during adaptation planning.  

 

1. Introduction 

The operation environment of today’s manufacturing companies is quickly evolving. 

Only thing that is evident is change. To survive in such a dynamic environment, the 

production systems need to be able to adapt rapidly to different requirements based on the 

demand. Modular, easily reconfigurable systems with standardized interfaces, have 

emerged to answer to this requirement (ElMaraghy, 2009; Ferreira et al., 2010). 

However, standardization of hardware and software interfaces is not, in itself, enough to 

support rapid adaptation of production systems in a constantly changing environment. 

Intelligent methods, tools and information models are also needed to help humans in the 

planning of this adaptation, or even allow reactive adaptation to take place while the 

system is running (Järvenpää et al., 2011). 

  

Crucial factor for adaptation planning are formal models which convey the needed up-to-

date product, process and system related information to the planning activities 

(Järvenpää, 2012). This paper presents an adaptation approach, which core lies on 

capability-based matching of product requirements and systems that are used to 

manufacture these. This, partly automatic reasoning, aiming to support human designer in 
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the planning activities, is enabled by the formalized representation of the resource 

capabilities and product requirements, as well as rules defining how the capability 

information should be matched against the product requirements. The paper first 

introduces the developed capability-based adaptation methodology and its related 

concepts. In the second part of the paper, this methodology is applied in a practical cell 

phone assembly case study implemented in the TUT-microfactory environment (TUT 

refers to Tampere University of Technology). Finally, section 4 concludes the paper.  

 

2. Capability-based adaptation of production systems  

This section will introduce a novel approach for adapting production systems by 

matching product requirements with the existing resource capabilities. First, the meaning 

of the term ‘adaptation’ will be discussed. In the second section the resource description 

based on capability modelling will be introduced, followed by the discussion on how the 

capabilities are matched with the requirements.  

2.1. Definition of adaptation 

Wiendahl and Heger (2004) identified five types of changeability of manufacturing 

systems: reconfigurability, changeoverability, flexibility, transformability and agility. 

Later on Wiendahl et al. (2007)  used changeability as a general term as a characteristic 

of a system to accomplish early and foresighted adjustment of the factory’s structures and 

processes on all levels to change impulses economically. Based on the literature around 

flexible, reconfigurable and adaptive manufacturing (ElMaraghy, 2009; ElMaraghy, 

2006; Koren, 2010; Mehrabi et al,. 2000; Tolio & Valente, 2006), it is difficult to 

completely differentiate these concepts. Flexibility is often referred to the ability to adapt 

to different requirements without physical changes to the system, whereas 

reconfigurability refers to the ability to change system components when new 

requirements arise (ElMaraghy, 2006). However, these definitions can be used only if the 

boundary of the system is clearly defined. Tolio and Valente (2006) stated that depending 

on the border, the type of changeability can be interpreted as reconfigurability or as 

flexibility and therefore, it is not possible to define general statements for these 

characteristics. ElMaraghy (2006) divided the manufacturing system reconfiguration into 

both physical and logical reconfiguration touching those both definitions of flexibility 

and reconfigurability.  
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Figure 1. Types of production system adaptation, modified from (ElMaraghy, 2006). 

 

In the context of this research, the term “adaptation” is used to refer to all controlled 

changes the production system goes through during its lifecycle. The adaptation can be 

either physical (e.g. changing the layout of the system, adding or removing machines or 

machine elements), logical (e.g. changing the process sequence, re-routing or re-

scheduling production) or parametric (changing the adjustable machine parameters, e.g. 

speed of a conveyor line). Figure 1 represents and explains these three types of 

production system adaptation. 

 

Adaptation can also be divided into static and dynamic adaptation. Static adaptation is the 

change of system design during downtime of the system. It needs planning, either by 

human or through automatic planning methods. Dynamic adaptation is the change of 

system design during the operation of the production system. These dynamic changes 

include either logical or parametric adaptation. Dynamic adaptation allows the production 

system to react to changes in its environment in real-time, for example to recover from 

disturbances on the line and to self-organize itself to balance the production flow. 

Whereas physical adaptation is usually done on the static level, the logical and parametric 

adaptation can be either dynamic or static. This means that logical and parametric 

changes can be executed while the system is running or during its downtime. The 

developed adaptation methodology aims to support both static and dynamic adaptation.  

 

2.2. Resource description based on capabilities 

Each device in the production environment has certain properties and behaviors. Some of 

these properties and behaviors allow the device to perform certain functions. The 

properties of the devices have certain ranges, and the functionality of the devices is 

restricted by certain constraints. These can be, for example, environmental constraints 

like the maximum permitted humidity and temperature of the operating environment, or 

technical properties, such as the maximum torque of a spindle or the velocity range of a 

moving axis. Automatic matching of available devices against product requirements 

requires formalized and structured representations of the functional properties and 

constraints of the devices.  
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Most of the traditional approaches to resource description tend to classify the resources 

into groups based on their common properties, or the functions they provide (e.g. milling 

machines, lathes, robots and so on). Unfortunately this kind of classification limits the 

expressiveness of the representation. To overcome this limitation, instead of classifying 

devices, in the proposed approach the functional capabilities of the devices are classified. 

