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Abstract

Complex systems and networks is an emerging scienti�c �eld, with applications in
every area of human enquiry, for which a solid theoretical, computational and ex-
perimental foundation is lacking. As our technological capability of generating and
gathering vast amounts of data from such systems is increasing, precise methods are
needed to describe, analyse and synthesize such systems. Systems biology is a prime
example of an interdisciplinary �eld aiming at tackling the complexity of biological
organisms and dedicated to understanding their organizing principles and to devising
e�cient intervention strategies for curing diseases.

A very important topic in the study of complex systems and networks is to
uncover the laws that govern their structure-dynamics relationships. A complete
description of the system’s behaviour as a whole can only be achieved if the structure
and the dynamics are investigated together, as well as the intricate ways in which
they inuence each other. The understanding of structure-dynamics relationships is
a key step in the control of complex systems and networks. For example, in biology,
understanding these relationships in organisms would enable us to �nd more precise
drug targets and to design better drugs to cure diseases. In gene regulatory networks,
it would help devise control strategies to change the network from faulty states that
correspond to disease states, to normal states that give the healthy phenotype. When
we observe a dynamical behaviour that is di�erent from the normal, healthy one, the
knowledge about the structure-dynamics relationships would help us identify which
part of the structure gives rise to such behaviour. Then, we would know where and
how to change the structure, to return the system to its normal dynamics, that is,
to obtain a desired dynamical behaviour.

A feasible way of investigating the structure-dynamics relationships is by measur-
ing the amount of information that is communicated in the system and by analysing
the patterns of information propagation within its elements. These objectives can
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be achieved by means of information theory. To this end, with concepts from Kol-
mogorov complexity and from Shannon’s information theory, we create novel analysis
methods of the structure-dynamics relationships in two models of complex systems:
an executable model of the human immune systems and the random Boolean network
model of gene regulatory networks.

In these endeavours, the information-theoretic means of identifying and mea-
suring the information propagation in complex systems and networks needs to be
improved and extended. Research is needed into the theoretical foundations of infor-
mation theory, to re�ne existing equations and to introduce new ones that can give
more accurate results in the investigation of the propagation of information and its
applications to the structure-dynamics relationships. To this end, we bring analytical
contributions to the generalization of Shannon’s information theory, named R�enyi’s
information theory. Thus, we continue the development of the theoretical foundations
of information theory, for new and better applications in complex systems science
and engineering.

The goal of this thesis is to characterize various aspects of the structure-dynamics
relationships in models of complex biological systems, by means of information the-
ory. Moreover, our goal is to prove that information theory is a model independent
analysis framework that can be applied to any class of models. We pursue our objec-
tive, by analysing two di�erent classes of models: an executable model of the human
immune system and the random Boolean network model of gene regulatory networks.

In the executable model of the regulation of cytokines within the human im-
mune system, our aim is to develop computationally feasible analysis methods that
can extract meaningful biological information from the complex encoding of the dy-
namical behaviour of di�erent perturbations of the wild type system. We aim at
classifying several structural perturbations of the system, using only their dynamical
information. We endeavour to create methods that can make predictions about the
structural parameters that should be changed in order to obtain a desired dynami-
cal behaviour. These conclusions have direct applications to the �ne-tuning of the
real-world biological experiments performed on the system, of whose computational
model we analyse. The bene�ts of our predictions would be increased e�ciency and
increased reduction of the time required to optimize the parameters of the real-world
biological experiments.

In the random Boolean network model of gene regulatory networks, our goal is
to develop an experimental order parameter that can characterize the dynamical



iii

regime of the network, from the dynamical behaviour that simulates that obtained
from the measurements of real-world biological experiments. Moreover, we aim at
proving that structural information is hidden in the dynamics of random Boolean
networks and that it can be extracted with methods from information theory. We
study ensembles of random Boolean networks from two distinct structural classes,
which take into account the stochasticity present in real biological systems.

Another goal of this study is to bring analytical contributions to the �eld of
R�enyi’s information theory, which is a generalization of Shannon’s information theory.
Recently, it has found novel applications in the study of the structure-dynamics
relationships in complex systems and networks.
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Mathematical notations

The following mathematical notations pertain to the chapter titled "Information the-
ory". This section of notations refer to the sections "Shannon’s information theory"
and "Generalizations of Shannon’s information theory":

R the collection/set of real numbers
X a random variable
x the value taken by the random variable X
EX the ensemble of X
pX(x) the probability mass function, if X is a discrete

random variable or the probability density function,
if X is a continuous random variable

H(X) the entropy of X
EX the expectation of X
Var(X) the variance of X
XjY = y the conditional random variable X, given that

the random variable Y takes the value y
pXjY (xjy) the conditional probability mass function
H(XjY ) the conditional entropy
p, q probability mass functions
DKL(pjjq) the Kullback-Leibler divergence between

the probability mass functions p and q
D*KL(p(XjY )jjq(XjY )) the conditional Kullback-Leibler divergence between

the conditional probability mass functions p and q

ix



x MATHEMATICAL NOTATIONS

Pp(X = x) the probability that the random variable X takes
the value x, with respect to the probability mass function p

f : [a b]! R a continuous function that takes value from
an interval and produces real values

P a collection of probability values
H� R�enyi’s entropy of order �
D�(p k q) R�enyi’s �-divergence between

the probability mass functions p and q
D*�(p(XjY )jjq(XjY )) the conditional R�enyi’s �-divergence between

the conditional probability mass functions p and q
U(0; 1) the uniform probability distribution on the interval (0; 1)

The following notations refer to the section "Kolmogorov complexity":
x a string
K(x) the Kolmogorov complexity of the string x
x� a binary program that computes x
K(xjy) the conditional Kolmogorov complexity of the string x,

given the string y
E(x; y) the information distance between x and y
NID(x; y) the normalized information distance between x and y
Cx the size of the compressed string x
NCD(x; y) the normalized compression distance between x and y

The following mathematical notations pertain to the chapter titled "Multidimen-
sional scaling":

N the total number of data points
X the points in the low-dimensional Euclidean space
D the matrix of Euclidean distances between the elements of X
P the matrix of proximities in the high-dimensional space
D̂ the matrix of distances in the low dimensional Euclidean space,

which approximates D
�r the raw stress criterion
� Kruskal’s Stress-1 criterion



xi

The following mathematical notations pertain to the chapter titled "Random
Boolean networks":

N the total number of nodes
CM the connectivity matrix of the network
Ni the total number of in-coming edges
No the total number of out-going edges
Ni the mean number of in-coming edges
No the mean number of out-going edges
Oi the ith node of the network, 8i = 1; : : : ; N
NOi the number of neighbours of the node Oi,

8i = 1; : : : ; N
NiOi the number of input nodes to the node Oi,

8i = 1; : : : ; N
NoOi the number of output nodes from the node Oi,

8i = 1; : : : ; N
K;Kin the �xed in-degree of a node
Kout the �xed out-degree of a node
Kin the mean in-degree of a node
Kout the mean out-degree of a node
Oki one of the neighbour nodes of the node Oi,

8k = 1; : : : ; NOi

t the time index
SRBN the state of the entire network
f a Boolean function of n variables
p the Boolean function bias
s the expectation of the average sensitivity
Ns the number of time steps of one trajectory,

excluding the initial state
Nn the number of times the network is restarted

in a random initial state
TS the matrix of trajectories
CCi the local directed clustering coe�cient of the node Oi,

8i = 1; : : : ; N
CC the average directed clustering coe�cient of

the entire network.
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Abbreviations

MI the mutual information
nMI the normalized mutual information
RMI the R�enyi mutual information
CMI the conditional mutual information
CRMI the conditional R�enyi mutual information
TE the transfer entropy
RTE the R�enyi transfer entropy
PMI the partial mutual information
PRMI the partial R�enyi mutual information
PTE the partial transfer entropy
PRTE the partial R�enyi transfer entropy

NID the normalized information distance
NCD the normalized compression distance
E the information distance
K the Kolmogorov complexity
Cx the length of the compressed string x

HSP-60 the heat shock protein 60
Tregs the regulatory T cells
nTh the na��ve T cells
CD4+CD25+ T cells the regulatory T cells
CD4+CD25- T cells the na��ve T cells
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CD8 T cells the cytotoxic T cells
CD4 T cells the helper T cells, classi�ed into Th1 and Th2 T cells
TLR the Toll-like receptor
NF-�B a transcription factor
AKT a protein kinase(enzyme)
Pyk2 a protein kinase(enzyme)
p38 a protein kinase(enzyme)
ERK extracellular-regulated kinase
CTLA-4 the cytokine named Cytotoxic T-Lymphocyte

Antigen-4
IL-10 the cytokine named Interleukin-10
TGF-� the transforming growth factor-�
TCR the T-cell antigen receptor
T-bet a transcription factor
IFN- the cytokine named Interferon-
TNF-� the cytokine named Tumor Necrosis Factor- �
CD3 a protein complex of the TCR
aCD3 the antibody anti-CD3
GemCell the software program named Generic Executable

Modeling of Cells

MDS the multidimensional scaling algorithm
nonmetric MDS the nonmetric multidimensional scaling algorithm
RBN the random Boolean network

SVM the support vector machine classi�cation algorithm
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Structure of the thesis

The monograph is organized into six chapters. In the �rst chapter, we present an
introduction to the �eld of complex systems and networks, highlighting their most
important properties and the challenges researchers face in the analysis and synthesis
of such systems. We emphasize that systems biology is a prime example of a �eld
of complex systems and networks, where the applications of drug discovery and the
curing of diseases are of vital importance. The analysis of the structure-dynamics
relationships is one of the fundamental questions investigated in such systems, by
means of information theory.

The following two chapters represent the background on the concepts we have
used to create our methods to analyse the structure-dynamics relationships in models
of complex biological systems. In the second chapter, we present the fundamental
ideas from Shannon’s information theory and from Kolmogorov complexity. We con-
tinue with a generalization of Shannon’s theory, named R�enyi’s information theory,
which has recently found signi�cant applications in signal processing, communica-
tions engineering and dynamical systems. We describe the results of our theoret-
ical contributions to the �eld of R�enyi’s information theory. In chapter three, we
present the de�nition and the properties of the multidimensional scaling visualiza-
tion method, which we employed in our analysis of the discrete computational model
of the human immune system.

In chapter four, we investigate the structure-dynamics relationships in the discrete
executable model of the regulation of cytokines in the human immune system. We
begin with a brief description of the main elements of the human immune system.
We further describe the speci�c details of the properties and functions of the main
agents of the biological system under study. We continue with the computational
model that was developed to analyse the dynamics of this biological system. We end
the chapter with our contributions and results regarding the analysis and predictions

xvii



xviii STRUCTURE OF THE THESIS

of the dynamical behaiour of this executable model.
In chapter �ve, we analyse the random Boolean network model of gene regulatory

networks. The most important aspects of random Boolean networks are covered in
this chapter. We start with the de�nition and the properties of the structure of
random Boolean networks, emphasizing how we created the classes of structures for
our experiments. We describe the salient features of the dynamics of such models. We
continue with a uni�cation of these two separate elements, when we present the prior
work on the information-theoretic analysis of the structure-dynamics relationships
in such models. We end the chapter with our contributions to the study of the
structure-dynamics relationships in random Boolean networks. We reserve the last
chapter for the discussion of what has been achieved in this thesis.



Chapter 1

Introduction

1.1 Complex systems

Complex systems are present in all areas of scienti�c enquiry, such as physics, biology,
ecology, economics, social science, human societies, engineering [82]. The architecture
of complex systems, their function, their properties and the relationships between
them constitute the new science of complex systems [8]. In order to understand and
describe such systems, we need precise mathematical and computational models that
can emulate their structure are replicate their dynamical behaviour. To construct
these models, we need experimental methods to investigate naturally occurring com-
plex systems and to collect structural and dynamical information from them. After
the model construction phase, computational tools need to be developed that can
analyse the data given by such models, produce meaningful predictions and test
hypotheses.

As there is no universal de�nition of complexity for complex systems, we can
explain their organizing principles and function through their features [66]. This
gives an intuition into why they are termed complex. The salient features of com-
plex systems are: nonlinearity, presence of chaos, a vast number of interacting ele-
ments, feedback, self-organization, pattern formation, robustness and adaptability to
the environment, decentralized control, emergence, a hierarchy of multiple levels of
organization, evolvability [66], [8]. Complex systems can be described as a multitude
of connected elements or agents, operating together as a whole, whose behaviour as
an entire organism is di�erent from that of the individual agent. Thus, the global
behaviour is given by the interactions between the agents and not solely by the be-
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haviour of a particular agent. This property is known as emergence or emergent
behaviour. The concepts of pattern formation, self-organization and decentralized
control are closely related to emergence. Complex systems are distributed, self-
organized systems, without having a central controller to steer the global behaviour
of the collection of agents. This is achieved by the self-organization of the agents,
locally, which produces global patterns of dynamical behaviour of the overall system.
Multiple levels of organization refers to the di�erent levels of detail in the description
of the system. For example, biological systems are inherently multiscale systems, or-
ganized on di�erent levels, such as genes, proteins, molecules, cells, tissues, organs,
the human body. At each level, the system can be represented as one type of complex
system. Thus, it is very important to model the system at an appropriate level of
detail, according to the research question that is being addressed [46].

Complex systems research needs to integrate knowledge and methods from all
�elds of science and engineering, to understand the complexity of such systems and
to create a cohesive body of knowledge for their analysis and synthesis. This endeav-
our motivates the development of a new science, that of complex systems, with a
solid theoretical, computational and experimental foundation. It is no longer enough
to study simple systems, in their separate scienti�c domains, but an integrative
approach is necessary, which takes knowledge from disparate �elds of research, to
understand the naturally occurring complex systems. The aims are to understand
and characterize such systems, to create better performing and more e�cient engi-
neered systems and to uncover the general principles that govern the structure and
the function of complex systems and the relationships between the two [9].

