
Tampere University of Technology

Application of a Capability-based Adaptation Methodology to a Small-size Production
System

Citation
Järvenpää, E., Lanz, M., & Tuokko, R. (2016). Application of a Capability-based Adaptation Methodology to a
Small-size Production System. International Journal of Manufacturing Technology and Management, 30(1/2),
67-86. https://doi.org/10.1504/IJMTM.2016.075839
Year
2016

Version
Peer reviewed version (post-print)

Link to publication
TUTCRIS Portal (http://www.tut.fi/tutcris)

Published in
International Journal of Manufacturing Technology and Management

DOI
10.1504/IJMTM.2016.075839

Take down policy
If you believe that this document breaches copyright, please contact cris.tau@tuni.fi, and we will remove access
to the work immediately and investigate your claim.

Download date:20.09.2019

https://tutcris.tut.fi/portal/en/publications/application-of-a-capabilitybased-adaptation-methodology-to-a-smallsize-production-system(39eeab00-78da-4804-a32c-c6993c4eb367).html
https://doi.org/10.1504/IJMTM.2016.075839

 Int. J. , Vol. x, No. x, xxxx 1

 Copyright © 200x Inderscience Enterprises Ltd.

Application of Capability-based Adaptation
Methodology for a Small-size Production System

Eeva Järvenpää1, Minna Lanz2 and Reijo Tuokko3

Tampere University of Technology, Department of Mechanical Engineering and
Industrial Systems, P.O. Box 589, FI-33101 Tampere, Finland

1
eeva.jarvenpaa@tut.fi,

2
minna.lanz@tut.fi,

3
reijo.tuokko@tut.fi

Keywords: Adaptation, capability matching, capability model, production system,

resource capability, resource description, resource ontology

Abstract. Today’s production systems need to adapt rapidly to changing product

requirements. Adaptation can be eased by formal models, representing product

requirements and system capabilities, which convey the needed information for the

adaptation planning activities. This paper presents an adaptation approach, which is based

on matching the product requirements to the resource capabilities, and applies it to a

practical case study in TUT-microfactory environment. The main emphasis is placed

firstly on introducing the ontological resource description, which facilitates the

representation of resource capabilities. Secondly, the rules, according to which the

information about the product requirements and resource capabilities are compared to

find the match, are highlighted. The proposed approach facilitate automatic filtering,

reasoning and generation of alternative adaptation scenarios from a vast amount of

resource information. As a result, less manual information handling and reasoning is

required during adaptation planning.

1. Introduction

The operation environment of today’s manufacturing companies is quickly evolving.

Only thing that is evident is change. To survive in such a dynamic environment, the

production systems need to be able to adapt rapidly to different requirements based on the

demand. Modular, easily reconfigurable systems with standardized interfaces, have

emerged to answer to this requirement (ElMaraghy, 2009; Ferreira et al., 2010).

However, standardization of hardware and software interfaces is not, in itself, enough to

support rapid adaptation of production systems in a constantly changing environment.

Intelligent methods, tools and information models are also needed to help humans in the

planning of this adaptation, or even allow reactive adaptation to take place while the

system is running (Järvenpää et al., 2011).

Crucial factor for adaptation planning are formal models which convey the needed up-to-

date product, process and system related information to the planning activities

(Järvenpää, 2012). This paper presents an adaptation approach, which core lies on

capability-based matching of product requirements and systems that are used to

manufacture these. This, partly automatic reasoning, aiming to support human designer in

 Author

the planning activities, is enabled by the formalized representation of the resource

capabilities and product requirements, as well as rules defining how the capability

information should be matched against the product requirements. The paper first

introduces the developed capability-based adaptation methodology and its related

concepts. In the second part of the paper, this methodology is applied in a practical cell

phone assembly case study implemented in the TUT-microfactory environment (TUT

refers to Tampere University of Technology). Finally, section 4 concludes the paper.

2. Capability-based adaptation of production systems

This section will introduce a novel approach for adapting production systems by

matching product requirements with the existing resource capabilities. First, the meaning

of the term ‘adaptation’ will be discussed. In the second section the resource description

based on capability modelling will be introduced, followed by the discussion on how the

capabilities are matched with the requirements.

2.1. Definition of adaptation

Wiendahl and Heger (2004) identified five types of changeability of manufacturing

systems: reconfigurability, changeoverability, flexibility, transformability and agility.

Later on Wiendahl et al. (2007) used changeability as a general term as a characteristic

of a system to accomplish early and foresighted adjustment of the factory’s structures and

processes on all levels to change impulses economically. Based on the literature around

flexible, reconfigurable and adaptive manufacturing (ElMaraghy, 2009; ElMaraghy,

2006; Koren, 2010; Mehrabi et al,. 2000; Tolio & Valente, 2006), it is difficult to

completely differentiate these concepts. Flexibility is often referred to the ability to adapt

to different requirements without physical changes to the system, whereas

reconfigurability refers to the ability to change system components when new

requirements arise (ElMaraghy, 2006). However, these definitions can be used only if the

boundary of the system is clearly defined. Tolio and Valente (2006) stated that depending

on the border, the type of changeability can be interpreted as reconfigurability or as

flexibility and therefore, it is not possible to define general statements for these

characteristics. ElMaraghy (2006) divided the manufacturing system reconfiguration into

both physical and logical reconfiguration touching those both definitions of flexibility

and reconfigurability.

 Title

Figure 1. Types of production system adaptation, modified from (ElMaraghy, 2006).

In the context of this research, the term “adaptation” is used to refer to all controlled

changes the production system goes through during its lifecycle. The adaptation can be

either physical (e.g. changing the layout of the system, adding or removing machines or

machine elements), logical (e.g. changing the process sequence, re-routing or re-

scheduling production) or parametric (changing the adjustable machine parameters, e.g.

speed of a conveyor line). Figure 1 represents and explains these three types of

production system adaptation.

Adaptation can also be divided into static and dynamic adaptation. Static adaptation is the

change of system design during downtime of the system. It needs planning, either by

human or through automatic planning methods. Dynamic adaptation is the change of

system design during the operation of the production system. These dynamic changes

include either logical or parametric adaptation. Dynamic adaptation allows the production

system to react to changes in its environment in real-time, for example to recover from

disturbances on the line and to self-organize itself to balance the production flow.

Whereas physical adaptation is usually done on the static level, the logical and parametric

adaptation can be either dynamic or static. This means that logical and parametric

changes can be executed while the system is running or during its downtime. The

developed adaptation methodology aims to support both static and dynamic adaptation.