This way, one device may have multiple capabilities which can be used in different 

contexts. Furthermore, new capabilities may be discovered during the resource lifecycle 

and these can be assigned to the device when, and if, they emerge. In the proposed 

approach the capabilities are functionalities of resources such as ‘drilling’, ‘screwing’, 

‘moving’ and ‘grasping’. For the capability classification, the capability taxonomy has 

been constructed so that it allows reasoning between different levels of abstraction.  

 

The following sections will first shortly highlight the existing approaches, which use 

capability descriptions as a basis for matching product requirements against resource 

charasteristics.  After that, in the subsequent sections, the developed capability modelling 

approach and resource ontology will be discussed in detail.  

2.2.1. Existing approaches for capability description 

Few other researchers have also applied capabilities to describe resources and allow rapid 

resource allocation, system reconfiguration or self-organisation. Timm et al. (2003; 2006) 

proposed an ontology-based capability management approach for multi-agent-based 

manufacturing systems. The capabilities were represented based on 1
st
 order logic and the 

capability concepts were organized in taxonomic hierarchies. Lohse et al. (2006) 

presented an ontological equipment model, which follows function-behaviour-structure 

framework and includes separate formalism for the specification of a module’s capability 

and interfacing requirements. Barata et al. (2008) and Cândido and Barata (2007) 

presented a multi-agent-based control architecture for a shop floor system (CoBaSa). 

They used ontology to model basic skills and complex skills, where complex skills are 

aggregations of the basic skills. Ameri and Dutta (2008) connected buyers and sellers of 

manufacturing services in a web-based e-commerce environment by formal ontology 

describing the manufacturing services in terms of capabilities. Smale and Ratchev (2009) 

proposed a capability-based approach for multiple assembly system reconfiguration. In 

general, the limitation of these approaches is that they lack either the ability to model 

combined capabilities of combinations of resources, or if this feature exist, they don’t 

incorporate parameter information into the capability definition.  

2.2.2. Introduction to the capability modelling  

Figure 2 illustrates the capability related terms in the proposed capability modelling 

approach. Capabilities are composed of two components: capability concept name and 

capability parameters. The functionality of the resource, such as “screwing” is described 

by the capability concept name. The capability parameters represent the technical 

properties and constraints of resources, such as ‘speed’, ‘torque’, ‘payload’, and so on. 

For example, capability with concept name ‘moving’, has parameters ‘speed’ and 

‘acceleration’. In other words the concept name of the capability indicates the operational 

functionality of the resource, whereas the parameters of the capabilities distinguish 

between capabilities having the same concept name. The capability parameters allow 
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determining which resource has the capability that best fits to the given product or 

production requirement. Capabilities are divided into simple capabilities and combined 

capabilities, where the combined capabilities are combinations of simple capabilities, 

usually formed by combinations of devices. The numbers by the arrows in Figure 2 

indicate that e.g. combined capability is composed of two or more simple capabilities.  

 

 
Figure 2. UML diagram of capability related terms in the proposed approach 

(Järvenpää, 2012). 

2.2.3. Formal ontology for describing resources 

In the proposed approach, ontological modelling is used to formalize the representation 

of the resources, capabilities, system configurations and product requirements. 

Ontologies play an important role in knowledge-based modelling. They provide a 

standardized, both machine and human interpretable, way to present knowledge from 

different domains and from heterogeneous knowledge sources. Ontologies are developed 

to support the exchange of meaningful information across autonomous entities that can 

organize and use the information heterogeneously. According to Gruber (1993), “an 

ontology is a formal, explicit specification of a shared conceptualization”. The 

conceptualization is applied to a limited domain, such as the product, process and system 

domains. The conceptualization aims to break down the different terms and entities of 

this domain into well-defined and distinctive concepts. The concepts are expressed in a 

formal way in order to allow computers to use them. The concepts have to be explicit in 

order to avoid inconsistencies and ambiguities in meaning. This can be achieved by using 

non-ambiguous classifications, relations or metrics. Lastly, the conceptualization has to 

be shared and agreed upon by the different user groups in order to provide a common 

means of communication and frame of reference. (Gruber 1993.) 

 

The Core Ontology, originally developed by Lanz (2010) for product-process-system 

representation, has been extended for describing the capabilities of the resources, 

resource interfaces, as well as lifecycle information relating to resources and certain 

processes. The ontology and its instances are saved into a Knowledge Base (KB), 

described in detail in (Lanz, 2010). The ontology has been built with the Protégé OWL-

DL tool. OWL-DL is based on description logics and it allows the domain concepts to be 

largely defined according to a predefined formalism. (Stanford Center for Biomedical 

Informatics Research, 2012.) 
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2.2.4. Capability model  

The proposed capability modeling method relies on capability modularization. The 

approach is based on functional decomposition of upper level combined capabilities into 

simple capabilities and assigning these simple capabilities for individual resources in a 

modular way. When multiple resources are combined, the simple capabilities form 

combined capabilities. The systematic design approach of Pahl & Beitz (1996) provides a 

fundamental relationship between function and function decomposition. Function 

decomposition represents how a function is achieved through a set of sub-functions, 

which are finer-grained functions. (Pahl & Beitz 1996.) Similarly, the combined 

capabilities are achieved from finer-grained simple capabilities. Functional 

decomposition allows the definition of is_part_of relations between the simple and 

combined capabilities.  