In the pursuit of establishing the science of complex systems, research involves
several challenges. They include the description of complex systems, model creation
and computer simulations, measuring the complexity of such systems and the dis-
covery of the universal laws that govern the structure and function of such systems,
as, for example, the laws of classical mechanics. Research in complex systems tries
to understand how these systems are structured, how to describe their structural
characteristics and their dynamical behaviour, how to represent the relationship be-
tween their structure and their function and how they have evolved to have a certain
architecture and dynamical behaviour. The focus is both on investigating speci�c
complex systems, as well as discovering the general laws that govern their function
[9].
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1.2 Complex networks

Complex systems from multiple scienti�c areas share the same global characteristics
and general laws of behaviour. They di�er in the structural and functional details
of the individual agents that interact together to create the system [9]. In many
cases, eliminating the speci�c details of the agents from the analysis and focusing
on the complex interactions between these elements su�ce to obtain a systems level
understanding of the dynamics and the structure-dynamics relationships in such
systems [107], [79]. As a result, understanding complex systems essentially means
understanding the inuence between the topology of a complex system, that is, a
complex network, and the dynamics that arise on that topology [10].

Some examples of complex networks from the social sciences include social net-
works of friendships and business relationships, company directors and academic
coauthorship of papers. Other related complex networks examples are the informa-
tion networks of citations of research articles, the World Wide Web, peer-to-peer
networks and relations between words in a thesaurus. From a technological point
of view, complexity can be found in networks of distribution, such as the electrical
power grid, airline routes, roads, railway systems, telephone networks, postal service,
the Internet as the physical network of connectivity between computers and other
communication devices and in independent groups of networked computers. Biology
is an especially rich area of complex networks, such as gene regulatory networks,
metabolic pathways, protein interaction networks, vascular networks, neuronal net-
works, ecosystems and food webs [79].

A complex network represents a graph with a large number of nodes or vertices,
which interact in intricate patterns given by the wiring architecture of the network
and the dynamical behaviour of each individual node. The study of complex networks
presents several challenges, such as the intricate connectivity patterns, the di�erent
types of the nodes and those of the connections between them, the models of the
nodes, which may be nonlinear dynamical systems, and the complexity of the entire
system. The wiring of the nodes may not always be static, but, it may change and
evolve in time. The nonlinearity of the dynamical behaviour of the agents signi�es
that their behaviour is complicated to describe, which increases the di�culty of
analysing the system globally. The system’s complexity may increase due to the
interactions of the nodes of the network, through the connections between them.
The ways they interact to increase the complexity of the system are unknown, as
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well as how much the complexity of each node or connection, increases the complexity
of the entire system [107].

The ultimate goals of analysing complex networks is to uncover the relationship
between their structure and their function and to predict the dynamical behaviour of
networks with a given type of structure [79]. As a �rst approach to make such analy-
ses tractable, the dynamics of the complex network are simpli�ed and their structure
and their dynamics are investigated separately [79], [16]. As can be seen from the ex-
amples mentioned above, real-world networks can be investigated by simplifying the
dynamics of their constituent elements and focusing on a more complicated struc-
ture. The connectivity patterns are more elaborate and the dynamical behaviour
that arises on this more complicated structure is investigated [107].

Graph theory represents the mathematical and computational paradigm used to
describe and analyse the structure of complex networks. The network is modelled
as a collection of nodes, which can be linked in various patterns. Some of the more
simple types of connections are the mathematical model of a fully-connected graph, a
regular lattice and a random graph, also known as the Erd}os-R�enyi model [34], [35].
Empirical studies of real-world networks have shown that the scale-free network
model [11] and the small-world network model [113] better capture the structural
properties of real-world networks than the above mentioned ones do. The �rst class
of models are important for theoretical study, for the development of new analysis
methods and as a null hypothesis against which to compare the features of real-
world networks. The second class of models are important because they have been
observed empirically in several types of real-world complex networks [79]. Empirical
graph-theoretic measures of the structural properties of real-world networks di�er
signi�cantly from those computed for the random graph model [1]. This indicates
that the complexity of real-world networks is greater than what a random model
can capture and that more sophisticated network models need to be developed to
understand their properties.

The most common graph-theoretic measures that characterize the structural
properties of complex networks are the node degree, the degree distribution, the clus-
tering coe�cient, the motifs, the modularity index, the community structure, the
shortest path length, the diameter, the node-betweenness and the edge-betweenness
[16]. The node degree refers to the number of edges that connect to a given node.
If the network is directed, there is a distinction between the node in-degree and the
node out-degree. The node in-degree refers to the incoming edges towards that node
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and the node out-degree refers to the outgoing edges from that node. They may or
may not be equal. The only condition imposed on the node degrees of a network
is that the overall sum of the in-degrees is equal to the sum of the out-degrees of
the network. The degree distribution refers to the probability distribution of the
node degrees, that is, each node of the network has its degree drawn from a given
probability distribution. If the network is directed, an in-degree and an out-degree
distribution exist for the network. These distributions can be identical or they can
be di�erent, even of di�erent types, such as a Poisson distribution and a scale-free
distribution. One condition is required, that the overall sum of the in-degrees be
equal to the sum of the out-degrees of the network.

The clustering coe�cient [113], [38] measures the ratio of the number of the
actual connections between the neighbours of a node, to the total possible connections
between them. The motifs represent small connectivity patterns, which perform a
speci�c function and whose number is greater than what would appear by chance
in the network [4]. The modularity index represents a measure of the community
structure of a network [44], [83]. Higher values of the modularity index indicate
that there are several regions of the network, where nodes have a high density of
connections between them, while these regions are loosely connected between them.
The shortest path length between two nodes represents the number of edges that
connect the two nodes through other intermediate nodes, such that all nodes are
visited only once. The diameter of a graph represents the maximum of the shortest
path lengths between all pairs of nodes of a network [16]. For each node of the
network, the node-betweenness measures the sum of the fractions of the shortest paths
between any pair of nodes, which contain that node [41], [16]. For each edge of the
network, the edge-betweenness is equal to the number of shortest paths that contain
that edge [83], [16]. The betweenness measures indicate the centrality of nodes and
edges and are extremely useful in detecting community structure in networks.

The dynamical behaviour of complex networks is investigated by taking a partic-
ular type of structure and implementing dynamical processes on that structure. The
networks can have any of the topologies mentioned above. Some of the dynamical
processes that have been investigated on these networks include phase transitions
of networks, information propagation in networks, for example, disease and rumor
spreading in social networks and computer virus spreading in computer networks,
searching algorithms on networks, discrete dynamical processes on networks, such
as random Boolean networks and cellular automata, and applications of percolation
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theory to the analysis of the dynamical robustness of networks [79].

The relationship between the structure and the dynamics of complex networks,
its general laws and its properties have not been studied extensively. Little is known
about how changes in the structure produce changes in the dynamics, which classes
of structures relate to which classes of dynamics and how to de�ne these types of
classes. The question of what amount of change in the structure of a network is
needed to achieve a desired outcome for the dynamical behaviour pertains to the
synthesis of new complex networks. Other questions are whether or not di�erent
structures produce di�erent dynamical behaviour and how to quantify the di�erence
of two structures from the same class and from di�erent classes of structures and
how this di�erence translates into the di�erence of the dynamics. In addition, the
information processing capabilities of a complex network are closely related to the
relationship between its structure and its dynamics. Information transmission in
a network is shaped by its structure and by the dynamical features of the agents
of the network. Classi�cation of complex networks can be performed in terms of
how information is processed and transmitted within the network. And, �nally, how
these theoretical results developed on models of complex networks are relevant for
studying real-world networks and what knowledge about these systems the theoretical
framework of structure-dynamics relationships can yield.

Information theory has recently been proven successful in investigating the re-
lationships between the structure and the dynamics of complex networks. Initially,
it was developed as a mathematical framework for the reliable transmission of in-
formation over channels with errors. However, its applications are much broader,
outside of the �eld of communications engineering, to the study of complex systems
and networks. The novel view on complex systems and networks is that they are
information processing systems. Thus, information theory is the natural framework
to investigate the structure, the function and the information processing features of
such systems and to provide answers to the research questions mentioned previously.
Information theory o�ers not only the possibility of �nding structural information
from the dynamics, but also the methods to quantify how information propagates in
the network. It brings insight into how the network functions, by uncovering how
information propagates between the nodes of the network, how patterns of structure
a�ect patterns of dynamics. Information transmission between the elements of a
network links the dynamics to the structure of the system, because the patterns of
connectivity restrict the patterns of information propagation, which are measured
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from the dynamics. Information cannot propagate everywhere in the network, but it
is shaped by the topology of the network and by the dynamical features of its agents.

1.3 Systems biology

Biological systems are prime examples of complex systems and complex networks. In
recent years, the new paradigm of systems biology has grown into a very important
scienti�c discipline to tackle the complexity of such systems. The aim of systems
biology is to investigate biological systems at a global level, by integrating diverse
types of information from di�erent levels of organization, to understand how systems
function as a whole [40]. Such an undertaking is facilitated by improved experimen-
tal techniques, which produce an ever increasing amount of dynamical information
about the biological system. Such vast amount of data requires adequate models
for its integration, for drawing conclusions and for producing predictions about the
dynamics of the system. This is the role of computation in building models of bi-
ological systems. Moreover, constructing the model requires data from biological
experiments. These are the two parts of an iterative process that improves both,
through their mutual inuence. Existing knowledge about the behaviour of the sys-
tem, obtained through real-world measurements, is incorporated into the model, by
parameter inference. Based on the updated parameters, the model generates new
predictions and hypotheses. In turn, they shape the design of new biological ex-
periments, which provide further insight into the system’s behaviour. They guide
biologists to pursue the appropriate experiments and to make better choices in the
quantities they want to measure experimentally.

Two paradigms of modeling biological systems are mathematical models and com-
putational or executable models [40]. The quantitative prediction of the parameters
under investigation pertains to mathematical modeling. The prediction of the states
of the system and the events that take place relate to executable modeling. Math-
ematical models consist of equations that express how parameters evolve in time.
Computational or executable models employ a set of instructions that describe what
the state of the system consists of and how it changes in time, in response to external
events. The former is a more quantitative description of the behaviour of the system,
while the latter is a more qualitative, descriptive explanation of its behaviour.

A reactive system represents a collection of concurrent, parallel processes, which
mutually a�ect their states, as the system evolves in time and external events occur.
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Parallel processes represent separate entities that change their behaviour simulta-
neously. Concurrency refers to the case when multiple external events take place
simultaneously or when several processes try to modify the same entity at the same
time. In addition, it involves the methods of solving the conicts when they arise in
such cases. For large reactive systems, mathematical models become cumbersome to
derive and, quite often, are either analytically intractable or computationally di�-
cult to solve to the desired accuracy. Executable models can better implement the
features of reactive systems, such as the complex description of the state of the sys-
tem, the parallel architecture of the constituent processes and their concurrency. As
biological systems are a prime example of reactive systems, they are well suited to
executable modeling [40].



Chapter 2

Information theory

2.1 Shannon’s information theory

In the ground-breaking article [102], Claude Shannon establishes the foundations
of communication theory, which refers to the reliable transmission of information
over unreliable, error-prone channels. He describes the nature of information in
probabilistic terms and gives theorems for its reliable transmission. The entropy
and mutual information are the fundamental concepts of Shannon’s information the-
ory and are the basic building blocks of all other more sophisticated concepts from
this framework [102], [25]. We will present the de�nitions and properties of these
information-theoretic quantities, in the following section.

2.1.1 Entropy and mutual information

A random variable is a mathematical construct used to describe and measure uncer-
tainty. This variable can take values from a speci�ed set, named the ensemble, and
it has a function associated to it. If the set is discrete, then the variable is a discrete
random variable and its function is named a probability mass function. If the set is
continuous, such as the set of real numbers R, then it is a continuous random variable
and the function associated to it is also continuous. It is named a probability density
function. The probability mass function and the probability density function are
mappings from the ensemble of the random variable to the set of real numbers, with
the property that the values these functions can take from this set sum to 1. Each
element of the ensemble of a random variable is an event that can occur with a given
certainty, measured by the probability associated with the event. These probability

9
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functions assign real numbers to each event, which show how likely the event is to
occur. More formally, let X be a random variable, pX(x) its probability distribution
and EX its ensemble, such that pX : EX ! [0 1]. Then,

pX(x) � 0;8x 2 EX
X

x2EX

pX(x) = 1: (2.1)

Since we have applied the information-theoretic methods to analyze Boolean net-
works, which are discrete in nature, we will present here only the discrete version of
the fundamentals of Shannon’s information theory, [ Ch 2 of [25] ]. Their continuous
counterparts can be found in [ Ch 8 of [25] ].

De�nition 1. Entropy. Let X be a discrete random variable, with values from a
discrete alphabet, EX , and let pX(x) be its probability mass function. The entropy of
X is de�ned as

H(X) = �
X

x2EX

pX(x) � log pX(x): (2.2)

In our analyses, we used the logarithm to the base 2, which means that the
entropy is measured in bits. As we are using the logarithm to the base 2 throughout
this thesis, we will omit it and we will just write log, which is to be read log2.

Property 1. H(X) � 0:

Proof.

H(X) = �
X

x2EX

pX(x) � log pX(x)

0 � pX(x) � 1; 8x 2 EX

) log pX(x) � 0; 8x 2 EX

) pX(x) � log pX(x) � 0; 8x 2 EX

)
X

x2EX

pX(x) � log pX(x) � 0

) H(X) � 0: (2.3)

De�nition 2. Joint entropy. Let X and Y be two discrete random variables, with
values from two discrete alphabets, EX and EY , and let pX(x) and pY (y) be their
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individual probability mass functions and pXY (x; y) be their joint probability mass
function. The joint entropy of X and Y is de�ned as

H(X;Y ) = �
X

x2EX

X

y2EY

pXY (x; y) � log pXY (x; y): (2.4)

From probability theory [51] we know that

pXY (x; y) = pXjY (xjy) � pY (y) = pY jX(yjx) � pX(x)

pX(x) =
X

y2EY

pXY (x; y): (2.5)

De�nition 3. The fundamental theorem of expectation [ Ch 4 [47] ]. Let X
and Y be two random variables, with ensembles EX and EY , and g a function, such
that Y = g(X). Let EY denote the expectation of Y . If it exists, then

EY =
X

x2EX

g(x) � pX(x); (2.6)

where pX(x) is the probability density function of X, if X is a continuous random
variable, or the probability mass function of X, if X is a discrete random variable.