2.2. Resource description based on capabilities

Each device in the production environment has certain properties and behaviors. Some of

these properties and behaviors allow the device to perform certain functions. The

properties of the devices have certain ranges, and the functionality of the devices is

restricted by certain constraints. These can be, for example, environmental constraints

like the maximum permitted humidity and temperature of the operating environment, or

technical properties, such as the maximum torque of a spindle or the velocity range of a

moving axis. Automatic matching of available devices against product requirements

requires formalized and structured representations of the functional properties and

constraints of the devices.

 Author

Most of the traditional approaches to resource description tend to classify the resources

into groups based on their common properties, or the functions they provide (e.g. milling

machines, lathes, robots and so on). Unfortunately this kind of classification limits the

expressiveness of the representation. To overcome this limitation, instead of classifying

devices, in the proposed approach the functional capabilities of the devices are classified.

This way, one device may have multiple capabilities which can be used in different

contexts. Furthermore, new capabilities may be discovered during the resource lifecycle

and these can be assigned to the device when, and if, they emerge. In the proposed

approach the capabilities are functionalities of resources such as ‘drilling’, ‘screwing’,

‘moving’ and ‘grasping’. For the capability classification, the capability taxonomy has

been constructed so that it allows reasoning between different levels of abstraction.

The following sections will first shortly highlight the existing approaches, which use

capability descriptions as a basis for matching product requirements against resource

charasteristics. After that, in the subsequent sections, the developed capability modelling

approach and resource ontology will be discussed in detail.

2.2.1. Existing approaches for capability description

Few other researchers have also applied capabilities to describe resources and allow rapid

resource allocation, system reconfiguration or self-organisation. Timm et al. (2003; 2006)

proposed an ontology-based capability management approach for multi-agent-based

manufacturing systems. The capabilities were represented based on 1
st
 order logic and the

capability concepts were organized in taxonomic hierarchies. Lohse et al. (2006)

presented an ontological equipment model, which follows function-behaviour-structure

framework and includes separate formalism for the specification of a module’s capability

and interfacing requirements. Barata et al. (2008) and Cândido and Barata (2007)

presented a multi-agent-based control architecture for a shop floor system (CoBaSa).

They used ontology to model basic skills and complex skills, where complex skills are

aggregations of the basic skills. Ameri and Dutta (2008) connected buyers and sellers of

manufacturing services in a web-based e-commerce environment by formal ontology

describing the manufacturing services in terms of capabilities. Smale and Ratchev (2009)

proposed a capability-based approach for multiple assembly system reconfiguration. In

general, the limitation of these approaches is that they lack either the ability to model

combined capabilities of combinations of resources, or if this feature exist, they don’t

incorporate parameter information into the capability definition.

2.2.2. Introduction to the capability modelling

Figure 2 illustrates the capability related terms in the proposed capability modelling

approach. Capabilities are composed of two components: capability concept name and

capability parameters. The functionality of the resource, such as “screwing” is described

by the capability concept name. The capability parameters represent the technical

properties and constraints of resources, such as ‘speed’, ‘torque’, ‘payload’, and so on.

For example, capability with concept name ‘moving’, has parameters ‘speed’ and

‘acceleration’. In other words the concept name of the capability indicates the operational

functionality of the resource, whereas the parameters of the capabilities distinguish

between capabilities having the same concept name. The capability parameters allow

 Title

determining which resource has the capability that best fits to the given product or

production requirement. Capabilities are divided into simple capabilities and combined

capabilities, where the combined capabilities are combinations of simple capabilities,

usually formed by combinations of devices. The numbers by the arrows in Figure 2

indicate that e.g. combined capability is composed of two or more simple capabilities.

Figure 2. UML diagram of capability related terms in the proposed approach

(Järvenpää, 2012).

2.2.3. Formal ontology for describing resources

In the proposed approach, ontological modelling is used to formalize the representation

of the resources, capabilities, system configurations and product requirements.

Ontologies play an important role in knowledge-based modelling. They provide a

standardized, both machine and human interpretable, way to present knowledge from

different domains and from heterogeneous knowledge sources. Ontologies are developed

to support the exchange of meaningful information across autonomous entities that can

organize and use the information heterogeneously. According to Gruber (1993), “an

ontology is a formal, explicit specification of a shared conceptualization”. The

conceptualization is applied to a limited domain, such as the product, process and system

domains. The conceptualization aims to break down the different terms and entities of

this domain into well-defined and distinctive concepts. The concepts are expressed in a

formal way in order to allow computers to use them. The concepts have to be explicit in

order to avoid inconsistencies and ambiguities in meaning. This can be achieved by using

non-ambiguous classifications, relations or metrics. Lastly, the conceptualization has to

be shared and agreed upon by the different user groups in order to provide a common

means of communication and frame of reference. (Gruber 1993.)

The Core Ontology, originally developed by Lanz (2010) for product-process-system

representation, has been extended for describing the capabilities of the resources,

resource interfaces, as well as lifecycle information relating to resources and certain

processes. The ontology and its instances are saved into a Knowledge Base (KB),

described in detail in (Lanz, 2010). The ontology has been built with the Protégé OWL-

DL tool. OWL-DL is based on description logics and it allows the domain concepts to be

largely defined according to a predefined formalism. (Stanford Center for Biomedical

Informatics Research, 2012.)

 Author

2.2.4. Capability model

The proposed capability modeling method relies on capability modularization. The

approach is based on functional decomposition of upper level combined capabilities into

simple capabilities and assigning these simple capabilities for individual resources in a

modular way. When multiple resources are combined, the simple capabilities form

combined capabilities. The systematic design approach of Pahl & Beitz (1996) provides a

fundamental relationship between function and function decomposition. Function

decomposition represents how a function is achieved through a set of sub-functions,

which are finer-grained functions. (Pahl & Beitz 1996.) Similarly, the combined

capabilities are achieved from finer-grained simple capabilities. Functional

decomposition allows the definition of is_part_of relations between the simple and

combined capabilities.