 

In the ontology, the combined capabilities are modelled using capability associations as 

links between the simple and combined capabilities. In the resource ontology, the devices 

are assigned the simple capabilities that they posses. Based on the defined capability 

associations, the device combinations contributing to certain combined capability can be 

identified and queried. Of course, the devices also need to have matching interfaces to be 

able to co-operate. Figure 3a shows how the capability associations are used to form 

combined capabilities from the simple ones. Figure 3b illustrates an example of 

capability associations by ‘transporting’ capability in case of a robot unit consisting of a 

robot and gripper. In order to have “transporting” capability, both moving and holding 

associations need to be satisfied. The robot alone has only the ability to move its joints 

within a workspace. When combined with a suitable gripper (having ‘grasping’ 

capability), together they are able to transport pieces from one place to another. Also 

conveyor alone would have the ‘transporting’ capability, because it can move within a 

certain workspace and hold items either by a specific jig or by gravity on the belt. More 

examples of simple, combined and resource specific capabilities in the TUT-microfactory 

environment, can be seen in Section 3.   
 

 
Figure 3. a) Model for combined capabilities; b) Sample of the instantiated capability 

model (Järvenpää 2012). 
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Generally, in modularization, the interactions between the involved components are to be 

minimized (Lehtonen, 2007). In the case of capabilities, the functional decomposition 

aims to minimise the redundancy and interdependencies between the parameters of the 

simple capabilities, so that the parameters fit naturally under one capability concept 

name. Also the assignment of the same parameters for multiple different capabilities is 

minimized. This fit is based on production engineering domain knowledge. It is 

recognized that this “natural fit” is not realistic in all the cases. Therefore, some artificial 

simplifications are made during the creation of the instantiated capability model. For 

more information about capability parameters, please refer to (Järvenpää 2012). 

Secondly, the capability modularization aims to provide reusability of the capabilities 

among different types of resources. 

 

Capability model defines the generic capabilities, i.e. a pool of capabilities that can exist 

in a system. When these generic capabilities are assigned to the resources, they become 

resource specific when filled with resource specific parameter values. The capabilities are 

linked to the capability taxonomy, which organizes the capabilities in different 

abstraction levels, e.g. ‘milling’ is a sub-class of ‘materialRemoving’ capability in the 

taxonomic hierarchy (Järvenpää, 2012).  

 

2.2.5. Device blue prints and Individual devices 

As known, the production environment is constantly changing, and the condition and 

capabilities of the resources evolve during their individual lifecycles and usages. In 

adaptation context the resources have already been operating, which often indicates that 

the capability of the resource is not anymore the same as it was when the resource was 

taken to use. Therefore, the description of the resource has to be updated over time. For 

this reason, devices have two separate, but linked representations within the resource 

ontology: device blue prints and individual devices. Figure 4 shows the relations between 

the device blue prints and the individual devices, and their associated information 

elements.  

 
Figure 4. UML diagram of device blue prints and individual devices (Järvenpää et al. 

2012). 

 

The device blue print describes the capabilities and properties of one type of device, as 

given in the suppliers’ catalogues. This is the nominal capability of the device. The 

individual devices are presented in a separate class which refers to the blue print device, 

yet presents the actual capabilities of the particular, individual resource which exists on 

the factory floor. The numbers by the arrows in Figure 4 indicate, that e.g. one device 
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blue print can have zero or multiple individual devices referring to it. The individual 

devices have actual capabilities, which are affected by the lifecycle of each individual 

device and updated according to measured values from the factory floor. For example, if 

the measured accuracy of the machine differs from the value defined in the nominal 

capability, this updated value can be given in the actual capability definition. 

Maintenance and service operations or adaptations done to the resource can also change 

its capability. (Järvenpää et al. 2012.) In capability-matching the up-to-date (actual) 

capability information should always be used if available.  

 

2.3. Capability-based matching framework 

In the proposed capability-based adaptation approach, the product requirements are 

matched against the system capabilities and the system is adapted, until it satisfies the 

requirements of the product, i.e. until it is compatible with the new product requirements 

(Järvenpää, 2012). The product requirements can be extracted from a 3D product model 

with a feature recognition and pre-process planning software, as has been presented in 

(Garcia et al. 2011), or they can be formulated manually and then saved to the 

Knowledge Base as will be exemplified in this paper. The pre-process plan is an ordered 

graph of generic activities referring to specific levels on the capability taxonomy (Garcia 

et al., 2011). The activities in the pre-process plan can refer either to more abstract level 

capability, such as “materialRemoving”, or to more detailed level capability, like 

“drilling”. The capability matching is performed according to the capability taxonomy 

and capability matching rules which connect the product and resource domains to each 

other. Figure 5 represents the framework of the capability-based matching.  
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Figure 5. Framework for matching the product requirements against the system 

capabilitied, modified from (Järvenpää, 2012). 
 