Remark 1. Let X, Y and Z be three discrete random variables, such that Z is equal
to the conditional random variable XjY = y, i.e. Z = (XjY = y). The conditional
random variable XjY = y has ensemble EX and is a function of the value y. For each
value of y in EY , we have a probability mass function de�ned for all the values x in
EX :

pXjY (xjy) = P((XjY = y) = x) = P(X = xjY = y); 8x 2 EX : (2.7)

As a result, for each value of y, we can de�ne an entropy for each such probability
mass function:

H(XjY = y) = �
X

x2EX

pXjY (xjy) � log pXjY (xjy): (2.8)

Remark 2. For each value of y, we have one such entropy, H(XjY = y). If we let
W = H(XjY = y) = g(y), 8y 2 EY , then W is now a function, g, only of y. This is
because, in the de�nition of H(XjY = y), we summed out all the values x 2 EX . The
function g takes values from EY and transforms the random variable Y , according
to the de�nition 2.8. We are not interested in the characteristics of this function,
because it serves just as a notation to make the explanations more straightforward.
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As W is a function of the random variable Y , it becomes itself a random variable.
Thus, the expectation of W is well de�ned. According to the fundamental theorem
of expectation 2.6, the expectation of W is equal to

EW =
X

y2Ey

pY (y) � g(y): (2.9)

De�nition 4. Conditional entropy. The conditional entropy H(XjY ) is de�ned
as the expectation of W , EW :

H(XjY ) = �
X

y2Ey

pY (y) �
X

x2EX

pXjY (xjy) � log pXjY (xjy)

= �
X

y2Ey

X

x2EX

pXY (x; y) � log pXjY (xjy): (2.10)

The relative entropy or Kullback-Leibler divergence [65] represents one type of
measure of the di�erence between two probability mass functions de�ned on the same
ensemble of a random variable.

De�nition 5. Kullback-Leibler divergence. Let X be a discrete random variable
and let pX(x) and qX(x) be two probability mass functions de�ned on the ensemble of
X, EX . The Kullback-Leibler divergence between the two probability mass functions
is de�ned as [65]

DKL(pjjq) =
X

x2EX

pX(x) � log
pX(x)
qX(x)

: (2.11)

If the two probability mass functions are identical, then DKL(pjjq) = 0, otherwise
DKL(pjjq) > 0.

De�nition 6. Conditional Kullback-Leibler divergence. Let X, Y be two dis-
crete random variables and let pXY (x; y) be their joint probability mass function de-
�ned on their joint ensemble: (x; y) 2 EX � EY . Let pXjY (xjy) and qXjY (xjy) be the
conditional probability mass functions de�ned on the ensemble of X, EX . Then, the
conditional Kullback-Leibler divergence between the two probability mass functions, p
and q, is de�ned as [25]

D*
KL((p(XjY ) k q(XjY )) =

X

x2EX

X

y2EY

pXY (x; y) � log
pXjY (xjy)
qXjY (xjy)

: (2.12)
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Remark 3. By the same arguments as in Remark 1, we will prove in the following
paragraph how this equation can be derived from the Kullback-Leibler divergence.
Let X, Y and Z be three discrete random variables, such that Z is equal to the
conditional random variable XjY = y, i.e. Z = (XjY = y). The conditional random
variable XjY = y has ensemble EX and is a function of the value y. For each value
of y in EY , we can have two conditional probability mass functions, pXjY (xjy) and
qXjY (xjy), de�ned on the ensemble of X, EX . Let Pp(Z = x) be the probability
that the random variable Z takes the value x, with respect to the probability mass
function p. Let Pq(Z = x) be the probability that the random variable Z takes the
value x, with respect to the probability mass function q. We have that Pp(Z = x) 6=
Pq(Z = x), because p and q are two probability mass functions that assign di�erent
probabilities to the same events. The role of any type of divergence is to measure
the discrepancy between two probability distributions de�ned on the same ensemble.
Then,

pXjY (xjy) = Pp((XjY = y) = x) = Pp(X = xjY = y); 8x 2 EX

qXjY (xjy) = Pq((XjY = y) = x) = Pq(X = xjY = y); 8x 2 EX : (2.13)

As a result, for each value of y, we can de�ne a Kullback-Leibler divergence between
the two probability mass functions p and q:

DKL(pXjY (XjY = y)jjqXjY (XjY = y)) =
X

x2EX

pXjY (xjy) � log
pXjY (xjy)
qXjY (xjy)

:

DKL(pXjY (XjY = y)jjqXjY (XjY = y)) is now a function of the random variable
Y . Thus, it is also a random variable. We are interested in obtaining a value for
the divergence, which indicates how di�erent two probability mass functions are.
Therefore, we will take this value to be the expectation with respect to Y of the
random variable DKL(pXjY (XjY = y)jjqXjY (XjY = y)). That is, by the fundamental
theorem of expectation,

D*
KL(p(XjY ) k q(XjY )) = EY DKL(pXjY (XjY = y)jjqXjY (XjY = y)) =

=
X

y2EY

pY (y) �
X

x2EX

pXjY (xjy) � log
pXjY (xjy)
qXjY (xjy)

=
X

x2EX

X

y2EY

pXY (x; y) � log
pXjY (xjy)
qXjY (xjy)

: (2.14)
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The following paragraphs explain the properties of convex functions, which are
needed to present the properties of information divergences. Chapter 1 from the
book by D.S. Mitrinovi�c, [76], is a reference for the de�nition and the properties of
a convex function and for Jensen’s inequality for convex functions.

De�nition 7. Convex function. A function f , de�ned on a closed interval [a; b] �
R, f : [a; b]! R, is convex if and only if

f(� � x+ (1� �) � y) � � � f(x) + (1� �) � f(y); 8x; y 2 [a; b]; 8� 2 [0; 1]: (2.15)

Property 2. A function f : [a; b]! R is convex on the closed interval [a; b], if and
only if its second derivative is nonnegative on the entire interval, i.e. f 00(x) � 0;8x 2
[a; b]. The proof of this property can be found in [Ch 1 of [76], pp. 17].

Theorem 1. Jensen’s inequality [55]. Let f : [a; b]! R be a continuous and con-
vex function on the interval [a; b] and let c1; c2; : : : ; cn be arbitrary positive numbers,
then the following inequality holds

f

0

BBBB@

nX

i=1

ci � xi

nX

i=1

ci

1

CCCCA
�

nX

i=1

ci � f(xi)

nX

i=1

ci

(2.16)

Theorem 2. The log-sum inequality. Let xi, yi 2 R, 8i = 1; : : : ; n, then the
following inequality holds

nX

i=1

xi � log
xi
yi
�

 nX

i=1

xi

!

� log

0

BBBB@

nX

i=1

xi

nX

i=1

yi

1

CCCCA
: (2.17)

Proof. Let g : (0;+1)! R, g(t) = t � log t. Next, we will prove that this function is
convex.

g0(t) = log t+ t �
1

t � ln 2
= log t+

1
ln 2

g00(t) =
1

t � ln 2
> 0: (2.18)
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By property 2 ) g(t) is a convex function ) we can apply Jensen’s inequality 1.

) g

0

BBBB@

nX

i=1

ci � ti

nX

i=1

ci

1

CCCCA
�

nX

i=1

ci � g(ti)

nX

i=1

ci

)

nX

i=1

ci � ti

nX

i=1

ci

� log

0

BBBB@

nX

i=1

ci � ti

nX

i=1

ci

1

CCCCA
�

nX

i=1

ci � ti � log ti

nX

i=1

ci

)
nX

i=1

ci � ti � log ti �

 nX

i=1

ci � ti

!

� log

0

BBBB@

nX

i=1

ci � ti

nX

i=1

ci

1

CCCCA
:

Let ti =
xi
yi

and ci = yi, 8i = 1 : n.

)
nX

i=1

yi �
xi
yi
� log

xi
yi
�

 nX

i=1

yi �
xi
yi

!

� log

0

BBBB@

nX

i=1

yi �
xi
yi

nX

i=1

yi

1

CCCCA

)
nX

i=1

xi � log
xi
yi
�

 nX

i=1

xi

!

� log

0

BBBB@

nX

i=1

xi

nX

i=1

yi

1

CCCCA
: (2.19)

Property 3. DKL(pjjq) � 0.

Proof.

DKL(pjjq) =
X

x2EX

pX(x) � log
pX(x)
qX(x)

:
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This equation is identical to the left term in the log-sum inequality 2.17.

)
X

x2EX

pX(x) � log
pX(x)
qX(x)

�

0

@
X

x2EX

pX(x)

1

A � log

0

BBB@

X

x2EX

pX(x)

X

x2EX

qX(x)

1

CCCA

)
X

x2EX

pX(x) � log
pX(x)
qX(x)

� 1 � log 1 = 0

) DKL(pjjq) � 0; (2.20)

where
P

x2EX pX(x) = 1 and
P

x2EX qX(x) = 1, since pX(x) and qX(x) are probabil-
ity mass functions.

The mutual information between two random variables represents the amount of
information that is shared between the two variables. It is de�ned as the Kullback-
Leibler divergence between their joint probability mass function and the product of
their marginal probability mass functions.

Remark 4. The marginal probability mass function of a random variable represents
the individual probability mass function of that variable. Given the joint distribution
of two random variables, the marginal distribution of one variable is obtained from
the joint distribution, by summing out the other variable:

pX(x) =
X

y2EY

pXY (x; y): (2.21)

De�nition 8. Mutual information. Let X and Y be two discrete random vari-
ables, with values from two discrete alphabets, EX and EY , and let pX(x) and pY (y)
be their individual probability mass functions and pXY (x; y) be their joint probability
mass function. The mutual information between X and Y is de�ned as

MI(X;Y ) =
X

x2EX

X

y2EY

pXY (x; y) � log
pXY (x; y)

pX(x) � pY (y)
: (2.22)

Property 4. If two random variables X and Y are independent, then their joint
probability mass function is equal to the product of their marginals: pXY (x; y) =
pX(x) � pY (y). As a result, the mutual information between two independent random
variables is 0.
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Property 5.

MI(X;Y ) = H(X)�H(XjY )

= H(Y )�H(Y jX)

= H(X) + H(Y )�H(X;Y ): (2.23)

Proof.

MI(X;Y ) =
X

x2EX

X

y2EY

pXY (x; y) � log
pXY (x; y)

pX(x) � pY (y)

H(XjY ) = �
X

y2Ey

X

x2EX

pXY (x; y) � log pXjY (xjy)

H(Y jX) = �
X

x2Ex

X

y2EY

pXY (x; y) � log pY jX(yjx)

H(X;Y ) = �
X

x2EX

X

y2EY

pXY (x; y) � log pXY (x; y)

H(X) = �
X

x2EX

pX(x) � log pX(x)

H(Y ) = �
X

y2EY

pY (y) � log pY (y):

From probability theory [51] we know that

pXY (x; y) = pXjY (xjy) � pY (y) = pY jX(yjx) � pX(x)

pX(x) =
X

y2EY

pXY (x; y): (2.24)

H(X)�H(XjY ) = �
X

x2EX

pX(x) � log pX(x) +
X

y2Ey

X

x2EX

pXY (x; y) � log pXjY (xjy)

=
X

x2EX

2

4�pX(x) � log pX(x) +
X

y2Ey

pXY (x; y) � log pXjY (xjy)

3

5

=
X

x2EX

X

y2EY

�
�pXY (x; y) � log pX(x) + pXY (x; y) � log

pXY (x; y)
pY (y)

�

=
X

x2EX

X

y2EY

pXY (x; y) � log
pXY (x; y)

pX(x) � pY (y)
= MI(X;Y ):

(2.25)
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) MI(X;Y ) = H(X)�H(XjY ): (2.26)

Similarly, we can prove that MI(X;Y ) = H(Y ) � H(Y jX). We will now prove that
MI(X;Y ) = H(X) + H(Y )�H(X;Y ).

H(X;Y ) = �
X

x2EX

X

y2EY

pXY (x; y) � log pXY (x; y)

= �
X

x2EX

X

y2EY

pXY (x; y) � log
�
pXjY (xjy) � pY (y)

�

= �
X

x2EX

X

y2EY

pXY (x; y) � log pXjY (xjy)�
X

x2EX

X

y2EY

pXY (x; y) � log pY (y)

= H(XjY )�
X

y2EY

pY (y) � log pY (y)

= H(XjY ) + H(Y ): (2.27)

) �H(XjY ) = H(Y )�H(X;Y )

) H(X)�H(XjY ) = H(X) + H(Y )�H(X;Y )

) MI(X;Y ) = H(X) + H(Y )�H(X;Y ): (2.28)

Property 3 shows that the Kullback-Leibler divergence between two probability
mass functions is always greater or equal to 0. As it is a Kullback-Leibler divergence,
the mutual information between two random variables will also be greater or equal
to 0. The lower bound of the mutual information is 0, but the upper bound can be
any constant up to 1. Therefore, the mutual information can have a wide range of
variation and it can belong to di�erent intervals of values for di�erent systems, but
with the same meaning. As such, when conducting a comparative analysis of the
behaviour of two dynamical systems or in a classi�cation task, employing the mutual
information to distinguish between two objects can be misleading. In such cases,
normalized values of the mutual information provide a valid method of comparison
between two distinct systems. In our case, the normalized version that gave the best
results is [74]:

De�nition 9. Normalized mutual information. The normalized mutual infor-
mation between two random variables X and Y is de�ned as

nMI(X;Y ) =
MI(X;Y )
H(X;Y )

=
H(X) + H(Y )�H(X;Y ))

H(X;Y )
=

H(X) + H(Y )
H(X;Y )

� 1: (2.29)
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The normalized mutual information has the following properties:

If X = Y ) nMI(X;Y ) =
2 �H(X)
H(X;X)

� 1 = 1:

If X;Y are independent, i.e. p(x; y) = p(x) � p(y)

) H(X;Y ) = H(X) + H(Y )

) nMI(X;Y ) =
H(X) + H(Y )

H(X;Y )
� 1 = 0: (2.30)

As a conclusion, the normalized mutual information values belong to the interval
[0 1].
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2.2 Generalizations of Shannon’s information theory

Motivation

Characterizing the structure-dynamics laws in complex systems and networks brings
further understanding of how they function as a whole, at the global level. It improves
on the understanding of how structural changes a�ect the dynamical behaviour. The
application of such knowledge is in achieving certain desired dynamics in the synthesis
process of such systems. If we study the structure and the dynamics separately,
without investigating their structure-dynamics relationship, it would be impossible
to design new complex systems, that is, creating a type of structure, to obtain a
desired dynamical behaviour.