In the ontology, the combined capabilities are modelled using capability associations as

links between the simple and combined capabilities. In the resource ontology, the devices

are assigned the simple capabilities that they posses. Based on the defined capability

associations, the device combinations contributing to certain combined capability can be

identified and queried. Of course, the devices also need to have matching interfaces to be

able to co-operate. Figure 3a shows how the capability associations are used to form

combined capabilities from the simple ones. Figure 3b illustrates an example of

capability associations by ‘transporting’ capability in case of a robot unit consisting of a

robot and gripper. In order to have “transporting” capability, both moving and holding

associations need to be satisfied. The robot alone has only the ability to move its joints

within a workspace. When combined with a suitable gripper (having ‘grasping’

capability), together they are able to transport pieces from one place to another. Also

conveyor alone would have the ‘transporting’ capability, because it can move within a

certain workspace and hold items either by a specific jig or by gravity on the belt. More

examples of simple, combined and resource specific capabilities in the TUT-microfactory

environment, can be seen in Section 3.

Figure 3. a) Model for combined capabilities; b) Sample of the instantiated capability

model (Järvenpää 2012).

 Title

Generally, in modularization, the interactions between the involved components are to be

minimized (Lehtonen, 2007). In the case of capabilities, the functional decomposition

aims to minimise the redundancy and interdependencies between the parameters of the

simple capabilities, so that the parameters fit naturally under one capability concept

name. Also the assignment of the same parameters for multiple different capabilities is

minimized. This fit is based on production engineering domain knowledge. It is

recognized that this “natural fit” is not realistic in all the cases. Therefore, some artificial

simplifications are made during the creation of the instantiated capability model. For

more information about capability parameters, please refer to (Järvenpää 2012).

Secondly, the capability modularization aims to provide reusability of the capabilities

among different types of resources.

Capability model defines the generic capabilities, i.e. a pool of capabilities that can exist

in a system. When these generic capabilities are assigned to the resources, they become

resource specific when filled with resource specific parameter values. The capabilities are

linked to the capability taxonomy, which organizes the capabilities in different

abstraction levels, e.g. ‘milling’ is a sub-class of ‘materialRemoving’ capability in the

taxonomic hierarchy (Järvenpää, 2012).

2.2.5. Device blue prints and Individual devices

As known, the production environment is constantly changing, and the condition and

capabilities of the resources evolve during their individual lifecycles and usages. In

adaptation context the resources have already been operating, which often indicates that

the capability of the resource is not anymore the same as it was when the resource was

taken to use. Therefore, the description of the resource has to be updated over time. For

this reason, devices have two separate, but linked representations within the resource

ontology: device blue prints and individual devices. Figure 4 shows the relations between

the device blue prints and the individual devices, and their associated information

elements.

Figure 4. UML diagram of device blue prints and individual devices (Järvenpää et al.

2012).

The device blue print describes the capabilities and properties of one type of device, as

given in the suppliers’ catalogues. This is the nominal capability of the device. The

individual devices are presented in a separate class which refers to the blue print device,

yet presents the actual capabilities of the particular, individual resource which exists on

the factory floor. The numbers by the arrows in Figure 4 indicate, that e.g. one device

 Author

blue print can have zero or multiple individual devices referring to it. The individual

devices have actual capabilities, which are affected by the lifecycle of each individual

device and updated according to measured values from the factory floor. For example, if

the measured accuracy of the machine differs from the value defined in the nominal

capability, this updated value can be given in the actual capability definition.

Maintenance and service operations or adaptations done to the resource can also change

its capability. (Järvenpää et al. 2012.) In capability-matching the up-to-date (actual)

capability information should always be used if available.

2.3. Capability-based matching framework

In the proposed capability-based adaptation approach, the product requirements are

matched against the system capabilities and the system is adapted, until it satisfies the

requirements of the product, i.e. until it is compatible with the new product requirements

(Järvenpää, 2012). The product requirements can be extracted from a 3D product model

with a feature recognition and pre-process planning software, as has been presented in

(Garcia et al. 2011), or they can be formulated manually and then saved to the

Knowledge Base as will be exemplified in this paper. The pre-process plan is an ordered

graph of generic activities referring to specific levels on the capability taxonomy (Garcia

et al., 2011). The activities in the pre-process plan can refer either to more abstract level

capability, such as “materialRemoving”, or to more detailed level capability, like

“drilling”. The capability matching is performed according to the capability taxonomy

and capability matching rules which connect the product and resource domains to each

other. Figure 5 represents the framework of the capability-based matching.

 Title

Figure 5. Framework for matching the product requirements against the system

capabilitied, modified from (Järvenpää, 2012).

The taxonomy, included in the Core Ontology, is used to make a crude search that maps

the resources with the required capabilities at a high level (capability concept name

level), whereas the detailed reasoning with the capability parameters and combined

capabilities is based on rule-based reasoning. Rule-base is developed as a store for the

rules used in the capability matching. An extensive Python framework was developed for

writing the rules and for retrieving the information relating to the product requirements

and resource capabilities from the Knowledge Base. Three types of rules have been

defined: 1) Domain expert rules - Rules for defining how the capability and its parameter

information are applied in different domains when comparing with the product

requirements; 2) Combined capability rules - Rules for reasoning out the parameters of

the combined capabilities and; 3) Adaptation rules - Rules indicating how other criteria,

such as availability and scheduling, device condition and lifecycle, as well as user and

company specific criteria is used in the final resource selection and configuration

generation. (Järvenpää, 2012.) In the following section this adaptation methodology is

applied to a TUT-microfactory environment.

3. Practical case study – TUT-microfactory environment

The case study aims to describe how the capability-based adaptation methodology is

applied and especially how the capability matching rules are used in practice, and provide

Product’s pre-process plan
phases refer to the capability

taxonomy

Product
Product requirements
(Features and related pre-
process plan)