The taxonomy, included in the Core Ontology, is used to make a crude search that maps 

the resources with the required capabilities at a high level (capability concept name 

level), whereas the detailed reasoning with the capability parameters and combined 

capabilities is based on rule-based reasoning. Rule-base is developed as a store for the 

rules used in the capability matching. An extensive Python framework was developed for 

writing the rules and for retrieving the information relating to the product requirements 

and resource capabilities from the Knowledge Base. Three types of rules have been 

defined: 1) Domain expert rules - Rules for defining how the capability and its parameter 

information are applied in different domains when comparing with the product 

requirements; 2) Combined capability rules - Rules for reasoning out the parameters of 

the combined capabilities and; 3) Adaptation rules - Rules indicating how other criteria, 

such as availability and scheduling, device condition and lifecycle, as well as user and 

company specific criteria is used in the final resource selection and configuration 

generation. (Järvenpää, 2012.) In the following section this adaptation methodology is 

applied to a TUT-microfactory environment.  

 

3. Practical case study – TUT-microfactory environment 

The case study aims to describe how the capability-based adaptation methodology is 

applied and especially how the capability matching rules are used in practice, and provide 

Product’s pre-process plan
phases refer to the capability 

taxonomy

Product 
Product requirements
(Features and related pre-
process plan)

Resource

Resource has
resource specific

capability

Resource specific
capability refers to 
a generic capability

Generic
capabilities refer
to the capability 

taxonomy

Capability Editor
Resource specific

capabilities

Capability Editor
Generic capabilities

Capability taxonomy

Rule-base for capability 
matching

Comparison of feature 
properties against

capability parameters
based on the rules

Rules for comparison

KB

Current resources 
and resource
combinations

Products,

Manufacturing

Shaping

Material 
removing

Material 
adding

Machining

Milling Turning Drilling

Punching Laser 
cutting

Casting

Production

JoiningPreparationLogistics Qualifying Finalizing

Fitting

Elastic 
deforming

Plastic 
deforming

Pressing Snapping

Bending Twisting

Fastening Gluing Welding

Screwing Riveting

Non-shaping

Metal 
welding

Plastic 
welding

Transport the phone to the 

working area

Pick up a screw

Detect the position and 

orientation of a screw

Move above the screw

Grasp the screw

Insert the screw to an empty 

hole

Detect empty hole and its 

position

Transport the screw above 

the hole

Insert the screw to the hole

Fasten the screw

Move back on top of the 

feeder and picking up a new 

screw

Transport the product to the 

next station

Feed screws

Required capabilities 

and their parameters

C: Transporting

pP: Weight 0,1kg, Dimensions L 97mm, W 47mm, H 8mm

rP: Speed 50mm/s, Transporting area length: 200mm

C: Grasping

pP: Screw size: M1,6, L 4mm, weight 0,002kg, material: metal

rP: -

C: Inserting

pP: Screw size: M1,6, L 4mm, weight 0,002kg

rP: Accuracy: 0,8mm

C: Screwing

pP: Screw size: M1,6, L 4mm, weight 0,002kg, type: torx

rP: Torque: 5Ncm

C = Capability

pP = Product related parameters

rP = Other parameter requirements

C: Feeding

pP: Screw size: M1,6, L 4mm, weight 0,002kg

rP: Feed rate: min 1part/s, feeding type: bulk feeding

C: Moving

pP: -

rP: Speed 50mm/s

C: Object detection, positioning and orientating

pP: Screw size: M1,6, L 4mm, weight 0,002kg

rP: FoW width: 45mm, FoW height 45mm 

C: Object detection and positioning

pP: Hole dimensions: D 1.5mm

rP: FoW width: 120mm, FoW height 90mm 

C: Transporting

pP: Screw size: M1,6, L 4mm, weight 0,002kg

rP: Speed 50mm/s

Screwing 4 screws to a cell phone

Product: Cell Phone

Parts: Cell phone base,

Screws (4 pcs)

Resources: Cartesian manipulator, microtec 

screw driver, tray feeding system, 

vision system (1+2), belt conveyor. 
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a proof of concept of the developed methodology. In this context the microfactory system 

can be viewed as a static system where the adaptation takes place “offline”, based on 

human-centric planning. In the microfactory environment, modularization and 

standardized interfaces are the enablers for the adaptation. The main task in the following 

case study is to evaluate if the existing TUT-microfactory system has the capabilities to 

cope with the requirements set by the selected case product assembly. First, an 

introduction to the TUT-microfactory concept will be given. Secondly, the product 

requirements are defined, followed by the definition of existing microfactory system 

capabilities. After that, the matching of the product requirements against the system 

capabilities based on the capability matching rules will be explained in detail.  

3.1.  Introduction to TUT-microfactory concept 

The TUT-Microfactory is a modular construction kit type concept with easy and rapid 

reconfigurability for different manufacturing processes of hand held size, or smaller, 

products. The system structure is designed with an idea that a base module can work as 

an independent unit including all the needed auxiliary systems. The outer dimensions of 

one base module are 300 x 200 x 220 mm and the inside workspace is 180 x 180 x 180 

mm. The base module includes a clean room class work space, a control cabinet and the 

equipment needed by the clean room. Since the production module does not need a 

separate control cabinet, the factory can be aggregated fast and easily on a desktop table 

or other flat surface. This and small size of the modules enable extreme mobility of the 

production capacity. (Heikkilä et al., 2010.) 

 
Figure 6. Plug-and-play interfaces for easy configuration of a complete TUT-

microfactory system.  

 

The production module can be tailored to certain processes by placing process modules 

on top of the base module (Figure 6). Process module can be e.g. a robot, laser or 

machining unit. In addition to the top side of the base module, both sides and the front 

side can be left open when adjacent cells compose one integrated work space. Feeders 

and other devices can be placed in the opening on the sides. (Heikkilä et al. 2010.) 