Structural information is embedded in the dynamics of complex systems and net-
works. Our aim is to reveal this information, from the dynamics, by means of infor-
mation theory. To this end, we improve on the capabilities of the mutual information
of detecting information transfer in such systems. We introduce other equations that
are more advanced than the mutual information, to quantify the amount of informa-
tion ow in these systems. These measures employ random vectors that represent the
environment and they also combine the system’s dynamical behaviour in intelligent
ways, such as to uncover as much hidden structural information as possible. These
more complicated equations o�er more possibilities to study the structure-dynamics
relationships in complex systems and networks, than what mutual information o�ers.
They are still under development and novel applications are being found for them.

Shannon’s information theory contains extensions of the mutual information for
analysing how information propagates within a complex network and a complex
system. Moreover, Shannon’s information theory has been generalized to R�enyi’s
information theory, named after Alfred R�enyi, who �rst extended Shannon’s entropy
to a more complete version, which includes the classical entropy as a limiting case.
The role of the classical mutual information has been described in various sections
throughout this thesis. These information-theoretic extensions improve on the ability
of the mutual information to discover the patterns of information transmission. They
have essentially the same usage as the mutual information, in the e�ort to uncover
the structure-dynamics relationships in complex networks. However, these extensions
provide more sophisticated means of answering the same questions as the mutual
information does. These new measures of information o�er rich opportunities of
�nding structural information hidden in the dynamics.
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The most general form of the information theoretic equations described here is
in the case when these quantities are computed for random vectors. We will use
the random vector representation for our study. But, for clarity and as proof of
concept, we present these information-theoretic generalizations in the case of random
variables. They are identical if the random variables are replaced with random
vectors, because the concepts involved in their de�nition do not change. For example,
the entropy of multiple random variables, that is, of a random vector, is de�ned by
replacing the univariate probability mass function from the de�nition of the entropy,
with a multivariate one [25]. The same applies for the divergence. As all the equations
are based on the R�enyi �-divergence and on the conditional R�enyi �-divergence, the
principle described above applies to all the information-theoretic equations presented
in this section.

The analysis of the dynamics of complex systems requires random vectors, be-
cause the past states of the variables of interest need to be taken into consideration,
as well as the inuence of other elements, which represent the environment. As we
have seen in the introductory section to the de�nitions and properties of complex sys-
tems, the interactions between the elements of the system are extremely complex and
are very di�cult to characterize. Combining the information about the past states of
elements of the system, with the inuence of the environment enhances the more tra-
ditional analysis of using the mutual information and even the time-delayed mutual
information. Because of the correlations in the system, often past states inuence
the present state of an element. Thus, it may contain valuable information regarding
the present activity of that element, as well as regarding its patterns of connectivity
within the network. The structural properties are hidden in the dynamics through
the way they restrict the possible dynamics of the elements of the systems, that is,
through the way they introduce correlations in the dynamical states of the elements
of the complex system. The presence and the patterns of these correlations can be
found through such statistical analyses that merge the types of features described
above.

Our contributions in this �eld are the derivation of a new equation from R�enyi’s
information theory, which we term the partial R�enyi transfer entropy [98] and the
alternative derivation of the partial R�enyi mutual information [98], which was �rst
introduced in [88]. Unlike the authors of [88], who state the de�nition without deriv-
ing it, we provide logical arguments to our choice of derivation and to the validity of
this de�nition. We present the prior work on this topic, to create the context in which
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these new equations were derived. We discuss existing means from Shannon’s and
R�enyi’s information theories, which quantify the transfer of information in complex
networks and systems. To prove the practical application of our methods, we have
successfully characterized structural parameters from the dynamical behaviour of an
autoregression systems of order 1. As another example, the random Boolean network
model could be a �rst step in understanding how these generalizations perform on
models of complex networks and systems.

R�enyi’s entropy is a generalization of Shannon’s entropy

In his paper [92], Alfred R�enyi generalizes Shannon’s entropy and establishes another
branch of information theory, named R�enyi’s information theory. Although this gen-
eralization was introduced in 1961, applications of R�enyi’s information theory have
only been found recently and now increased attention is devoted to this sub�eld of
information theory. More applications of R�enyi’s entropy and divergence have been
found in signal processing and communications engineering. The cuto� rate in block
coding is a parameter involved in the upper bound of the average probability of
error of a code [26]. The author of [26] introduces a parameter � in these upper
bounds and links these generalized �-cutto� rates of a discrete memoryless channel
with R�enyi’s entropy and divergence. R�enyi’s entropy is applied to the single-input
single-output blind deconvolution problem for linear channels [36]. The authors of
[90] �nd analytical expressions for the R�enyi divergence rate and the R�enyi entropy
rate, in the case of �nite-alphabet Markov sources, which are time-invariant and of
arbitrary order. The authors of [12] employ R�enyi’s entropy to measure the amount
of information and the complexity of signals. They consider the time-frequency rep-
resentation of a signal, that is, the two-dimensional function which has two variables,
the time and the frequency, as a two-dimensional probability distribution. They use
this function as the distribution in the de�nition of R�enyi’s entropy. Other applica-
tions of R�enyi’s entropy include machine learning [77], [89], adaptive system training
[37] and clustering [45].

In complex systems science, research has been focused more on developing the
theoretical foundations of R�enyi’s information theory. The authors of [56] introduce
the R�enyi transfer entropy and apply it to the US, Europe and Asia-Paci�c �nancial
markets, to study the direction and amount of information ow between them. The
conditional R�enyi mutual information is introduced by [88] and we de�ne the partial
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R�enyi transfer entropy in [98]. However, these generalized information measures have
not yet been applied to large complex systems and networks. This remains a very
important direction for future research, as these measures show great promise in
detecting the structure-dynamics relationships in complex systems and networks.

In order to generalize Shannon’s entropy, R�enyi uses the idea of incomplete ran-
dom variables and incomplete probability distributions. To explain the generaliza-
tion of Shannon’s entropy, we use the mathematical notation of [92]. Let � be an
incomplete discrete random variable and P = fp1; p2; : : : ; png be the collection of
probabilities assigned to n events that are modelled by the random variable �. Then,
this probability distribution is termed incomplete, if

0 <
nX

k=1

pk � 1: (2.31)

Let W (P) =
Pn

k=1 pk be the weight of the distribution P. If W (P) = 1, then the
random variable and distribution are termed complete or ordinary. The complete or
ordinary information-theoretic equations can be obtained from their incomplete ver-
sions, by replacing the weight of the distribution with the value 1. Then, Shannon’s
entropy for incomplete random variables becomes:

H1[P] =

nX

k=1

pk � log2
1
pk

nX

k=1

pk

: (2.32)

For generalized or incomplete distributions, R�enyi’s entropy of order � becomes:

H�[P] =
1

1� �
� log2

0

BBBB@

nX

k=1

p�k

nX

k=1

pk

1

CCCCA
: (2.33)

R�enyi extends the axioms satis�ed by Shannon’s entropy to such distributions,
in the form of �ve postulates. In the theorem 1 of [92], he proves that the only form
of the entropy that satis�es these newly de�ned postulates is Shannon’s entropy
for incomplete probability distributions. The postulate 5 represents the mean-value
property of the entropy and it uses the arithmetic mean in its de�nition. In the
postulate 5, the author states that, if P = fp1; p2; : : : ; pmg and Q = fq1; q2; : : : ; qng



24 CHAPTER 2. INFORMATION THEORY

are two generalized distributions, such that W (P) +W (Q) � 1, and the union of P
and Q is de�ned as P [Q = fp1; p2; : : : ; pm; q1; q2; : : : ; qng, then

H[P [Q] =
W (P) �H[P] +W (Q) �H[Q]

W (P) +W (Q)
: (2.34)

Then, he changes the arithmetic mean to a generalized mean, which involves
a strictly monotonic and continuous function and gives the postulate 50. Here, he
states that, if there exist P and Q, such that W (P) +W (Q) � 1, then there exists a
strictly monotonic and continuous function y = g(x), which has the inverse function
denoted as x = g�1(y), such that

H[P [Q] = g�1
�
W (P) � g(H[P]) +W (Q) � g(H[Q])

W (P) +W (Q)

�
: (2.35)

He proves that only two functions in this generalized mean are possible, such that
the �ve postulates are satis�ed: g(x) = a � x + b, with a 6= 0, leads to Shannon’s
entropy and g(x) = 2(��1)�x, with � > 0 and � 6= 1, leads to R�enyi’s entropy. That
is, in the �rst case, the postulate 50 is equal to the postulate 5. The only entropy
that satis�es the postulates 1; 2; 3; 4 and 5 is Shannon’s entropy, as proven by the
theorem 1. In the second case, the only entropy that satis�es the postulates 1; 2; 3; 4
and 50 is R�enyi’s entropy, as proven by the theorem 2. Moreover,

lim
�!1

H�[P] = H1[P]: (2.36)

The above explanations are the reasons why R�enyi’s entropy is a generalizations of
Shannon’s entropy.

Prior work on probabilistic information-theoretic equations and their gen-
eralizations

The �rst generalization of the mutual information is the transfer entropy, introduced
in [101]. As with the mutual information, it involves two stochastic processes, X
and Y , but, in addition, it has a conditioning variable, which makes this measure a
directed one. The transfer entropy from the process X to the process Y measures
the shared information between the present state of X and the past states of Y ,
conditioned on the past states of X. It describes how much the history of the
process Y a�ects the process X, at the present moment, given that the history of
X is known. The asymmetry of the transfer entropy makes it extremely suitable
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for detecting directed coupling in complex systems and networks, where information
may ow in only one direction between two connected elements. The partial transfer
entropy [109] is an improvement on the transfer entropy and a further generalization
of the traditional mutual information. Similarly to the transfer entropy, it quanti�es
the directed exchange of information from the process X to the process Y . But, it is
a more powerful measure of information, because it adds the environment, modeled
as a stochastic process Z, as another conditioning variable, together with the history
of X. It eliminates any possible indirect inuences between the processes X and
Y , which may take place through indirect connections between them, through the
environment. The partial mutual information [42] represents another extension of
the mutual information. The authors of [42] de�ne this measure as the conditional
mutual information between two processes X and Y , given the process Z, which
represents the environment. It quanti�es the shared information between X and Y
that is not contained in Z.

The transfer entropy and the partial mutual information have been generalized
to R�enyi’s information theory, as R�enyi transfer entropy by [56] and as the condi-
tional R�enyi mutual information by [88], respectively. The authors of [56] de�ne the
R�enyi transfer entropy, by replacing the conditional Shannon entropy in the de�ni-
tion of the transfer entropy, with the conditional R�enyi entropy. In our work [98],
we give a more straightforward derivation of the R�enyi transfer entropy. We employ
the conditional R�enyi �-divergence, which we derive from the R�enyi �-divergence.
A di�erent version of this conditional divergence is used in [88], to de�ne the con-
ditional R�enyi mutual information. The authors do not motivate the choice of this
divergence. We bring contributions to this �eld of generalized information-theoretic
equations by deriving the conditional R�enyi divergence from the R�enyi �-divergence,
using probabilistic and logical arguments. We rede�ne the most important R�enyi
information-theoretic equations, on the basis of this conditional divergence, in a uni-
�ed framework. This is the reason why it is extremely important to have a solid proof
of the derivation of the conditional R�enyi �-divergence. Based on this divergence,
the most notable contribution of our work [98] is the partial R�enyi transfer entropy,
as the generalization of the partial transfer entropy to R�enyi’s information theory.

For the de�nition and the properties of the information-theoretic equations that
we have investigated, we use the mathematical notation of [98]. This notation is
identical to the one used in the section 2.1.
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De�nition 10. Entropy. Let X be a discrete random variable, with values from a
discrete alphabet, EX , and let pX(x) be its probability mass function. The entropy of
X is de�ned as

H(X) = �
X

x2EX

pX(x) � log pX(x): (2.37)

De�nition 11. R�enyi �-entropy. Let X be a discrete random variable, with values
from a discrete alphabet, EX , and let pX(x) be its probability mass function. Then,
R�enyi’s entropy of order � is de�ned as [92]

H�(X) =
1

1� �
log

X

x2EX

p�X(x): (2.38)

De�nition 12. Kullback-Leibler divergence. Let X be a discrete random variable
and let pX(x) and qX(x) be two probability mass functions de�ned on the ensemble of
X, EX . The Kullback-Leibler divergence between the two probability mass functions
is de�ned as [65]

DKL(pjjq) =
X

x2EX

pX(x) � log
pX(x)
qX(x)

: (2.39)

De�nition 13. R�enyi �-divergence. Let X be a discrete random variable, with
values from a discrete alphabet, EX . Let pX(x) and qX(x) be two probability mass
functions for the random variable X. Then, R�enyi’s divergence of order � between
pX(x) and qX(x) is equal to [92]

D�(p k q) =
1

�� 1
log

0

@
X

x2EX

p�X(x)
q��1
X (x)

1

A (2.40)

The following de�nition has been presented in the de�nition 6, along with the
arguments for its derivation in the remark 3. We repeat it here for completness, in
order to understand the similarities and di�erences between Shannon’s and R�enyi’s
information theories.