Resource

Resource has
resource specific

capability

Resource specific
capability refers to
a generic capability

Generic
capabilities refer
to the capability

taxonomy

Capability Editor
Resource specific

capabilities

Capability Editor
Generic capabilities

Capability taxonomy

Rule-base for capability
matching

Comparison of feature
properties against

capability parameters
based on the rules

Rules for comparison

KB

Current resources
and resource
combinations

Products,

Manufacturing

Shaping

Material
removing

Material
adding

Machining

Milling Turning Drilling

Punching Laser
cutting

Casting

Production

JoiningPreparationLogistics Qualifying Finalizing

Fitting

Elastic
deforming

Plastic
deforming

Pressing Snapping

Bending Twisting

Fastening Gluing Welding

Screwing Riveting

Non-shaping

Metal
welding

Plastic
welding

Transport the phone to the

working area

Pick up a screw

Detect the position and

orientation of a screw

Move above the screw

Grasp the screw

Insert the screw to an empty

hole

Detect empty hole and its

position

Transport the screw above

the hole

Insert the screw to the hole

Fasten the screw

Move back on top of the

feeder and picking up a new

screw

Transport the product to the

next station

Feed screws

Required capabilities

and their parameters

C: Transporting

pP: Weight 0,1kg, Dimensions L 97mm, W 47mm, H 8mm

rP: Speed 50mm/s, Transporting area length: 200mm

C: Grasping

pP: Screw size: M1,6, L 4mm, weight 0,002kg, material: metal

rP: -

C: Inserting

pP: Screw size: M1,6, L 4mm, weight 0,002kg

rP: Accuracy: 0,8mm

C: Screwing

pP: Screw size: M1,6, L 4mm, weight 0,002kg, type: torx

rP: Torque: 5Ncm

C = Capability

pP = Product related parameters

rP = Other parameter requirements

C: Feeding

pP: Screw size: M1,6, L 4mm, weight 0,002kg

rP: Feed rate: min 1part/s, feeding type: bulk feeding

C: Moving

pP: -

rP: Speed 50mm/s

C: Object detection, positioning and orientating

pP: Screw size: M1,6, L 4mm, weight 0,002kg

rP: FoW width: 45mm, FoW height 45mm

C: Object detection and positioning

pP: Hole dimensions: D 1.5mm

rP: FoW width: 120mm, FoW height 90mm

C: Transporting

pP: Screw size: M1,6, L 4mm, weight 0,002kg

rP: Speed 50mm/s

Screwing 4 screws to a cell phone

Product: Cell Phone

Parts: Cell phone base,

Screws (4 pcs)

Resources: Cartesian manipulator, microtec

screw driver, tray feeding system,

vision system (1+2), belt conveyor.

 Author

a proof of concept of the developed methodology. In this context the microfactory system

can be viewed as a static system where the adaptation takes place “offline”, based on

human-centric planning. In the microfactory environment, modularization and

standardized interfaces are the enablers for the adaptation. The main task in the following

case study is to evaluate if the existing TUT-microfactory system has the capabilities to

cope with the requirements set by the selected case product assembly. First, an

introduction to the TUT-microfactory concept will be given. Secondly, the product

requirements are defined, followed by the definition of existing microfactory system

capabilities. After that, the matching of the product requirements against the system

capabilities based on the capability matching rules will be explained in detail.

3.1. Introduction to TUT-microfactory concept

The TUT-Microfactory is a modular construction kit type concept with easy and rapid

reconfigurability for different manufacturing processes of hand held size, or smaller,

products. The system structure is designed with an idea that a base module can work as

an independent unit including all the needed auxiliary systems. The outer dimensions of

one base module are 300 x 200 x 220 mm and the inside workspace is 180 x 180 x 180

mm. The base module includes a clean room class work space, a control cabinet and the

equipment needed by the clean room. Since the production module does not need a

separate control cabinet, the factory can be aggregated fast and easily on a desktop table

or other flat surface. This and small size of the modules enable extreme mobility of the

production capacity. (Heikkilä et al., 2010.)

Figure 6. Plug-and-play interfaces for easy configuration of a complete TUT-

microfactory system.

The production module can be tailored to certain processes by placing process modules

on top of the base module (Figure 6). Process module can be e.g. a robot, laser or

machining unit. In addition to the top side of the base module, both sides and the front

side can be left open when adjacent cells compose one integrated work space. Feeders

and other devices can be placed in the opening on the sides. (Heikkilä et al. 2010.)

3.2. Definition of the product requirements

The case product is a cell phone body, in which four screws are to be attached (Figure

7a). The product requirements are shown in the graph in Figure 7b. On the left-hand side

 Title

is the process plan and on the right-hand side are the product characteristics, which affect

the required capabilities in each process phase. Additionally, the requirements, which are

more project and user-preference related rather than product related, such as the required

speed for transporting the phone and the desired type of feed, are shown in the figure.

The steps in the process plan have a direct link to the capability taxonomy, which allows

the mapping between the product requirements and existing system capabilities at the

concept name level.

Figure 7. Case product; b) Pre-defined process plan and related capability requirements,

modified from (Järvenpää et al., 2013).

The system architecture of the TUT-microfactory concept places some constraints on the

possible layout and configuration of the modules. In the TUT-microfactory concept, the

microfactory frame is needed to contain the process module and auxiliary devices. For

the case study, one pre-condition is that the product should be produced with the TUT-

microfactory. Therefore, the constraints set by the system architecture need to be

considered in the capability matching. For example, as the width of the TUT-

microfactory module is known, then the transporting distance of the cell phone from one

side of the module to the other is pre-defined. Some of these requirements are set by the

Transport the phone

to the working area

Pick up

a screw

Detect the

position and

orientation of a

screw

Move above the

screw

Grasp the screw

Insert

the

screw to

an

empty

hole

Detect empty hole

and its position

Transport the

screw above the

hole

Insert the screw to

the hole

Fasten the screw

Move back on top of

the feeder and pick up

a new screw

Transport the product

to the next station

Feed screws

Required capabilities and

their parameters

C: Transporting

pP: W 0.1kg, L 97mm, W 47mm, H 8mm

rP: S 50mm/s, Transporting area L 200mm

C: Grasping

pP: Screw M1.6, L 4mm, W 0.002kg,

material: metal

C: Inserting

pP: Screw M1.6, L 4mm, W 0.002kg

rP: Accuracy 0.8mm

C: Screwing

pP: Screw M1.6, L 4mm, W 0.002kg,

Type: torx

rP: Torque 5Ncm

C = Capability

pP = Product related parameters

rP = Other parameter requirements

C: Feeding

pP: Screw M1.6, L 4mm, W 0.002kg

rP: Feed rate: min 1part/s, Type: bulk

feeding

C: Moving

pP: -

rP: Speed 50mm/s

C: Object detection, positioning,

orientating

pP: Screw M1.6, L 4mm, W 0.002kg

rP: FoW: W 45mm, H 45mm

C: Object detection and positioning

pP: Hole D 1.5mm

rP: FoW: W120mm, H 90mm

C: Transporting

pP: Screw M1.6, L 4mm,W 0.002kg

rP: Speed 50mm/s

Process description

47mm

97 mm

52 mm

40 mm

a) b)

 Author

selection of other devices in the system. For instance, the required field of view (FoV) of

the camera units are not only determined by the product size, but also by the means of

transportation and feed for the product and parts. In other words, the selection of some

devices propagates some further new requirements. Examples of these kinds of

requirements are included in the case example and are also shown in the Figure 7.