3.2. Definition of the product requirements  

The case product is a cell phone body, in which four screws are to be attached (Figure 

7a). The product requirements are shown in the graph in Figure 7b. On the left-hand side 
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is the process plan and on the right-hand side are the product characteristics, which affect 

the required capabilities in each process phase. Additionally, the requirements, which are 

more project and user-preference related rather than product related, such as the required 

speed for transporting the phone and the desired type of feed, are shown in the figure. 

The steps in the process plan have a direct link to the capability taxonomy, which allows 

the mapping between the product requirements and existing system capabilities at the 

concept name level.  

 
Figure 7. Case product; b) Pre-defined process plan and related capability requirements, 

modified from (Järvenpää et al., 2013). 
 

The system architecture of the TUT-microfactory concept places some constraints on the 

possible layout and configuration of the modules. In the TUT-microfactory concept, the 

microfactory frame is needed to contain the process module and auxiliary devices. For 

the case study, one pre-condition is that the product should be produced with the TUT-

microfactory. Therefore, the constraints set by the system architecture need to be 

considered in the capability matching. For example, as the width of the TUT-

microfactory module is known, then the transporting distance of the cell phone from one 

side of the module to the other is pre-defined. Some of these requirements are set by the 
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selection of other devices in the system. For instance, the required field of view (FoV) of 

the camera units are not only determined by the product size, but also by the means of 

transportation and feed for the product and parts. In other words, the selection of some 

devices propagates some further new requirements. Examples of these kinds of 

requirements are included in the case example and are also shown in the Figure 7.               

3.3. Definition of the system capabilities  

The existing system consists of a TUT-microfactory module, a cartesian manipulator, a 

screwdriver unit, a feeding system, a belt conveyor and a machine vision system with 2 

camera units (see Figure 8). Figure 9 shows the capabilities of the existing microfactory 

system. The devices are grouped in their natural combinations, e.g. the camera unit 

consists of camera and optics, whereas the machine vision system consists of the camera 

unit, a PC and ambient lighting. The same grouping is also used for the description of the 

system in the resource ontology. The arrows in Figure 9 indicate to which combined 

capability the simple capabilities of the devices contribute. 

 

 
Figure 8. Existing TUT-microfactory system. 
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Figure 9. Capabilities of the existing TUT-microfactory system for flexible screwing. 

 

In order to save space and ensure readability, only those parameters needed in the 

reasoning of this particular matching case, are shown in the Figure 9. To illustrate more 

intuitively the capability parameters and the formation of the combined capabilities from 

the simple capabilities, Figure 10 shows the capabilities of the screwing robot consisting 

of Cartesian manipulator and screw driver unit, which again consists of a screw driver 

and a screwing head.   

 

Screwing robot

Microdrive screw 

driver unit

Feeding system

Machine vision system

Camera unit 1

TUT-Microfactory module

Screw driver

Screwing head

Tray feeder

Feeding plate

Belt conveyor

Camera unit 1

μEye camera 2

PC + machine vision 

SW

C_cn: screwing, pickigUp, transporting, 

inserting

C_cn: -

C_cn: spinningTool, itemMaxSize

C_cn: screwingHead, magneticGrasping

C_cn: plateFeeding

C_cn: feedingPlate, itemMaxSize

C_cn: traySupporting

C_cn: holding, movingWorkspace à 

transporting, itemMaxSize, 

degreesOfFreedom, workspaceBox

C_cn: objectRecognition, positioning,    

orienting

C_cn: visualSensing

C_cn: imageCapturing

C_cn: imageProcessing, 

orientationRecognition, 

positionRecognition

μEye camera 1 C_cn: imageCapturing

Optics 1 C_cn: lightReflecting

Lighting C_cn: illuminating

C_cn: visualSensing

Optics 2 C_cn: lightReflecting

C_cn: attachmentFrame

Cartesian manipulator

C_cn: movingWorkspace; 

degreesOfFreedom; workspaceBox; 

payload; forceApplying

C_cp: Dimensions L200, W300, H220mm

C_cp:Speed: x,y 100, z 10mm/s, Accuracy 0.3mm; 

DoF translate x,y,z; Workspace: L200,W120, 

H100mm; payload 0.1kg; force: 10 N -z-direction

C_cp: -

C_cp: Torque 0.03-0.1Nm, speed 350-700rpm, tool 

diameter max 2mm; max item size D2mm, L10mm

C_cp: Screw size M1.6, type Torx; holding force 

0.05N

C_cp: Tray dimensions W51, L51, H10, Number of 

trays 1, payload 0.2kg

C_cp: Max number of parts 40, feed rate 5/s; Item 

max size D1.6, L10mm

C_cp: Payload 1kg; Speed x 100mm/s; Item max 

size L100, W100mm; DoF translate x; Workspace 

L200, W110

C_cp: wave length 550nm, intensity 58W, type: 

ambient light

C_cp: Detector size (x,y) 6.4 x 4.8mm, resolution 

(x,y) 1024x1280, Colour, Frame rate 15 fps

C_cp: Current working distance 255mm, focal 

length 12.5mm

C_cp:Detector size (x,y) 6.4 x 4.8mm, resolution 

(x,y) 1024x1280, Colour, Frame rate 25 fps

C_cp: Current working distance 250mm, focal 

length 25mm

C_cp: Algorithm type: template matching, algorithm 

accuracy 1 pix; positioning accuracy 0.5mm

Capability concept names Capability parametersResources
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Figure 10. Capabilities of a screwing robot included into the TUT-Microfactory screwing 

cell, modified from (Järvenpää et al., 2013). 