De�nition 14. Conditional Kullback-Leibler divergence. Let X, Y be two
discrete random variables and let pXY (x; y) be their joint probability mass function
de�ned on their joint ensemble: (x; y) 2 EX�EY . Let pXjY (xjy) and qXjY (xjy) be the
conditional probability mass functions de�ned on the ensemble of X, EX . Then, the
conditional Kullback-Leibler divergence between the two probability mass functions, p
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and q, is de�ned as [25]

D*
KL((p(XjY ) k q(XjY )) =

X

x2EX

X

y2EY

pXY (x; y) � log
pXjY (xjy)
qXjY (xjy)

: (2.41)

Using the same probability theoretic arguments as we provided in the remark
3 for the derivation of the conditional Kullback-Leibler divergence, we derive the
conditional R�enyi �-divergence. We derive this conditional divergence in a di�erent
manner than that of the authors of [88], who also introduced a conditional R�enyi
�-divergence. It has a di�erent expression than our de�nition of this divergence.
Next, we rede�ne extisting R�enyi information theoretic equations, in terms of this
alternative version of the conditional R�enyi �-divergence, and we introduce a new
equation, termed partial R�enyi transfer entropy (PRTE).

De�nition 15. Conditional R�enyi �-divergence. Let X, Y be two discrete ran-
dom variables and let pY (y) be the probability mass function de�ned on the ensemble
of Y , EY . Let pXjY (xjy) and qXjY (xjy) be the conditional probability mass functions
de�ned on the ensemble of X, EX . Then, the conditional R�enyi �-divergence between
the two probability mass functions, p and q, is de�ned as [98]

D*
�(p(XjY ) k q(XjY )) =

1
�� 1

�
X

y2EY

pY (y) � log

0

@
X

x2EX

p�XjY (xjy)

q��1
XjY (xjy)

1

A : (2.42)

Remark 5. Let X, Y and Z be three discrete random variables, such that Z is
equal to the conditional random variable XjY = y, i.e. Z = (XjY = y). The
conditional random variable XjY = y has ensemble EX and is a function of the value
y. For each value of y in EY , we can have two conditional probability mass functions,
pXjY (xjy) and qXjY (xjy), de�ned on the ensemble of X, EX . Let Pp(Z = x) be
the probability that the random variable Z takes the value x, with respect to the
probability mass function p. Let Pq(Z = x) be the probability that the random
variable Z takes the value x, with respect to the probability mass function q. We
have that Pp(Z = x) 6= Pq(Z = x), because p and q are two probability mass
functions that assign di�erent probabilities to the same events. The role of any type
of divergence is to measure the discrepancy between two probability distributions
de�ned on the same ensemble. Then,

pXjY (xjy) = Pp((XjY = y) = x) = Pp(X = xjY = y);8x 2 EX

qXjY (xjy) = Pq((XjY = y) = x) = Pq(X = xjY = y); 8x 2 EX : (2.43)
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As a result, for each value of y, we can de�ne a R�enyi �-divergence between the two
probability mass functions p and q:

D�(pXjY (XjY = y) k qXjY (XjY = y)) =
1

�� 1
log

0

@
X

x2EX

p�XjY (X = xjY = y)

q��1
XjY (X = xjY = y)

1

A :

D�(pXjY (XjY = y) k qXjY (XjY = y)) is now a function of the random variable
Y . Thus, it is also a random variable. We are interested in obtaining a value for
the divergence, which indicates how di�erent two probability mass functions are.
Therefore, we will take this value to be the expectation with respect to Y of the
random variable D�(pXjY (XjY = y) k qXjY (XjY = y)). That is, by the fundamental
theorem of expectation,

D*
�(p(XjY ) k q(XjY )) = EY D�(pXjY (XjY = y)jjqXjY (XjY = y)) =

=
1

�� 1
�
X

y2EY

pY (y) � log

0

@
X

x2EX

p�XjY (xjy)

q��1
XjY (xjy)

1

A : (2.44)

In the theorem 1 of [98], we prove that this divergence tends to the conditional
Kullback-Leibler divergence. As a result, all the R�enyi information-theoretic equa-
tions will tend to their counterparts from Shannon’s theory, as they are all de�ned
based on the conditional R�enyi �-divergence. This property is very important, be-
cause all the R�enyi generalizations must include their classical counterparts as lim-
iting cases.

De�nition 16. Mutual information (MI). Let X and Y be two discrete random
variables, with values from two discrete alphabets, EX and EY , and let pX(x) and
pY (y) be their individual probability mass functions and pXY (x; y) be their joint prob-
ability mass function. The mutual information between X and Y is de�ned as the
Kullback-Leibler divergence between the joint probability mass function, pXY (x; y),
and the product of the marginals, pX(x) � pY (y):

MI(X;Y ) = DKL(pXY (x; y) k (pX(x) � pY (y)))

=
X

x2EX

X

y2EY

pXY (x; y) � log
pXY (x; y)

pX(x) � pY (y)
: (2.45)

De�nition 17. R�enyi mutual information (RMI). Let X and Y be two discrete
random variables, with values from two discrete alphabets, EX and EY , and let pX(x)
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and pY (y) be their individual probability mass functions and pXY (x; y) be their joint
probability mass function. The R�enyi mutual information between X and Y is de�ned
as the R�enyi �-divergence between the joint probability mass function, pXY (x; y), and
the product of the marginals, pX(x) � pY (y):

RMI(X;Y ) = D�(pXY (x; y) k (pX(x) � pY (y)))

=
1

�� 1
� log

0

@
X

x2EX

X

y2EY

p�XY (x; y)
p��1
X (x) � p��1

Y (y)

1

A : (2.46)

De�nition 18. Conditional mutual information (CMI). Let X, Y and Z be
three discrete random variables and let pXY jZ(x; yjz) be the joint probability mass
function of X and Y , conditioned on Z. It is de�ned on their joint ensemble:
(x; y) 2 EX � EY . Let pXjZ(xjz) and pY jZ(yjz) be the conditional probability mass
functions de�ned on the ensemble of X, EX and on the ensemble of Y , EY , respec-
tively, conditioned on Z. Then, the conditional mutual information between X and
Y , conditioned on Z, is equal to the conditional Kullback-Leibler divergence between
pXY jZ and the product of the conditional marginals, pXjZ � pY jZ :

CMI(X;Y jZ) = D*
KL(pXY jZ(x; yjz) k (pXjZ(xjz) � pY jZ(yjz)))

=
X

x2EX

X

y2EY

X

z2EZ

pXY Z(x; y; z) � log
pXY jZ(x; yjz)

pXjZ(xjz) � pY jZ(yjz)
: (2.47)

De�nition 19. Conditional R�enyi mutual information (CRMI). Let X, Y
and Z be three discrete random variables and let pXY jZ(x; yjz) be the joint probability
mass function of X and Y , conditioned on Z. It is de�ned on their joint ensem-
ble: (x; y) 2 EX � EY . Let pXjZ(xjz) and pY jZ(yjz) be the conditional probability
mass functions de�ned on the ensemble of X, EX and on the ensemble of Y , EY ,
respectively, conditioned on Z. Then, we de�ne the conditional mutual information
between X and Y , conditioned on Z, as the conditional R�enyi �-divergence between
pXY jZ and the product of the conditional marginals, pXjZ � pY jZ :

CRMI(X;Y jZ) = D*
�(pXY jZ(x; yjz) k (pXjZ(xjz) � pY jZ(yjz)))

=
1

�� 1
�
X

z2EZ

pZ(z) � log

0

@
X

x2EX

X

y2EY

p�XY jZ(x; yjz)

p��1
XjZ(xjz) � p��1

Y jZ (yjz)

1

A

(2.48)
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Let X and Y be two random vectors and let k be the time lag for X and l be
the time lag for Y . A time lag refers to how many past states are taken into the
analysis, from the current moment. The current time point is represented by n+ 1.
Then, we have that

X = [Xn+1 Xn Xn�1 : : : Xn�k+1]

Y = [Yn Yn�1 : : : Yn�l+1]: (2.49)

Here, Xi and Yj are random variables, 8i = f(n + 1); n; : : : ; (n � k + 1)g, 8j =
fn; (n� 1); : : : ; (n� l + 1)g. For clarity of notation, let

V = Xn+1;

W = [Yn Yn�1 : : : Yn�l+1];

U = [Xn Xn�1 : : : Xn�k+1]: (2.50)

De�nition 20. Transfer entropy (TE). The TE was introduced in [101] to im-
prove on the mutual information between two random vectors, X and Y , by elimi-
nating the e�ect of the indirect inuences of past states of one of the vectors. The
TEY!X(k; l) measures the mutual information between the current state of X, xn+1,
and the past l states of Y , [Yn Yn�1 : : : Yn�l+1], given that the past k states of X,
[Xn Xn�1 : : : Xn�k+1] are known:

TEY�>X(k; l) = CMI(V;W jU)

=
X

v2EV

X

w2EW

X

u2EU

pVWU (v; w; u) � log
pVW jU (v; wju)

pV jU (vju) � pW jU (wju)
(2.51)

)TEY�>X(k; l) = CMI(V;W jU)

=
X

xn+1

X

yn

: : :
X

yn�l+1

X

xn

: : :
X

xn�k+1

p(xn+1; yn; : : : ; yn�l+1; xn; : : : ; xn�k+1)�

� log
p(xn+1; yn; : : : ; yn�l+1jxn; : : : ; xn�k+1)

p(xn+1jxn; : : : ; xn�k+1) � p(yn; : : : ; yn�l+1jxn; : : : ; xn�k+1)
: (2.52)

De�nition 21. R�enyi transfer entropy (RTE). The RTE is computed from
one random vector Y to another random vector X, considering di�erent time lags
for each vector, l for Y and k for X. It has the same meaning as the TE, but it
is computed with the generalized version of the information theoretic equation that
is present in the de�nition of the TE. The RTE is equal to the conditional R�enyi



2.2. GENERALIZATIONS OF SHANNON’S INFORMATION THEORY 31

mutual information between the present state of X, Xn+1 and the past l states of Y ,
given that we know the past k states of X [98]. That is, we have

RTEY�>X(k; l) = CRMI(V;W jU) =

=
1

�� 1
�
X

u2EU

pU (u) � log

0

@
X

v2EV

X

w2EW

p�VW jU (v; wju)

p��1
V jU (vju) � p��1

W jU (wju)

1

A

(2.53)

)RTEY�>X(k; l) = CRMI(V;W jU) =

=
1

�� 1

X

xn

: : :
X

xn�k+1

p(xn; : : : ; xn�k+1) � log
X

xn+1

X

yn

: : :

: : :
X

yn�l+1

p�(xn+1; yn; : : : ; yn�l+1jxn; : : : ; xn�k+1))
p��1(xn+1jxn; : : : ; xn�k+1) � p��1(yn; : : : ; yn�l+1jxn; : : : ; xn�k+1)

:

(2.54)

Let X, Y and Z be three random vectors and let k be the time lag for X, l be
the time lag for Y and m be the time lag for Z. Then, we have that

X = [Xn+1 Xn Xn�1 : : : Xn�k+1]

Y = [Yn Yn�1 : : : Yn�l+1]

Z = [Zn Zn�1 : : : Zn�m+1]: (2.55)

Here, Xi, Yj , Zr are random variables, 8i = f(n + 1); n; : : : ; (n � k + 1)g, 8j =
fn; (n � 1); : : : ; (n � l + 1)g, 8r = fn; (n � 1); : : : ; (n � m + 1)g. For clarity of
notation, let

V = Xn+1;

W = [Yn Yn�1 : : : Yn�l+1];

U = [Xn Xn�1 : : : Xn�k+1 Zn Zn�1 : : : Zn�m+1]: (2.56)

De�nition 22. Partial mutual information (PMI). The PMI was introduced
in [42]. It is equal to the conditional mutual information between X and Y , given
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that Z is known:

PMI(X;Y jZ) = CMI(X;Y jZ)

=
X

x2EX

X

y2EY

X

z2EZ

pXY Z(x; y; z) � log
pXY jZ(x; yjz)

pXjZ(xjz) � pY jZ(yjz)

=
X

xn

: : :
X

xn�k+1

X

yn

: : :
X

yn�l+1

X

zn

: : :
X

zn�m+1

p(xn; : : : ; xn�k+1; yn; : : : ; yn�l+1;

zn; : : : zn�m+1) � log
p(xn; : : : ; xn�k+1; yn; : : : ; yn�k+1jzn; : : : ; zn�m+1)

p(xn; : : : ; xn�k+1jzn; : : : ; zn�m+1)�

�p(yn; : : : ; yn�k+1jzn; : : : ; zn�m+1)
: (2.57)

De�nition 23. Partial R�enyi mutual information (PRMI). The PRMI rep-
resents the conditional R�enyi mutual information between X and Y , given that Z is
known [98]:

PRMI(X;Y jZ) = CRMI(X;Y jZ) = D*
�(pXY jZ(x; yjz) k pXjZ(xjz) � pY jZ(yjz))

=
1

�� 1
�
X

z2EZ

pZ(z) � log

0

@
X

x2EX

X

y2EY

p�XY jZ(x; yjz)

p��1
XjZ(xjz) � p��1

Y jZ (yjz)

1

A :

(2.58)

De�nition 24. Partial transfer entropy (PTE). The PTE was introduced in
[109] to improve on the transfer entropy, by adding the environment as another
conditional variable. With the above notations, the PTE is de�ned as