3.3. Definition of the system capabilities

The existing system consists of a TUT-microfactory module, a cartesian manipulator, a

screwdriver unit, a feeding system, a belt conveyor and a machine vision system with 2

camera units (see Figure 8). Figure 9 shows the capabilities of the existing microfactory

system. The devices are grouped in their natural combinations, e.g. the camera unit

consists of camera and optics, whereas the machine vision system consists of the camera

unit, a PC and ambient lighting. The same grouping is also used for the description of the

system in the resource ontology. The arrows in Figure 9 indicate to which combined

capability the simple capabilities of the devices contribute.

Figure 8. Existing TUT-microfactory system.

TUT-Microfactory

module

Cartesian

manipulator

Machine vision

system with 2

camera units

Belt

conveyor

Feeding system

Screwdriver

unit

 Title

Figure 9. Capabilities of the existing TUT-microfactory system for flexible screwing.

In order to save space and ensure readability, only those parameters needed in the

reasoning of this particular matching case, are shown in the Figure 9. To illustrate more

intuitively the capability parameters and the formation of the combined capabilities from

the simple capabilities, Figure 10 shows the capabilities of the screwing robot consisting

of Cartesian manipulator and screw driver unit, which again consists of a screw driver

and a screwing head.

Screwing robot

Microdrive screw

driver unit

Feeding system

Machine vision system

Camera unit 1

TUT-Microfactory module

Screw driver

Screwing head

Tray feeder

Feeding plate

Belt conveyor

Camera unit 1

μEye camera 2

PC + machine vision

SW

C_cn: screwing, pickigUp, transporting,

inserting

C_cn: -

C_cn: spinningTool, itemMaxSize

C_cn: screwingHead, magneticGrasping

C_cn: plateFeeding

C_cn: feedingPlate, itemMaxSize

C_cn: traySupporting

C_cn: holding, movingWorkspace à

transporting, itemMaxSize,

degreesOfFreedom, workspaceBox

C_cn: objectRecognition, positioning,

orienting

C_cn: visualSensing

C_cn: imageCapturing

C_cn: imageProcessing,

orientationRecognition,

positionRecognition

μEye camera 1 C_cn: imageCapturing

Optics 1 C_cn: lightReflecting

Lighting C_cn: illuminating

C_cn: visualSensing

Optics 2 C_cn: lightReflecting

C_cn: attachmentFrame

Cartesian manipulator

C_cn: movingWorkspace;

degreesOfFreedom; workspaceBox;

payload; forceApplying

C_cp: Dimensions L200, W300, H220mm

C_cp:Speed: x,y 100, z 10mm/s, Accuracy 0.3mm;

DoF translate x,y,z; Workspace: L200,W120,

H100mm; payload 0.1kg; force: 10 N -z-direction

C_cp: -

C_cp: Torque 0.03-0.1Nm, speed 350-700rpm, tool

diameter max 2mm; max item size D2mm, L10mm

C_cp: Screw size M1.6, type Torx; holding force

0.05N

C_cp: Tray dimensions W51, L51, H10, Number of

trays 1, payload 0.2kg

C_cp: Max number of parts 40, feed rate 5/s; Item

max size D1.6, L10mm

C_cp: Payload 1kg; Speed x 100mm/s; Item max

size L100, W100mm; DoF translate x; Workspace

L200, W110

C_cp: wave length 550nm, intensity 58W, type:

ambient light

C_cp: Detector size (x,y) 6.4 x 4.8mm, resolution

(x,y) 1024x1280, Colour, Frame rate 15 fps

C_cp: Current working distance 255mm, focal

length 12.5mm

C_cp:Detector size (x,y) 6.4 x 4.8mm, resolution

(x,y) 1024x1280, Colour, Frame rate 25 fps

C_cp: Current working distance 250mm, focal

length 25mm

C_cp: Algorithm type: template matching, algorithm

accuracy 1 pix; positioning accuracy 0.5mm

Capability concept names Capability parametersResources

 Author

Figure 10. Capabilities of a screwing robot included into the TUT-Microfactory screwing

cell, modified from (Järvenpää et al., 2013).

3.4. Matching the product requirements against the system

capabilities

Based on the description of the product requirements and existing system capabilities, the

capability taxonomy, and the rules for the detailed capability matching, it is possible to

reason out if the existing system has all the required capabilities needed to perform the

screwing operations. The steps in the process plan have a direct link to the capability

taxonomy, which allows the mapping between the product requirements and existing

system capabilities at the capability concept name level. This high-level mapping results,

that all the required capabilities, at the concept name level, can be found from the

existing TUT-microfactory system. Next, the detailed capability matching needs to be

performed based on the rules in the rule-base. In the following paragraphs, these resoning

procedures are explained step-by-step.

Step 1: Transport the phone to the working area

The high-level capability mapping detects two devices (combinations) from the system

which have the “transporting” capability. These are the belt conveyor and the screwing

robot. The detailed matching first checks whether the product size and weight are suitable

Screwing robot

Screwdriver unit

Screwing headScrew driver

Cartesian manipulator

movingWorkspace

+Speed_x: 100 mm/s

+Speed_y: 100 mm/s

+Speed_z: 10 mm/s

+Accuracy: 0.3 mm

+...

hasCapability

degreesOfFreedom

+Translate _x: true

+Translate_y: true

+Translate_z: true

+Rotate_x: false

+Rotate_y: false

+Rotate_z: false

workspaceBox

+Length: 200 mm

+Width: 120 mm

+Height: 100 mm

payload

+Weight: 0.1 kg

forceApplying

+Force: 10 N

+Direction: -z

spinningTool

+Torque_min: 0.03 Nm

+Torque_max: 0.1 Nm

+Speed_min: 350 rpm

+Speed_max: 700 rpm

+Tool_diameter_max: 2 mm

itemMaxSize

+Diameter: 2 mm

+Length: 10 mm

screwingHead

+Screw_size: M1.6

+Type: torx

magneticGrasping

+holdingForce: 0.05 N

transporting

screwing

pickingUp

inserting

Resource

Simple capability

Combined capability

 Title

for the current devices (RULE 1a), and secondly it checks if the workspace of the device

and the speed of the transporting capability matches the requirement (RULE 1b). The

rules used for the matching are shown in Figure 11.

Figure 11. Rules for step 1.

When these rules are applied to the presented case, i.e. filled with the parameter values

shown in Figure 9 and Figure 8, it reveals that the belt conveyor capabilities match the

requirements. Only the rules for the conveyor case are shown here. However, similar

reasoning with the screwing robot is shown later in Figure 13. Those rules would

immediately reveal that the screwing robot is not a suitable device combination for

transporting the cell phone, because of the size, weight and material of the product.