3.4. Matching the product requirements against the system 

capabilities 

Based on the description of the product requirements and existing system capabilities, the 

capability taxonomy, and the rules for the detailed capability matching, it is possible to 

reason out if the existing system has all the required capabilities needed to perform the 

screwing operations. The steps in the process plan have a direct link to the capability 

taxonomy, which allows the mapping between the product requirements and existing 

system capabilities at the capability concept name level. This high-level mapping results, 

that all the required capabilities, at the concept name level, can be found from the 

existing TUT-microfactory system. Next, the detailed capability matching needs to be 

performed based on the rules in the rule-base. In the following paragraphs, these resoning 

procedures are explained step-by-step.  

 

Step 1: Transport the phone to the working area 

The high-level capability mapping detects two devices (combinations) from the system 

which have the “transporting” capability. These are the belt conveyor and the screwing 

robot. The detailed matching first checks whether the product size and weight are suitable 

Screwing robot

Screwdriver unit

Screwing headScrew driver

Cartesian manipulator
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+Speed_x: 100 mm/s
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+Width: 120 mm
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payload
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+Force: 10 N

+Direction: -z
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+Torque_max: 0.1 Nm
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+Tool_diameter_max: 2 mm

itemMaxSize

+Diameter: 2 mm

+Length: 10 mm

screwingHead

+Screw_size: M1.6

+Type: torx

magneticGrasping

+holdingForce: 0.05 N

transporting

screwing

pickingUp

inserting

Resource

Simple capability

Combined capability



   

 

   

   

 

   

   

 

   

    Title    
 

 

    

 

 

   

   

 

   

   

 

   

       
 

 

for the current devices (RULE 1a), and secondly it checks if the workspace of the device 

and the speed of the transporting capability matches the requirement (RULE 1b). The 

rules used for the matching are shown in Figure 11.  

 

 
Figure 11. Rules for step 1.  

 

When these rules are applied to the presented case, i.e. filled with the parameter values 

shown in Figure 9 and Figure 8, it reveals that the belt conveyor capabilities match the 

requirements. Only the rules for the conveyor case are shown here. However, similar 

reasoning with the screwing robot is shown later in Figure 13. Those rules would 

immediately reveal that the screwing robot is not a suitable device combination for 

transporting the cell phone, because of the size, weight and material of the product.  

 

Step 2: Feed screws 

Based on the high-level capability mapping, one device combination in the current 

system has the capability “plateFeeding”. This is the feeding system. The designer has 

specified that the screws should be fed by a bulk feeding method in order to ease the 

manual handling of the screws. According to the capability taxonomy, the “plateFeeding” 

is a specialization of “bulkFeeding” and therefore fulfils the requirement. Because bulk 

feeding is a method which doesn’t provide the parts in a certain position and orientation, 

the machine vision system, or another system providing “objectRecognition”, 

“positioning” and “orienting” capabilities is required to be able to detect the parts that can 

be picked up from the feeder. These capabilities are also available in the system. The 

rules for detailed capability matching are used to find out if the existing feeding system is 

able to feed the screws. First, it needs to be checked if the part size is suitable for the 

feeder (RULE 2a).  

 

The matching shows that the current feeding system is able to feed the screws. However, 

the position and orientation of the screws also need to be detected in order to feed the 

parts in a specified position and orientation. The high-level mapping finds that the 

machine vision system consisting of two cameras has the capabilities of “object 

detection”, “positioning” and “orienting”. The physical arrangement of the machines, 

acquired from the virtual model, defines the position of the camera units in relation to the 

feeder and conveyor. Camera unit 1 is above the conveyor and Camera unit 2 is above the 

conveyor = resource.hasCapability(“movingWorkspace”) AND (“holding”)

IF product.getParam(“weight”) <= holding.getParam(“payload”) AND
product.getParam(“length”) <= conveyor.itemMaxSize.getParam(“length”) AND
product.getParam(“width”) <= conveyor.itemMaxSize.getParam(“width”) AND
product.getParam(“height”) <= conveyor.itemMaxSize.getParam(“height)

THEN
RETURN TRUE

IF product.transportingArea(“length”) <= workspaceBox.getParam(“length”) AND
product.transportingSpeed(“speed”) <= movingWorkspace.getParam(“speed_x”)

THEN
RETURN TRUE

Domain expert rules for detailed capability matching

1a) Is the product size suitable for the device?

1b) Are the workspace and speed requirements met?
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feeder. The working distances of the cameras are pre-defined based on the current 

installation.  

 

 
Figure 12. Rules for the step 2. 