PTEY!XjZ = CMI(V;W jU)

=
X

v2EV

X

w2EW

X

u2EU

pVWU (v; w; u) � log
pVW jU (v; wju)

pV jU (vju) � pW jU (wju)
: (2.59)

)PTEY�>XjZ(k; l;m) = CMI(V;W jU)

=
X

xn+1

X

yn

: : :
X

yn�l+1

X

xn

: : :
X

xn�k+1

X

zn

: : :
X

zn�m+1

p(xn+1; yn; : : : ; yn�l+1; xn; : : : ;

xn�k+1; zn : : : zn�m+1) � log
p(xn+1; yn; : : : ; yn�l+1jxn; : : : ; xn�k+1; zn : : : zn�m+1)

p(xn+1jxn; : : : ; xn�k+1; zn : : : zn�m+1)

�p(yn; : : : ; yn�l+1jxn; : : : ; xn�k+1; zn : : : zn�m+1)
:

(2.60)
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De�nition 25. Partial R�enyi transfer entropy (PRTE). In addition to the
elements of the RTE, the probability mass functions are also conditioned on the
environment represented as the random vector Z [98]. With the above notations, we
de�ne the PRTE as

PRTEY�>X(k; l;m) = CRMI(V;W jU) =

=
1

�� 1
�
X

u2EU

pU (u) � log

0

@
X

v2EV

X

w2EW

p�VW jU (v; wju)

p��1
V jU (vju) � p��1

W jU (wju)

1

A

(2.61)

PRTEY�>X(k; l;m) = CRMI(V;W jU) =

=
1

�� 1

X

xn

: : :
X

xn�k+1

X

zn

: : :
X

zn�m+1

p(xn; : : : ; xn�k+1; zn; : : : ; zn�m+1)�

� log
X

xn+1

X

yn

: : :
X

yn�l+1

p�(xn+1; yn; : : : ; yn�l+1jxn; : : : ; xn�k+1; zn; : : : ; zn�m+1)
p��1(xn+1jxn; : : : ; xn�k+1; zn; : : : ; zn�m+1)�

�p��1(yn; : : : ; yn�l+1jxn; : : : ; xn�k+1; zn; : : : ; zn�m+1)
: (2.62)

The results

We show that the newly introduced information-theoretic equation, named partial
R�enyi transfer entropy (PRTE), successfully detects the direction of information
ow in an autoregressive model of order 1 [98]. We use the value of the order
� = 3. We compare the results produced by PRTE with other equations from R�enyi’s
information theory, namely with the RMI, RTE and PRMI. We estimate the R�enyi
information-theoretic equations using a plug-in estimator. We �rst estimate the joint
probability mass functions of the random vectors that appear in the analysis. We
compute marginal probability mass functions from them, by summing out the extra
random vectors. Then, we plug-in these values to the information-theoretic equations
of interest. We estimate multivariate probability mass functions, of two, three and
four dimensions, using the kernel density estimation toolbox for Matlab of Ihler and
Mandel [52].

To make the calculations computationally feasible, we use the time lags equal to
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k = l = m = 1, that is:

PRTEY�>X(1; 1; 1) =
1

�� 1

X

xn

X

zn

p(xn; zn)�

� log

0

@
X

xn+1

X

yn

p�(xn+1; ynjxn; zn)
p��1(xn+1jxn; zn) � p��1(ynjxn; zn)

1

A : (2.63)

RMI(X;Y ) =
1

�� 1
� log

0

@
X

x2EX

X

y2EY

p�XY (x; y)
p��1
X (x) � p��1

Y (y)

1

A : (2.64)

RTEY�>X(1; 1) =
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p(xn) � log
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xn+1

X
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p�(xn+1; ynjxn)
p��1(xn+1jxn) � p��1(ynjxn)

1
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(2.65)

PRMI(X;Y jZ) =
1

�� 1
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X

z2EZ

pZ(z) � log
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x2EX

X

y2EY

p�XY jZ(x; yjz)

p��1
XjZ(xjz) � p��1

Y jZ (yjz)

1

A :

(2.66)

To make the estimation problem simpler, we transform the conditional probability
mass functions into joint probability mass functions, according to 2.5: p(xjy) = p(x;y)

p(y) .
Therefore, we have:

PRTEY�>X(1; 1; 1) =
1

�� 1

X

xn

X
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p(xn; zn)�

� log
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xn+1
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1

A : (2.67)
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� log
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x2EX
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y2EY

p�XY (x; y)
p��1
X (x) � p��1
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1

A : (2.68)

RTEY�>X(1; 1) =
1

�� 1

X

xn
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1
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(2.69)
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PRMI(X;Y jZ) =
1

�� 1
�
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pZ(z) � log
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x2EX
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y2EY

p�XY Z(x; y; z) � p��2(z)
p��1
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(2.70)

For each of the four equations, we estimate the probability mass function of the
highest dimension. For each of the marginal probability mass functions, we sum
out the variables that are not of interest. That is, we estimate p(xn+1; yn; xn; zn),
pXY (x; y), p(xn+1; yn; xn) and pXY Z(x; y; z). Then, we have

p(xn+1; xn; zn) =
X

yn

p(xn+1; yn; xn; zn)

p(yn; xn; zn) =
X

xn+1

p(xn+1; yn; xn; zn)

p(xn; zn) =
X

xn+1

X

yn

p(xn+1; yn; xn; zn): (2.71)

pX(x) =
X

y
pXY (x; y) and pY (y) =

X

x
pXY (x; y): (2.72)

p(xn+1; xn) =
X

yn
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p(xn) =
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p(xn+1; yn; xn): (2.73)

pXZ(x; z) =
X

y
pXY Z(x; y; z)

pY Z(y; z) =
X

x
pXY Z(x; y; z)

pZ(z) =
X

x

X

y
pXY Z(x; y; z): (2.74)

The system under investigation is a stochastic autoregressive system of order
1, formed by three discrete coupled processes, X, Y and Z. The stochasticity is
introduced by the presence of the Gaussian random noise, �1, �2, �3 � N (0; 10�6):
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8
>>><

>>>:

X[n] = 0:6 �X[n� 1] + �1

Y [n] = 0:9 � Y [n� 1] +X[n� 1] + �2

Z[n] = 0:2 � Z[n� 1] + 0:5 � Y [n� 1] +X[n� 1] + �3:

(2.75)

The coe�cients of the processes in the right side of the equations indicate the
coupling strengths and the index of the processes show the coupling delay. That
is, the process X is not coupled to any other process, it only receives input from
its previous state. The process Y is coupled to the process X, with the strength of
1 and a coupling delay of 1. It also receives input from its previous state, with a
coupling strength of 0:9. The process Z is connected to both processes and receives
information from its previous state, with a strength of 0:2. The coupling direction
is from Y and X to Z. The time delay is equal to 1 in both cases. The coupling
strength is equal to 0:5, in the case of Y , and is equal to 1, in the case of X.

The system is initialized in a random state drawn from the uniform distribution,
as [x0 y0 z0] =[1 + U(0; 1) 1 + U(0; 1) 1 + U(0; 1)], where U(0; 1) represents the
uniform distribution on the interval [0 1]. We start the system in this random initial
state and we run it forward in time for 50 time steps. Using these trajectories, we
estimate the above mentioned R�enyi information-theoretic equations. We average
the results over 100 simulations. The PRMI and the PRTE correctly identify the
coupling direction and the coupling delay between the processes Y and Z. The
direction of the information ow is from Y to Z and the delay is equal to 1. The
other measures, the PRMI and PRMI, are not able to identify either the direction
or the delay of the information transfer in this system. These results indicate that
the PRMI and the PRTE can extract structural information from the dynamical
behaviour of a coupled system of stochastic processes [98]. They also show the need
to extend the existing information-theoretic equations to new ones, as not all of them
can provide accurate results for certain applications.
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2.3 Kolmogorov complexity

Kolmogorov complexity or algorithmic information theory [ [60], Ch. 14 of [25], [69] ]
represents a di�erent paradigm of measuring information than Shannon’s information
theory and its generalizations. In the later case, objects are modeled as random
variables. The uncertainty of an object is quanti�ed as the average information
of its probability distribution. In contrast, algorithmic information theory deals
with the information contained in individual objects, instead of that contained in its
probability distribution. Algorithmic information theory is useful when the objects
cannot be easily modeled by random variables. For example, this would be the
case of the executable model we are investigating. In Kolmogorov complexity, the
information of an object is measured as the shortest binary program that can output
the object on a universal computer. A universal Turing machine is such an example
of a universal computer. In computability theory, the Turing machine represents an
abstract model of computation, which is general enough to represent all computations
performed by humans [ Ch 1 of [69] ]. A universal Turing machine represents a
Turing machine that can simulate any other Turing machine. Excellent descriptions
of algorithmic information theory and its applications can be found in [ Ch 14 [25],
[69] ].

Unfortunately, the Kolmogorov complexity of an object is not computable. This
fact can be explained through the halting problem in computability theory, proved
by Alan Turing and Kurt G�odel [ Ch 1 of [69], Ch 14 of [25] ]. The halting problem
refers to the fact that it is not possible to decide whether all programs will terminate
or run forever, meaning that an algorithm to decide such a problem does not exist.
The Kolmogorov complexity of a string represents the shortest program that can
output the string. There is no possibility to �nd a minimal such program, from all
possible programs, due to the halting problem. However, individual programs with
a given input can be decided if they stop or not, but all possible programs cannot
[ Ch 14 of [25] ]. Therefore, better and better programs to compress the string can
be found, which are better and better approximations of the Kolmogorov complexity
of the string. The Kolmogorov complexity K(x) thus becomes the absolute lower
bound of how much a string x can be compressed by a real-world compressor [68].

The normalized information distance (NID) introduced in [68] is based on the
notion of the information distance [13], which is developed within the framework
of Kolmogorov complexity [60]. As a consequence of the noncomputability of the
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Kolmogorov complexity, the NID is noncomputable. The normalized compression
distance (NCD) has been derived as a solution to the noncomputability problem of
the NID [22].

We use the notation of [13] and [68]. Let x and y be two binary strings and
x� and y� two binary programs that compute x and y, respectively. Let K(x) be
the Kolmogorov complexity or the algorithmic entropy of x. Let K(xjy) be the
conditional Kolmogorov complexity of x, given y. It is equal to the length of the
shortest binary program that computes the string x, if the string y is also given as
its input. The information distance [13] between the strings x and y is de�ned as

E(x; y) = max (K(xjy);K(yjx)); (2.76)

up to a logarithmic additive element.
The normalized information distance [68] is de�ned as

NID(x; y) =
max (K(xjy�);K(yjx�))

max (K(x);K(y))
; (2.77)

The information distance is an absolute measure of the di�erence between two ob-
jects, whereas the normalized information distance is a relative measure of the same
quantity [68]. In classi�cation, relative di�erences are necessary, instead of absolute
ones, because objects of di�erent lengths may share the same characteristics to be-
long to the same class, but would not be classi�ed as such with absolute distances.
They do not take into account the magnitude of the objects. Normalized distances
are necessary when comparing objects at di�erent scales.

Let Cx be the size of the compressed string x, Cy the size of the compressed
string y and Cxy the size of the compressed string obtained by concatenating x and
y. The normalized compression distance [22] is de�ned as

NCD(x; y) =
Cxy �min (Cx; Cy)

max (Cx; Cy)
: (2.78)

The NCD is a valid approximation of the NID by the mathematical theory developed
in [22].



Chapter 3

Multidimensional scaling

3.1 De�nition and properties of multidimensional scal-
ing

Multidimensional scaling (MDS) is an exploratory analysis method. It facilitates the
visual representation of high-dimensional data. The technique approximates high-
dimensional dissimilarity scores, termed proximities, to two or three-dimensional
Euclidean distances, so that the original objects can be represented in a two or three-
dimensional �gure. A matrix of dissimilarity scores between the high-dimensional
objects is the input to the algorithm. It aims at representing these objects as points
in a two or three-dimensional Euclidean space, such that the con�guration of lower-
dimensional points resembles as closely as possible the original con�guration. This
representation is not exact, as MDS is a technique to project high-dimensional data
onto a lower-dimensional space. This operation results in some loss of information,
measured by Kruskal’s stress criterion Stress-1 [63], [64]. The raw stress has the
formula

�r =
NX

i=1

NX

j=i+1

�
dij � d̂ij

�2
(3.1)

and the normalized stress

� =

NX

i=1

NX

j=i+1

�
dij � d̂ij

�2

NX

i=1

NX

j=i+1

d2
ij

;8i; j = 1; N: (3.2)

39
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The variables in the MDS algorithm are: X, the vector of points in the low-
dimensional Euclidean space, D, the matrix of Euclidean distances between the el-
ements of X, P, the matrix of the proximities in the high-dimensional space, D̂,
the matrix of distances in the low-dimensional Euclidean space, which approximates
D. The D̂ are the transformed P. The MDS algorithm is the mapping between
two spaces: the high-dimensional space, where similarities or dissimilarities between
objects are de�ned, and the low-dimensional Euclidean space. The variables X, D
and D̂ characterize the Euclidean space and the P characterize the high-dimensional
space. The MDS is an iterative algorithm that changes the con�guration of points X,
such that D becomes closer to D̂, which are the transformed P. The D̂ are related
to the P either by a continuous function, or by having the same monotonicity. The
stress criterion, �, measures the error between the D and the D̂. The iterations stop,
when the stress criterion, �, is below a certain threshold. At this point, the �nal
con�guration of points is considered adequate enough to approximate the original
proximities. The elements of P are referred to as pij , the elements of D are referred
to as dij and the elements of D̂ are referred to as d̂ij .

There are two types of MDS, depending on how the proximities are transformed:
metric MDS and nonmetric MDS, also named ordinal MDS. In metric MDS, the
proximities are changed into the disparities by a continuous function. In nonmetric
MDS, the algorithm retains only the rank of the proximities, not the actual values
or a continuous transformation of them [Ch 9 [18]]. Since we have used nonmetric
MDS in our analyses of the executable model, we will describe this version of MDS
in more depth in the next section.