Step 2: Feed screws

Based on the high-level capability mapping, one device combination in the current

system has the capability “plateFeeding”. This is the feeding system. The designer has

specified that the screws should be fed by a bulk feeding method in order to ease the

manual handling of the screws. According to the capability taxonomy, the “plateFeeding”

is a specialization of “bulkFeeding” and therefore fulfils the requirement. Because bulk

feeding is a method which doesn’t provide the parts in a certain position and orientation,

the machine vision system, or another system providing “objectRecognition”,

“positioning” and “orienting” capabilities is required to be able to detect the parts that can

be picked up from the feeder. These capabilities are also available in the system. The

rules for detailed capability matching are used to find out if the existing feeding system is

able to feed the screws. First, it needs to be checked if the part size is suitable for the

feeder (RULE 2a).

The matching shows that the current feeding system is able to feed the screws. However,

the position and orientation of the screws also need to be detected in order to feed the

parts in a specified position and orientation. The high-level mapping finds that the

machine vision system consisting of two cameras has the capabilities of “object

detection”, “positioning” and “orienting”. The physical arrangement of the machines,

acquired from the virtual model, defines the position of the camera units in relation to the

feeder and conveyor. Camera unit 1 is above the conveyor and Camera unit 2 is above the

conveyor = resource.hasCapability(“movingWorkspace”) AND (“holding”)

IF product.getParam(“weight”) <= holding.getParam(“payload”) AND
product.getParam(“length”) <= conveyor.itemMaxSize.getParam(“length”) AND
product.getParam(“width”) <= conveyor.itemMaxSize.getParam(“width”) AND
product.getParam(“height”) <= conveyor.itemMaxSize.getParam(“height)

THEN
RETURN TRUE

IF product.transportingArea(“length”) <= workspaceBox.getParam(“length”) AND
product.transportingSpeed(“speed”) <= movingWorkspace.getParam(“speed_x”)

THEN
RETURN TRUE

Domain expert rules for detailed capability matching

1a) Is the product size suitable for the device?

1b) Are the workspace and speed requirements met?

 Author

feeder. The working distances of the cameras are pre-defined based on the current

installation.

Figure 12. Rules for the step 2.

The field of view (FoV) of the camera system is calculated based on the working distance

of the camera, the detector size (CCD width x CCD length) and the focal length of the

optics as defined by the combined capability rule (RULE 2d). This results that FoV of

camera unit 1 is 130 x 98 mm and FoV of camera unit 2 is 60 x 48 mm. Rules 2b and 2c

are then used to determine if the camera system field of view is large enough for the

application and that its resolution is enough to detect the screws from the feeder. The

desired field of view is defined after the feeding plate has been selected. Based on the

plate size, the desired FoV is 45 x 45 mm. Camera unit 2 does have a bigger FoV, so it is

suitable. The minimum required detector resolution is calculated with the Nyquist

principle based on the field of view and the smallest detectable feature, as defined by

RULE 2c. As the screws to be detected are 1.6 mm, the minimum detector resolution is

75 x 60 pixels. The detailed capability matching shows that the camera resolution goes

well beyond the required resolution.

Step 3: Pick up, insert and fasten the screw

The high-level mapping finds one device combination having the “pickingUp”,

“inserting“ and “screwing“ capabilities. This is the screwing robot consisting of the

cartesian manipulator and the screwdriver unit, as shown in Figure 10. The detailed

capability matching needs to check if the screws can be picked up with the current device

combination (RULE 3a), whether the transportation capability fullfils the set speed

requirements (RULE 3b), and whether the screw driver is able to fasten the specific

screws used in this case study (RULE 3c). RULE 3a uses the information provided by the

RULE 3d, which calculates the payload of the robot + screw driver combination.

Domain expert rules for detailed capability matching

2a) Is the screw size suitable for the feeder?

plate = resource.hasCapability(“feedingPlate”)

IF product.getParam(“diameter”) <= plate.itemMaxSize.getParam(“diameter”) AND
product.getParam(“length”) <= plate.itemMaxSize.getParam(“length”) AND

THEN
RETURN TRUE

FoV_width = (lightReflecting.getParam(“current_working_distance”) *
imageCapturing.getParam(“detector_size_x”)) / lightReflecting.getParam(“focal_length”)

FoV_height = (lightReflecting.getParam(“current_working_distance”) *
imageCapturing.getParam(“detector_size_y”)) / lightReflecting.getParam(“focal_length”)

IF product.getSmallestParam.size() >= 2 * FoV_width /
imageCapturing.getParam(“x_resolution”) AND
product.getSmallesParam.size() >= 2 * FoV_height /
imageCapturing.getParam(“y_resolution”)

THEN
RETURN TRUE

2c) Does the camera system have enough resolution for detecting the screws?

2d) Field of view (workspace) of the camera system

IF desired_view_height <= FoV_height AND
Desired_view_width <= FoV_width

THEN
RETURN TRUE

2b) Is the camera system field of view enough for the required application?

Combined capability rules for combining the parameters

 Title

Figure 13. Rules for the step 3, modified from (Järvenpää et al. 2013).

Based on the detailed capability matching, the robot-screwdriver combination is able to

pick up the screw and move at the desired speed. Because the transportation of the cell

phone on the belt conveyor doesn’t position and orient the product in the system, the

positions of the holes are not known. Therefore, a method to detect the empty hole and its

position has to be available in the screw insertion phase. As discussed earlier in the step

2, the machine vision system has these capabilities. The detailed-level matching

considering the field of view and resolution requirements is carried out as was done

earlier. Camera unit 1 is able to fulfil the given requirements.The RULE 3e shows that

the combined accuracy of the machine vision system and the screwdriver robot is, in the

worst case scenario, 0.8 mm. This was the original requirement, which means that the

accuracy requirements are fulfilled.

Finally the detailed matching checks whether the screw type and size, as well as the

required torque, are suitable for the existing screwdriver (RULE 3c). The matching shows

that the screws can be fastened with the existing screw driver. However, the screw driver

is only suitable for one size of screws. If the screw size changes, it will immediately

require physical adaptation to the system.

Domain expert rules: Detailed capability matching

3a) Can the screw be picked up by the device combination?

IF providedCapability = “magneticGrasping” AND
product.getParam(“material”) = metal AND
product.getParam(“weight”) <= Combined payload of [robot + screwdriver] AND
product.getParam(“diameter”) <= screwdriver.maxItemSize.getParam(“diameter”) AND
product.getParam(“length”) <= screwdriver.maxItemSize.getParam(“length”)

THEN
RETURN TRUE

3b) Is the speed requirement met?