 

The field of view (FoV) of the camera system is calculated based on the working distance 

of the camera, the detector size (CCD width x CCD length) and the focal length of the 

optics as defined by the combined capability rule (RULE 2d). This results that FoV of 

camera unit 1 is 130 x 98 mm and FoV of camera unit 2 is 60 x 48 mm. Rules 2b and 2c 

are then used to determine if the camera system field of view is large enough for the 

application and that its resolution is enough to detect the screws from the feeder. The 

desired field of view is defined after the feeding plate has been selected. Based on the 

plate size, the desired FoV is 45 x 45 mm. Camera unit 2 does have a bigger FoV, so it is 

suitable. The minimum required detector resolution is calculated with the Nyquist 

principle based on the field of view and the smallest detectable feature, as defined by 

RULE 2c.  As the screws to be detected are 1.6 mm, the minimum detector resolution is 

75 x 60 pixels. The detailed capability matching shows that the camera resolution goes 

well beyond the required resolution.  

 

Step 3: Pick up, insert and fasten the screw 

The high-level mapping finds one device combination having the “pickingUp”, 

“inserting“ and “screwing“ capabilities. This is the screwing robot consisting of the 

cartesian manipulator and the screwdriver unit, as shown in Figure 10. The detailed 

capability matching needs to check if the screws can be picked up with the current device 

combination (RULE 3a), whether the transportation capability fullfils the set speed 

requirements (RULE 3b), and whether the screw driver is able to fasten the specific 

screws used in this case study (RULE 3c). RULE 3a uses the information provided by the 

RULE 3d, which calculates the payload of the robot + screw driver combination.  

Domain expert rules for detailed capability matching

2a) Is the screw size suitable for the feeder?

plate = resource.hasCapability(“feedingPlate”)

IF product.getParam(“diameter”) <= plate.itemMaxSize.getParam(“diameter”) AND
product.getParam(“length”) <= plate.itemMaxSize.getParam(“length”) AND

THEN
RETURN TRUE

FoV_width = (lightReflecting.getParam(“current_working_distance”) * 
imageCapturing.getParam(“detector_size_x”)) / lightReflecting.getParam(“focal_length”)

FoV_height = (lightReflecting.getParam(“current_working_distance”) * 
imageCapturing.getParam(“detector_size_y”)) / lightReflecting.getParam(“focal_length”)

IF product.getSmallestParam.size() >= 2 * FoV_width / 
imageCapturing.getParam(“x_resolution”) AND
product.getSmallesParam.size() >= 2 * FoV_height /    
imageCapturing.getParam(“y_resolution”)

THEN
RETURN TRUE

2c) Does the camera system have enough resolution for detecting the screws?

2d) Field of view (workspace) of the camera system

IF desired_view_height <= FoV_height AND
Desired_view_width <= FoV_width

THEN
RETURN TRUE

2b) Is the camera system field of view enough for the required application?

Combined capability rules for combining the parameters
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Figure 13. Rules for the step 3, modified from (Järvenpää et al. 2013). 

 

Based on the detailed capability matching, the robot-screwdriver combination is able to 

pick up the screw and move at the desired speed. Because the transportation of the cell 

phone on the belt conveyor doesn’t position and orient the product in the system, the 

positions of the holes are not known. Therefore, a method to detect the empty hole and its 

position has to be available in the screw insertion phase. As discussed earlier in the step 

2, the machine vision system has these capabilities. The detailed-level matching 

considering the field of view and resolution requirements is carried out as was done 

earlier. Camera unit 1 is able to fulfil the given requirements.The RULE 3e shows that 

the combined accuracy of the machine vision system and the screwdriver robot is, in the 

worst case scenario, 0.8 mm. This was the original requirement, which means that the 

accuracy requirements are fulfilled.  

 

Finally the detailed matching checks whether the screw type and size, as well as the 

required torque, are suitable for the existing screwdriver (RULE 3c). The matching shows 

that the screws can be fastened with the existing screw driver. However, the screw driver 

is only suitable for one size of screws. If the screw size changes, it will immediately 

require physical adaptation to the system. 

Domain expert rules: Detailed capability matching

3a) Can the screw be picked up by the device combination?

IF providedCapability = “magneticGrasping” AND
product.getParam(“material”) = metal AND
product.getParam(“weight”) <= Combined payload of [robot + screwdriver] AND          
product.getParam(“diameter”) <= screwdriver.maxItemSize.getParam(“diameter”) AND
product.getParam(“length”) <= screwdriver.maxItemSize.getParam(“length”) 

THEN
RETURN TRUE

3b) Is the speed requirement met?

IF process.getParam(“speed_x”) <= movingWorkspace.getParam(“speed_x”) AND
process.getParam(“speed_y”) <= movingWorkspace.getParam(“speed_y”) AND
process.getParam(“speed_z”) <= movingWorkspace.getParam(“speed_z”) 

THEN
RETURN TRUE

Combined capability rules: Combining the parameters

3d) Combined payload of robot + screw driver

robot = resource.hasCapability(“movingWorkspace”)
screwdriver = resource.hasCapability(“spinningTool”)
screwinghead = resource.hasCapability(“screwingHead”)

Combined_payload_of[robot + screwdriver] = MIN(robot.payload.getParam(“weight”) -
screwdriver.basicDeviceInfo.getParam(“weight”) –
screwinghead.basicDeviceInfo.getParam(“weight”)),
1/9,81 * magneticGrasping.getParam(“holding_force”))

3c) Can the srews be screwed with the available screw driver?