Nonmetric MDS

Nonmetric MDS is useful in situations where the proximity data cannot be explained
be the continuous function f . It provides the best results when the rank order of the
data is more informative than their actual values, such as in the case of our executable
model. Here, the NCD data cannot be explained by an analytical relationship, i.e. a
parametric model. The NCD between two system states is the result of compressing
two �les that contain symbols encoding a system’s state, at a given time point. One
NCD value is given by arithmetic operations on lengths of compressed �les. Such
type of experimental data does not have an analytical representation, such as a
mathematical equation between the NCD values, which would allow us to compute
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one NCD value from previous ones. Moreover, we are only interested in investigating
how the states of di�erent systems diverge or converge in time. Thus, our analyses
only require the order of the proximity data. By using the nonmetric version of the
MDS, we create points in a three dimensional Euclidean space, which have the same
ordinal relationship as the original NCD data.

In nonmetric MDS, the disparities have the same ordinal relationship as the
proximities, which means they have the same monotonicity, i.e

If pij � pkl;8i; j; k; l = 1 : N , then d̂ij � d̂kl;8i; j; k; l = 1 : N: (3.3)

The nonmetric MDS algorithm performs the following steps:

� Start with an initial con�guration of points: the solution of the metric MDS;
) d(0)

ij can be computed for this iteration; compute the stress �(0) for the
starting con�guration.

� X(k), d(k)
ij , d̂(k)

ij , �(k) denote the X, dij , d̂ij , �, at the kth iteration.

� Loop until the stress �(k) is under the given threshold;

� At the kth iteration, �nd d̂(k)
ij , with the property that they approximate d(k)

ij ,

such that the residual sum of squares between the d̂(k)
ij and the d(k)

ij is minimized.

This is a least squares minimization problem. The d̂(k)
ij have the same mono-

tonicity as the pij . This problem is a monotone regression problem, which is
solved using the pool-adjacent-violators (PAV) algorithm described below. At
this step in the algorithm, the distances d(k)

ij are �xed and the variables are

d̂(k)
ij .

� After the d̂(k)
ij have been found, compute the stress �(k) at the current iteration.

� Find a new con�guration of points, X(k+1). This is done using the nonlinear
conjugate descent method. We refer the reader to the article [27], for more
information on the properties of the nonlinear conjugate descent method.

In the MDS algorithm, the original proximities pij do not change their value. The
only variables that change at each iteration are: the con�guration of points X and,
implicitly, the distances D, the disparities D̂ and the stress criterion �.

The nonmetric MDS has two important optimization steps:
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� 1. At the end of the kth iteration: �nd the next con�guration of points X(k+1),
using the nonlinear conjugate descent method. This method represents an iter-
ative optimization technique that �nds the minimum of a nonlinear function.
In our case, we want to minimize the stress criterion �(k), which is a nonlinear
function of the D(k) and the D̂(k). The disparities D̂(k) are �xed and the stress
is minimized with respect to the distances D(k). After minimization, they be-
come equal to D(k+1), because the new con�guration of points X(k+1) is used
at the (k + 1)th iteration.

� 2. At the beginning of the (k + 1)th iteration: after a new con�guration of
points has been found, minimize the stress criterion, to �nd new disparities.
More explicitly, once we have found X(k+1), which gives a new matrix of dis-
tances D(k+1), we need to �nd a new matrix of disparities D̂(k+1), such that
the new stress criterion �(k+1) is minimized. The new disparities solve the
least squares minimization problem, under the constraint that they have the
same monotonicity as the original proximities. This is a monotone regression
problem, which is solved by the PAV algorithm, described below. After this
optimization step, we obtain a lower stress value �(k+1) < �(k), because we do
not use the old disparities D̂(k), which were optimally selected for the old set
of points X(k), but, because we have found a new vector of disparities D̂(k+1),
that match the new con�guration of points X(k+1).

Monotone regression is the method of �nding the minimum of a function, subject
to inequality constraints. It is de�ned as [14]

minimize
x

nX

i=1

wi � (yi � xi)2

subject to x1 � x2 � : : : � xn;

(3.4)

where wi; 8i = 1; : : : ; n are known weights and yi are given.
The PAV algorithm, developed by several authors, [6], [110], [75], [64], [14] repre-

sents the most widely used algorithm to solve the monotone regression problem. The
mathematical foundations of monotone regression and of the PAV algorithm can be
found in [6], [110], [75], [14], while [64] is focused on its algorithmic approach, as an
intermediate step in the problem of nonmetric multidimensional scaling. A recent
review of monotone regression, together with di�erent R implementations of some of
its types can be found in [29].



3.1. DEFINITION AND PROPERTIES OF MULTIDIMENSIONAL SCALING43

To conduct our MDS analyses of the executable model, we used the built-in Mat-
lab algorithm that solves the monotone regression problem with the PAV algorithm
of [64]. To facilitate the computations of the PAV algorithm, we store the elements
of P in a vector p of length n = N2�N

2 , such that it contains the upper triangle of P,
arranged in vector format. The vectors d and d̂ are de�ned similarly as p. We note
that the matrix P is symmetrical, so only the upper right triangle contains distinct
values, which are used in the computations.

In our case, x = d̂, y = d. The vector of weights w is optional. If it is not
speci�ed by the user, it will have all the elements equal to one. So, the monotone
regression problem becomes

minimize
d̂

nX

i=1

wi �
�
di � d̂i

�2

subject to d̂1 � d̂2 � : : : � d̂n:

(3.5)

The main elements of the PAV algorithm [64] are:

� We know the monotonicity of the disparities, which is equal to that of the
proximities. But, as their actual values are unknown, we need to solve for
them, provided that the distances are given.

� If the proximities p are dissimilarities, they are sorted in ascending order to
ensure the monotonicity constraint. They are saved in the vector ps (if they
are similarities the order is descending). We retain a vector of indeces, is, to
enable the recovery of the ordering of the original values from the results of
the PAV algorithm. Then, ps1 � ps2 � : : : � psn, psi = pk, and isi = k,
8i; k = 1 : n.

� We use a new vector of distances, ds, such that dsl = disl , 8l = 1 : n.

� The PAV algorithm uses three vectors, ps, is, ds and outputs the result in the
vector of disparities, d̂s.

� Throughout the duration of the algorithm, the data remain separated into
blocks. The algorithm starts with n blocks, each block containing only one
value dsi, 8i = 1 : n.

� Each block has a value associated with it. The value is computed as the average
of the elements of the block dsj , 8j = 1 : Nbk, where Nbk is the number of
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elements of a certain block k. At the start of the algorithm, these averaged
values are equal to dsi, 8i = 1 : n. The partitioning of the blocks is performed
using their associated values, computed as described above.

� The blocks change their number of elements, until the values associated with
each block have the same monotonicity as that of the proximities. This change
of partitioning takes place each time there is a violation in the monotonicity
constraint of two adjacent blocks. In this case, these two blocks are merged
and their corresponding value is computed again as the average of the elements
of the newly-formed block.

� The algorithm stops when the vector of the associated values of the blocks have
the same monotonicity as the vector of proximities ps.

� Let k be a certain block from the �nal partitioning of the data d, Nbk be
the number of elements of the block k and the indeces isi,: : :,isj , such that:
their number is Nbk and disi ,: : :,disj belong to the block k. At the end of
the algorithm, each of the d̂sisi ,: : :,d̂sisj will be equal to the average of all the
disi ,: : :,disj .



Chapter 4

Discrete models of complex
biological regulatory systems

4.1 A brief introduction to the immune system

In order to understand the elements involved in the biological model under study, we
present a brief introduction to the immune system in vertebrates [91], for complet-
ness. The immune system represents an extremely complex interaction of elements
that perform di�erent roles to protect the organism against foreign microorganisms,
such as bacteria and viruses. The skin is the �rst barrier out of multiple layers
of defense, which prevents pathogens to enter the body. Other surface protection
mechanisms are the mucosis of the digestive and the respiratory tracts. In addition,
the vertebrate organism has a series of intricate internal defense mechanisms. The
following four are the most important types of internal defenses to destroy foreign
microorganisms that have entered the body.

Cells that destroy pathogens. The most important of the cells that de-
stroy pathogens are the macrophages, the neutrophils and the natural killer cells.
These cells run through the body and destroy any pathogens they encounter. The
macrophages are large cells that destroy bacteria and viruses, by engul�ng them.
They can ingest one microbe at a time and perform this action several times. The
process of assimilating and destroying a microorganisms is termed phagocytosis and
the cells that perform this action are called phagocytes. The neutro�ls are cells that
destroy multiple bacteria at one time by chemical means, but in this process they
destroy themselves too. The natural killer cells identify and destroy the cells of the

45
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body that have been infected by pathogens. They can also destroy cancer cells. All
of these cells of the immune system have the capacity to distinguish between the
body’s own cells and foreign particles. In autoimmune diseases, this capacity fails
and the immune system starts destroying the body’s own cells.

The complement system. The complement system represents a chemical pro-
tection system made up of approximately 20 proteins that enhance the immune
defense of the cells of the immune system.

The inammatory response. Infected cells release chemicals that promote
the dilation of the blood vessels around an infected site. This results in increased
blood ow to these areas, such that the macrophages and neutro�ls can reach the
site of infection faster. These processes cause the redness and swelling of the infected
areas.

The temperature response. The temperature response is triggered when
macrophages that have encountered a pathogen release a chemical called interleukin-
1. This chemical, together with toxins produced by bacteria, make the hypothalamus
elevate the body’s temperature, causing fever. This enhances the process of phago-
cytosis and reduces the levels of iron in the blood, required for bacteria to multiply.

These four major elements are termed general or nonspeci�c response mecha-
nisms, because they are not designed for a speci�c type of pathogen, but act on any
microorganism that has entered the body and has the potential to cause harm. The
next layer of defense mechanisms is named the speci�c immune response. This even
more elaborate layer has defense procedures customized to very speci�c pathogens
and it can remember microorganisms encountered in the past. In this way, the
immune system’s response to previously encountered pathogens is faster and more
e�cient. In response to the presence of foreign molecules called antigens, the speci�c
immune response creates special proteins, named antibodies. An antigen represents
a molecule that does not belong to the body, for example a molecule found on the
surface of bacteria. Each antibody is speci�c to a type of antigen. This speci�city
enables the immune system to remember pathogens and to mount a faster immune
response when they are found at a later time.

4.1.1 The types of cells of the immune system

The immune system is a heterogeneous, multi-layered system, formed by a multi-
tude of types of cells and chemicals that work together to defend the body against
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pathogens. It represents a cooperation of these cells and chemicals, which makes it
a perfect example of a complex system.

Leukocytes, also called white blood cells, are the most important cells of the
immune system. They are found in the blood, lymph nodes, spleen and liver. Leuko-
cytes develop in the bone marrow from the same type of cells, the hemopoietic stem
cells, as erythrocytes. The function of leukocytes, or white blood cells, is in the
immune respunse and the function of erythrocytes, or red blood cells, is to transport
oxigen and carbon dioxide. The most important types of leukocytes are: neutrophils,
eosinophils, basophils, monocytes and lymphocytes. Neutrophils are produced in the
largest amount of all the leukocytes and they are the �rst to respond in an immune
reaction. Eosinophils respond to parasites and are present in allergies. Basophils
play a role in the inammatory response. Monocytes change into macrophages at
the site of infection. Lymphocytes are part of the speci�c immune response and they
secrete antibodies. The lymphocytes are divided into T cells and B cells. The lym-
phocytes cannot perform phagocytosis. The other types of leukocytes (neutrophils,
eosinophils, basophils and monocytes) can complete phagocytosis.

The T cells. T cells are produced in the bone marrow and migrate to the
thymus, where they mature. Each T cell can recognize one antigen. T cells are
divided into four major categories: helper T cell, inducer T cell, cytotoxic T cell and
supressor T cell. Helper T cell represents the primary immune response cell that
starts the immune defense. Inducer T cell helps the development of the T cells in
the thymus. Cytotoxic T cell destroys infected cells and supressor T cell ends the
immune response, after the infection has been cleared.

The B cells. B cells become mature in the bone marrow and then travel through
the blood and the lymph. Each B cell is specialized to detect one antigen. When a
B cell �nds its antigen, it divides into plasma cells. Each plasma cell that results is
a cell that produces antibodies for the speci�c antigen, which was the target of its
original B cell. These antibodies are released and travel through the body attaching
themselves to the pathogens that have this speci�c antigen. As a result, other B cells
can recognize these pathogens and destroy them.

Other chemicals of the immune system. Interferons are proteins secreted
by cells that have been infected with viruses. The macrophages and the natural killer
cells respond to these proteins and come to the infected site to destroy the pathogen.
Macrophages that are dealing with a viral infection start producing cytokines, for
example �interferon, which are molecules that act on monocytes to turn them
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into macrophages, activate helper T cells and raise the temperature of the body.
The macrophages that have encountered a pathogen produce interleukin�1, which
activate the helper T-cells. The helper T-cells are crucial for the immune response.
They activate all other major defensive cells: inducer T-cells, cytotoxic T cells,
suppressor T cells and B cells. Helper T cells start the two types of immune response:
cell-mediated immune response and humoral immune response. The Cytotoxic T-
Lymphocyte Antigen�4 (CTLA-4) is a protein found on the surface of activated T
cells, with a role of inhibiting the function of T cells [54]. It is a protein that spans
the entire wall of the cell and is found on the surface of the cell, that is, it represents a
transmembrane protein. It inhibits the proliferation of other T cells. Interleukin�10
(IL-10) is an inhibitory cytokine and CTLA-4 is an inhibitory receptor [111].