IF process.getParam(“speed_x”) <= movingWorkspace.getParam(“speed_x”) AND
process.getParam(“speed_y”) <= movingWorkspace.getParam(“speed_y”) AND
process.getParam(“speed_z”) <= movingWorkspace.getParam(“speed_z”)

THEN
RETURN TRUE

Combined capability rules: Combining the parameters

3d) Combined payload of robot + screw driver

robot = resource.hasCapability(“movingWorkspace”)
screwdriver = resource.hasCapability(“spinningTool”)
screwinghead = resource.hasCapability(“screwingHead”)

Combined_payload_of[robot + screwdriver] = MIN(robot.payload.getParam(“weight”) -
screwdriver.basicDeviceInfo.getParam(“weight”) –
screwinghead.basicDeviceInfo.getParam(“weight”)),
1/9,81 * magneticGrasping.getParam(“holding_force”))

3c) Can the srews be screwed with the available screw driver?

IF screw.getParam(“type”) = screwingHead.getParam(“type”) AND
screw.getParam(“size”) <= screwingHead.getParam(“screw_size_max”) AND
screw.getParam(“size”) >= screwingHead.getParam(“screw_size_min”) AND
screw.getParam(“torque”) <= spinningTool.getParam(“max_torque”) AND
screw.getParam(“torque”) >= spinningTool.getParam(“min_torque”)

THEN
RETURN TRUE

3e) Is the accuracy of the inserting capability (robot+machine vision system) enough?

IF process.getParam(“required_accuracy”) >= (movingWorkspace.getParam(“accuracy”) +
positionRecognition.getParam(“accuracy”))

THEN
RETURN TRUE

 Author

Step 4: Adaptation scenario – changing the screw size

In this case scenario, the screw size changes from M1.6 to M2. When changing the screw

size, the required capabilities remain the same at the concept name level. Only the screw

size parameter is changed. The current screwdriver is suitable for screwing only size

M1.6 screws, which means that, based on RULE 4a, a new screwing head needs to be

attached to the screwdriver (Figure 14). The rule 4b is used to define whether the new

screwing head is compatible with the given screwdriver.

Figure 14. Rules for the step 4, modified from (Järvenpää et al., 2013).

If the screwdriver head is not compatible with the screwdriver, for example in this case if

the screwing head is for bigger screws than M2, the whole screwdriver needs to be

changed. Small changes in the product design can, in this case, be handled with relatively

small changes to the system. However, this example illustrates well that when certain

border constraints of the capabilities are crossed, the magnitude of the adaptation can

grow significantly due to the propagation of the changes. In this example case, as long as

the required screw size is between M1 and M2, the system can be adapted by just

changing the screwdriver head. If bigger screws are used, the whole screwdriver needs to

be replaced. And again, these changes may be propagated to the robot if, for example, the

new screwdriver is not compatible with the robot interface.

4. Results and Conclusions

This paper presented capability-based adaptation methodology, which aims to support

rapid adaptation of production systems both in static and dynamic adaptation contexts.

The proposed adaptation methodology allows automatic generation of system

configuration scenarios based on given product requirements and supports rapid

allocation of resources and adaptation of systems. From the information management

point of view, it supports automatic filtering of information and finding suitable solution

proposals from a large search space, thus reducing the manual information-processing

Adaptation rules: New combination generation

4a) What needs to be changed in the screwdriver combination?

IF feature.hasCapabilityTaxonomy (“Screwing”) AND
currentSystem.hasCapability(“screwing”) AND
matchParameters(currentSystem.capability.find(capabilityParameters),
requiredCapability(requiredParameters)) = false

THEN
Create new combinations of the resource.hasCapability(“spinningTool”) and other
resource.hasCapability(“screwingHead”)

screwdriver = resource.hasCapability(“spinningTool”)
screwinghead = resource.hasCapability(“screwingHead”)

IF (spinningTool.getParam(“diameter_max”) >=
screwingHead.basicDeviceInfo.getParam(“diameter”))

THEN
RETURN TRUE

4b) Checking compatibility of of screw driver and screwing head

Combined capability rules: Combining interfaces

 Title

required during adaptation planning. Furthermore, the resource model provides up-to-

date information about the resources, facilitating more reliable adaptation plans. In a

small factory with only a few resources, management of the resource information is not a

problem. In large factories and production networks, automatic management and filtering

of this information has substantial potential for reducing the amount of manual work, and

thus reducing the time used for planning activities.

Compared to the existing capability-based adaptation approaches, the presented

methodology provides finer granularity to the resource description by separating the

simple and combined capabilities, and thus allows the adaptation on a single tool level,

not only on a machine level. In comparison to those methods, which do separate the

simple and combined capabilities, this methodology takes one step further by

incorporating the parameter information to the capability description. It operates with

more details and therefore facilitates more detailed decision making relating to the system

design and adaptation.

The case study presented in this paper showed how the developed capability-model, rule-

base and the overall adaptation methodology can be used in practice to support human-

controlled adaptation planning. The case study proved that the developed ontological

resource description can be used to describe the capabilities of real production systems

and the developed rules can be applied to make the match between the resource and

product descriptions. The capability matching actions, discussed in the examples, can be

done automatically based on these rules. However, during the study, the initial

assumption, that humans cannot be removed from the adaptation planning process, was

confirmed. For example, the proposed approach is not able to automatically handle the

propagation of requirements, when the selection of one resource creates further

requirements for the other resources, but these need to be controlled by the human

designer. Secondly, when operating in a changing and complex environment, where the

quantity and quality of the input information varies case by case, human intelligence

should not be replaced by computers. Instead, both should be utilized in appropriate

situations. Computers are good at handling, processing and filtering large amounts of

data, whereas humans are capable of making intelligent decisions, which often require

tacit, experience-based knowledge not managed by computers. Therefore, this paper

proposed a computer-aided, capability-based adaptation methodology in which the

computer’s processing power is used for filtering the resource information from a large

search space based on the given product requirements. The human expert can use his/her

intelligence to control the reasoning process, check the feasibility of the proposed

scenarios and to select the best one based on the specified criteria.

References

[1] Ameri, F. & Dutta, D., 2008. A Matchmaking Methodology for Supply Chain

Deployment in Distributed Manufacturing Environments. Journal of Computing and

Information Science in Engineering, 8(1), p. 9, ISSN 1530-9827.