IF screw.getParam(“type”) = screwingHead.getParam(“type”) AND
screw.getParam(“size”) <= screwingHead.getParam(“screw_size_max”) AND
screw.getParam(“size”) >= screwingHead.getParam(“screw_size_min”) AND
screw.getParam(“torque”) <= spinningTool.getParam(“max_torque”) AND
screw.getParam(“torque”) >= spinningTool.getParam(“min_torque”)

THEN
RETURN TRUE

3e) Is the accuracy of the inserting capability (robot+machine vision system) enough?

IF process.getParam(“required_accuracy”) >= (movingWorkspace.getParam(“accuracy”) + 
positionRecognition.getParam(“accuracy”))

THEN
RETURN TRUE
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Step 4: Adaptation scenario – changing the screw size 

In this case scenario, the screw size changes from M1.6 to M2. When changing the screw 

size, the required capabilities remain the same at the concept name level. Only the screw 

size parameter is changed. The current screwdriver is suitable for screwing only size 

M1.6 screws, which means that, based on RULE 4a, a new screwing head needs to be 

attached to the screwdriver (Figure 14). The rule 4b is used to define whether the new 

screwing head is compatible with the given screwdriver.   

 

 
Figure 14. Rules for the step 4, modified from (Järvenpää et al., 2013).  

 

If the screwdriver head is not compatible with the screwdriver, for example in this case if 

the screwing head is for bigger screws than M2, the whole screwdriver needs to be 

changed. Small changes in the product design can, in this case, be handled with relatively 

small changes to the system. However, this example illustrates well that when certain 

border constraints of the capabilities are crossed, the magnitude of the adaptation can 

grow significantly due to the propagation of the changes. In this example case, as long as 

the required screw size is between M1 and M2, the system can be adapted by just 

changing the screwdriver head. If bigger screws are used, the whole screwdriver needs to 

be replaced. And again, these changes may be propagated to the robot if, for example, the 

new screwdriver is not compatible with the robot interface.  

 

4. Results and Conclusions 

This paper presented capability-based adaptation methodology, which aims to support 

rapid adaptation of production systems both in static and dynamic adaptation contexts. 

The proposed adaptation methodology allows automatic generation of system 

configuration scenarios based on given product requirements and supports rapid 

allocation of resources and adaptation of systems. From the information management 

point of view, it supports automatic filtering of information and finding suitable solution 

proposals from a large search space, thus reducing the manual information-processing 

Adaptation rules: New combination generation

4a) What needs to be changed in the screwdriver combination?

IF feature.hasCapabilityTaxonomy (“Screwing”) AND 
currentSystem.hasCapability(“screwing”) AND
matchParameters(currentSystem.capability.find(capabilityParameters),   
requiredCapability(requiredParameters)) = false

THEN
Create new combinations of the resource.hasCapability(“spinningTool”) and other 
resource.hasCapability(“screwingHead”)

screwdriver = resource.hasCapability(“spinningTool”)
screwinghead = resource.hasCapability(“screwingHead”)

IF (spinningTool.getParam(“diameter_max”) >=
screwingHead.basicDeviceInfo.getParam(“diameter”))

THEN
RETURN TRUE

4b) Checking compatibility of of screw driver and screwing head

Combined capability rules: Combining interfaces
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required during adaptation planning. Furthermore, the resource model provides up-to-

date information about the resources, facilitating more reliable adaptation plans. In a 

small factory with only a few resources, management of the resource information is not a 

problem. In large factories and production networks, automatic management and filtering 

of this information has substantial potential for reducing the amount of manual work, and 

thus reducing the time used for planning activities.  

 

Compared to the existing capability-based adaptation approaches, the presented 

methodology provides finer granularity to the resource description by separating the 

simple and combined capabilities, and thus allows the adaptation on a single tool level, 

not only on a machine level. In comparison to those methods, which do separate the 

simple and combined capabilities, this methodology takes one step further by 

incorporating the parameter information to the capability description. It operates with 

more details and therefore facilitates more detailed decision making relating to the system 

design and adaptation.  

 

The case study presented in this paper showed how the developed capability-model, rule-

base and the overall adaptation methodology can be used in practice to support human-

controlled adaptation planning. The case study proved that the developed ontological 

resource description can be used to describe the capabilities of real production systems 

and the developed rules can be applied to make the match between the resource and 

product descriptions. The capability matching actions, discussed in the examples, can be 

done automatically based on these rules. However, during the study, the initial 

assumption, that humans cannot be removed from the adaptation planning process, was 

confirmed. For example, the proposed approach is not able to automatically handle the 

propagation of requirements, when the selection of one resource creates further 

requirements for the other resources, but these need to be controlled by the human 

designer. Secondly, when operating in a changing and complex environment, where the 

quantity and quality of the input information varies case by case, human intelligence 

should not be replaced by computers. Instead, both should be utilized in appropriate 

situations. Computers are good at handling, processing and filtering large amounts of 

data, whereas humans are capable of making intelligent decisions, which often require 

tacit, experience-based knowledge not managed by computers. Therefore, this paper 

proposed a computer-aided, capability-based adaptation methodology in which the 

computer’s processing power is used for filtering the resource information from a large 

search space based on the given product requirements. The human expert can use his/her 

intelligence to control the reasoning process, check the feasibility of the proposed 

scenarios and to select the best one based on the specified criteria. 
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