[2] Barata, J., 2006. The Cobasa Architecture as an Answer to Shop Floor Agility. In:

Kordic, V., Lazinica, A. & Merdan, M. (eds.), Manufacturing the Future. InTech, pp.

31-76, ISBN 3-86611-198-3.

 Author

[3] Cândido, G. & Barata, J., 2007. A multiagent control system for shop floor assembly.

In: Marik, A., Vyatkin, V. & Colombo, V. (eds.), Holonic and Multi-Agent Systems

for Manufacturing. Heidelberg: Springer, pp. 293–302, ISBN 3-540-74478-9.

[4] ElMaraghy, H. A., 2006. Flexible and reconfigurable manufacturing systems

paradigms. International Journal of Flexible Manufacturing Systems, 17(4), pp. 261-

276, ISSN 0920-6299.

[5] ElMaraghy, H.A. (ed.), 2009. Changeable and Reconfigurable Manufacturing

Systems. London: Springer London, p. 405, ISBN 978-1-84882-066-1

[6] Ferreira, P., Lohse, N. & Ratchev, S., 2010. Multi-agent Architecture for

Reconfiguration of Precision Modular Assembly Systems. In: Ratchev, S. (ed.),

Precision Assembly Technologies and Systems. Springer, pp. 247–254, ISBN 3-642-

11597-7.

[7] Garcia, F., Lanz, M, Järvenpää, E. & Tuokko, R. 2011. Process planning based on

feature recognition method. In IEEE International Symposium on Assembly and

Manufacturing (ISAM), 2011, p. 5.

[8] Gruber, T., 1993. A translation approach to portable ontology specifications.

Knowledge acquisition, 5(2), pp. 199-220.

[9] Heikkilä, R., Järvenpää, E. & Tuokko, R. 2010. Advances in the TUT Microfactory

Concept Development. Int. J. of Automation Technology, Vol. 4, No. 2, 2010, pp.

117-126.

[10] Järvenpää, E., Luostarinen, P., Lanz, M. & Tuokko, R. 2011. Presenting capabilities

of resources and resource combinations to support production system adaptation. In

IEEE International Symposium on Assembly and Manufacturing (ISAM), 2011, p. 6.

[11] Järvenpää, E., Luostarinen, P., Lanz, M. & Tuokko, R., 2012. Adaptation of

Manufacturing Systems in Dynamic Environment Based on Capability Description

Method. In F. Abdul Aziz (ed.), Manufacturing System. InTech, p. 26, ISBN 978-

953-51-0530-5.

[12] Järvenpää, E. 2012. Capability-based Adaptation of Production Systems in a

Changing Environment. PhD Thesis, Tampere University of Technology. 190 p.

ISBN 978-952-15-2928-3.

[13] Järvenpää, E., Lanz, M. & Tuokko, R. 2013. Capability-based Adaptation of

Production Systems – Practical Case Study in TUT-microfactory Environment. Key

Engineering Materials, Vol. 572, 2014, pp. 245-248.

[14] Koren, Y. & Shpitalni, M., 2010. Design of reconfigurable manufacturing systems.

Journal of Manufacturing Systems, 29(4), pp. 130-141, ISBN 0278-6125.

[15] Lanz, M., Rodriguez, R., Luostarinen, P. & Tuokko, R. 2010. Neutral interface for

assembly and manufacturing related knowledge exchange in heterogeneous design

 Title

environment. In Precision Assembly Technologies and Systems, S. Ratchev (Ed.),

Springer, pp. 21–29.

[16] Lanz, M., 2010. Logical and Semantic Foundations of Knowledge Representation for

Assembly and Manufacturing Processes. PhD thesis. Tampere University of

Technology, p. 138, ISBN 9789521523939.

[17] Lehtonen, T., 2007. Designing Modular Product Architecture in the New Product

Development. PhD thesis. Tampere University of Technology, p. 220, ISBN

9789521518980.

[18] Lohse, N., Hirani, H. & Ratchev, S., 2006. Equipment ontology for modular

reconfigurable assembly systems. International Journal of Flexible Manufacturing

Systems, 17(4), pp. 301-314, ISSN 0920-6299.

[19] Mehrabi, M.G., Ulsoy, A.G. & Koren, Y., 2000. Reconfigurable manufacturing

systems: key to future manufacturing. Journal of Intelligent Manufacturing, 11(4),

pp. 403–419, ISSN 0956-5515.

[20] Pahl, G. & Beitz, W., 1996. Engineering Design - A Systematic Approach. 2nd

edition., Springer-Verlag, Berlin/Heidelberg, p. 544, ISBN 3540199179.

[21] Smale, D. & Ratchev, 2009. A Capability Model and Taxonomy for Multiple

Assembly System Reconfigurations. In B. Natalia (ed.), In 13th IFAC Symposium on

Information Control Problems in Manufacturing. Moscow, pp. 1923-1928.

[22] Stanford Center for Biomedical Informatics Research, 2012. Protégé ontology

editor. Available at: http://protege.stanford.edu/ [Accessed March 1, 2012].

[23] Timm, I. & Woelk, P.-O., 2003. Ontology-based capability management for

distributed problem solving in the manufacturing domain. In: Schillo, M., Klusch,

M., Müller, J. & Tianfield, H. (eds.), Multiagent System Technologies. Springer

Berlin / Heidelberg, pp. 168-179, ISBN 978-3-540-20124-3.

[24] Timm, I.J., Scholz, T. & Herzog, O., 2006. Capability-based emerging organization

of autonomous agents for flexible production control. Advanced Engineering

Informatics, 20(3), pp. 247-259, ISSN 1474-0346.

[25] Tolio, T. & Valente, A., 2006. An Approach to Design the Flexibility Degree in

Flexible Manufacturing Systems. In 16th Int. Conf. on Flexible Automation and

Intelligent Manufacturing, FAIM 2006, June 26 – 28. Limerick, pp. 1229-1236.

[26] Wiendahl, H.P. & Heger, C.L., 2004. Justifying Changeability – A Methodical

Approach to Achieving Cost Effectiveness. Journal for Manufacturing Science and

Production, 6(1-2), pp. 33-40, ISSN 0793-6648.

[27] Wiendahl, H., ElMaraghy, H., Nyhuis, P., Zah, M., Duffie, N. & Brieke, M., 2007.

Changeable Manufacturing - Classification, Design and Operation. CIRP Annals -

Manufacturing Technology, 56(2), pp. 783-809, ISSN 0007-8506.