The cell mediated immune response represents the elimination of own cells that
have been infected by viruses or have become abnormal for other reasons, such as
in cancer. Helper T-cells become activated by interleukin�1, which is secreted by
macrophages. Such cells are called activated helper T-cells. The main actions of the
activated helper T cells are: proliferation, activation, induction and supression. Pro-
liferation represents the action of making other T cells divide. Activation represents
the process of bringing more macrophages to the infection site. Through induction
they activate the inducer T cells. By supression, they activate suppressor T cells,
which shut down the immune response after the infection has been cleared. In this
type of immune response, other actions of the cells include the destruction of virus
infected cells by cytotoxic T cells and the development of memory T cells. They
remember the antigens they have destroyed, for a faster response to future infections
with the same antigens.

The humoral immune response constitutes the functioning of the B cells in pro-
tecting the body. B cells do not have the capacity to destroy infected cells, but they
can create markers for speci�c antigens. These markers are named antibodies. They
facilitate the recognition of their corresponding antigens, which can be destroyed
by the general or nonspeci�c immune defense mechanisms. This type of immune
response is also triggered by the helper T cells. When a B cell has encountered its
speci�c antigen, the cell binds to it. The activated helper T cells cause the B cell
to proliferate. This proliferating B cell di�erentiates into plasma cells. Proliferation
represents the increase in numbers of cells by frequent cell division [67]. Di�erenti-
ation represents the increased specialization in function and structure of cells that
came from cells with no speci�c function [67]. Unspecialized cells multiply and then
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divide into specialized cells, which have a particular function that the old cells could
not accomplish. Some B cells do not di�erentiate into plasma cells. These cells are
termed memory B cells and they have the same function as the memory T cells. The
humoral immune response is also suppressed after the infection has been stopped.

4.2 Executable model of the regulation
of cytokines within the human T-cells

4.2.1 The biological model

The biological model under investigation was developed by [114]. A detailed de-
scription of how the biological experiments were performed can be found there. We
will restrict our description to the main elements of the model and how they inu-
ence each other. We will skip the biological details of how the experiments were
performed. These are beyond the scope of this study.

The biological model of the functions of regulatory T cells of the human immune
system is an illustration of the e�ect of the heat shock protein 60 (HSP60 ) on a
population of the regulatory T cells of the human immune system. Heat shock pro-
teins are a family of proteins that are produced by cells under stress. Stress refers
to either changes in the temperature surrounding the cell, infections or any other
type of external actions that would aim at destroying the cell. The traditional roll of
heat shock proteins is as molecular chaperones in the correct functioning of the cell
and in the correct folding, assembly and transportation of proteins [70]. Molecular
chaperones are proteins that assist in the forming of other molecular structures, such
as proteins or cells, but are not part of their normal functioning [50]. Heat shock
proteins are one type of molecular chaperones [50]. More recently heat shock proteins
have been found to play a crucial role in the immune response [112], [108].

Regulatory T cells and helper T cells are two categories of CD4+ T cells. Regu-
latory T cells are also known as suppressive T cells, because of their role to end the
immune response and to control it against the self. Dysfunction of the regulatory T
cells has been linked to autoimmune diseases. The extremely complex function and
regulation of these subtypes of T cells and their role in the immune response and in
autoimmune diseases are not completely understood, which makes them the subject
of active research in the �eld of immunology [96], [24], [111].

CD4 +CD25 + T cells are regulatory T cells that develop in the thymus. CD4 +CD25�
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T cells are na��ve T cells that can be found in the periphery, that is, the blood or
other parts of the body, where an immune reaction has been triggered. The immuno-
suppressive function of the regulatory T cells is better understood, than whether they
are produced in a speci�c organ, such as the thymus, or if they can be induced from
other types of T cells throughout the body [21]. The aim is to identify how these
regulatory T cells are generated from other T cells and what molecules facilitate this
transformation [21]. The extensive recent review by Brenu et.al. [20] provides further
details on the relationship between heat shock protein and the immune system, in
particular regulatory T cells.

Detailed description of the function of T cells. We present in the following
a more detailed description of the types and the functions of T cells [54], to better
understand how the di�erent molecules and cells of [114] inuence each other. When
a pathogen is recognized by cells of the immune system, these cells produce cytokines
and chemokines that trigger the immune response to the type of pathogen that has
been recognized. The role of the innate or general immune response is to eliminate
an infection or to not let it spread until the adaptive or speci�c immune response is
set up, as a reaction to the particular pathogen that caused the infection. Since it is
directed at a certain pathogen, the adaptive response is much more precise than the
general response. However, the adaptive one is much more complex and takes more
time to set up.

Na��ve T cells are mature cells that have not found their particular antigen, while
circulating through the body [ Ch 8 [54]]. When they encounter their speci�c antigen,
they have to be activated into a particular type of T cell to destroy that pathogen,
which the antigen came from. Activation refers to the process of these cells being
made to proliferate and di�erentiate into a particular type of T cell. When they
encounter their speci�c antigen, the naive T cells multiply and then di�erentiate into
e�ector T cells. These are the cells that destroy the pathogen, which the antigen
came from. T cells that have multiplied and di�erentiated create e�ector T cells that
are of di�erent types and can either kill infected cells or activate other responses of
the immune system [ Ch 1 [54]]. Cytotoxic T cells are also called CD8 T cells, by
the CD8 molecule found on their surface. CD4 T cells are a class of T cells called
helper T cells. CD4 T cells are further classi�ed into Th1 cells and Th2 cells. Th1
cells destroy bacteria found in a cell and Th2 cells activate B cells, which, when
encountering its antigen, become activated with the help of Th2 cells to produce
antibodies.
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The description of how the biological model works

CD4+CD25- are e�ector T cells and CD4+CD25+ are regulatory T cells [114]. In
the biological model of [114], regulatory T cells (Tregs) suppress the proliferation
of CD4+CD25- T cells. They found that HSP60 applied to Tregs has a greater ef-
fect to downregulate CD4+CD25- T cells and CD8+ T cells, than in the case when
HSP60 is not present. HSP60 acts on CD4+CD25+ Tregs through the TLR2 recep-
tor. TLR stands for Toll-like receptors, which are cell-surface membrane proteins
that are present on the surface of cells of the immune system [Ch 2 [54] ]. They
recognize particles from pathogens and initiate immune responses as a result. Ac-
tivation of TLR2 leads to the activation of the transcription factor NF-�B, which
induces genes responsible for producing cytokines, chemokines and other molecules
involved in the immune response [Ch 2 [54] ]. The heat shock protein HSP60 de-
termines the Tregs to increase the phosphorylation of the AKT, Pyk2 and p38 and
to turn o� the phosphorylation of ERK. Phosphorylation [67] refers to the action
of adding a phosphate group to a protein, thus changing its function. The Tregs
increase the production of IL-10 and TGF-� and suppress the activated CD4+CD25-

T cells, which were activated by TCR activation. As a result, these e�ector T cells
downregulate ERK, NF-�B and T-bet. This leads to a decrease in their proliferation
and to a decrease in the secretion of the proinamatory cytokines IFN- and TNF-�.
In addition, the production of IL-10 increases.

In the biological model under study [114], [95], the molecule aCD3 stands for
anti-CD3, which is an antibody, that is, a molecule designed to activate T cells. It
binds the CD3 protein complex of the TCR, on the surface of T cells, thus activating
them [Ch 6 of [54] ]. The two activators of this model, HSP60 and aCD3, are present
in the environment from external sources, in the beginning of the experiment. They
are not replenished throughout the simulation. Thus, they di�use in the environment
and disappear towards the end of the experiment. The major biological events that
take place in this system are the following: the populations of Tregs and na��ve T cells
are activated by the aCD3. In addition, HSP60 co-activates the Treg population of
cells. As can be seen in the �gure 1 of [95], the Tregs di�erentiate into activated Tregs,
which produce the cytokines CTLA-4 and IL-10 upon activation. The na��ve T cells
di�erentiate into Th1 helper T cells, which proliferate into activated Th1 helper T
cells. They secrete the inammatory cytokine IFN-, which activates them further, in
a positive feedback loop. The cytokines CTLA-4 and IL-10 supress the proliferation
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of the activated Th1 helper T cells and the secretion of the cytokine IFN-. Through
IL-10, a part of the activated Th1 population of cells di�erentiates into suppressed
Th1 cells, which secrete the IL-10 cytokine. As a result, the concentration of IL-10
increases in the environment.

4.2.2 The computational model

GemCell [5] is an example of a generic executable mode, designed as a tool for
experimental biologists. Its name stands for Generic Executable Modeling of Cells.
Generic signi�es that the program is not �xed for a particular biological model,
but that it can accommodate a large class of systems that share a few fundamental
characteristics. Executable modeling refers to the modeling paradigm selected to
describe biological systems seen as reactive systems. We have explained this choice
of modeling biological systems, in more depth, in the introductory section 1.3. The
term Cells indicates that the cell is the building block of the model.

The executable model we are investigating in this chapter is created by cus-
tomizing the generic model GemCell to a particular biological system, namely to the
regulation of cytokines within the human immune system [114], which was described
in detail in the previous section. GemCell is a generic model that has basic biological
rules and a database, which contains the biological information about the speci�c
system. The purpose of the program is to model di�erent types of biological systems,
by changing the database with details speci�c to each system. The general rules are
identical for a broad class of systems. The basic building block of the model is the
cell. The generic dynamical laws of the cell’s behaviour are: proliferation, movement,
death, secretion of molecules and reception of external signals. For other approaches
in modeling and analysing T cell behaviour in the immune system, we refer the reader
to the extensive review of [78].

The GemCell program is composed of four elements: the statechart formalism [48]
of the generic dynamical cell laws, a database with biological speci�cs, the linkage of
the statechart model with the biological database and the visualization of the output
of the model. The statechart formalism [48] is a visual modeling language designed
for reactive systems, with states and transitions between states, to account for all the
complexities of such systems. The output of GemCell can be in the form of a text
�le or as a two-dimensional Matlab �gure, for each time point of the simulation. One
�gure shows the environment as a two-dimensional grid and, on each grid location,
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the cells and the molecules. The colour of each cell indicates its type. The area of
the grid where molecules are present is shaded with gradients of colours, to show
how their concentrations vary across the grid. In addition, the executable model
can produce �gures displaying numbers of cells and concentrations of molecules over
time.

One execution of the model refers to starting the model in an initial state and
running the model forward in time, for 31 time points. From one time step to another,
the changes in the state of the system take e�ect synchronously. The time points
denote hours of real time and the di�erence between two consecutive time points is
equal to one hour of real time. At each time step, the model outputs the state of the
system in the form of a text �le. The state of the system is encoded as numerical
and alphabetical symbols, which describe the di�erent elements of the system and
the events that take place. The environment is modeled as a two-dimensional grid
of size 20 � 20. Each line of the state �le contains the information about the cells
and molecules found on a given grid location, at the time point for which the �le has
been created. The following information is encoded for the cells: the name, the index
in the database, the remaining life span, the dynamical state, which is one of the
generic dynamical laws of the cell’s behaviour, the name of the expressed receptors
and their expression levels. In the case of the molecules, the �le encodes their name
and their concentration.

The initial number of cells is 100, which are divided into two populations and
whose location on the grid is random. The percentage of the cells that belong to
each populations can be adjusted according to the experiment. In addition, di�erent
molecules can be eliminated from the experiments, partially or totally. We analysed
the output �les of the executable model in the following conditions:

� the wild type system, which has the initial ratio of cells as 10 regulatory T cells
(Tregs) to 90 na��ve T cells (nTh);

� the knock-out perturbations at 100% e�ciency, where the molecules IL-10,
IFN- and CTLA-4 are each eliminated from the system;

� perturbed systems with IL-10 knock-out at 25% e�ciency, 50% e�ciency, 75%
e�ciency and 100% e�ciency;

� a random setup, where the numerical values of the parameters are random, but
the general biological rules are the same as for the wild type;
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� systems similar to the wild type but with di�erent ratios of the initial popula-
tions of cells, namely 30 Tregs to 70 nTh, 50 Tregs to 50 nTh , 70 Tregs to 30
nTh, 90 Tregs to 10 nTh;

� two systems: one that contains only the molecular features of the wild type
and one that contains only the cellular features of the wild type.

A knock-out perturbation of a system refers to the action of completely eliminating
a target molecule from the system. We refer to this phenomenon as a knock-out at
100% e�ciency [95]. However, in biological experiments, it is not always possible to
totally eliminate a molecule for the experiment. Even if the molecule is knocked-
out, it can still be present at lower concentrations than before this action. In this
case, we refer to the phenomenon as a partial knock-out or as a knock-out at an
e�ciency lower than 100%. Therefore, it is of great experimental interest to quantify
the e�ect of partial knock-outs of the molecules of interest, on the overall dynamical
behaviour of the entire system. To this end, we develop methods to predict the
amount of the e�ciency of a knock-out required to have the desired e�ect on the
system’s dynamics. This case is a perfect example of the need to understand and
quantify the structure-dynamics relationships in complex biological systems.
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4.3 The NCD analysis of the executable model

Motivation

For each system, we wanted to see how the state of the system changes in time. In
this way, we would be able to detect important events that take place in the execution
of the model. For example, we would be able to see how the system’s state changes
when a biological event happens. For example, a new molecule is being secreted,
or an old population of cells gets transformed into another population of cells. We
would also like to quantify the magnitude of the event, by which we mean if the NCD
changes signi�cantly due to a biological process that changed the state of the system
signi�cantly. We want to know if the NCD can detect how much the system’s state
has changed, when biological processes take place. To this end, we computed the
NCD between two consecutive states and displayed it over time, i.e.

[NCD(t);NCD(t+ 1)] ;8t 2 f0; � � � 29g : (4.1)

NCD analysis of the executable model

We compute the NCD using the xz Utils compressor. We chose this compressor
out of several other compressors, such as 7zip, bzip2, gzip, because it provides the
widest range of the NCD values. It provided us with values between [0:64� 0:94].
The encoding of a state of the system is complex, because it has a large number of
state variables that change their value at each time point, they are of di�erent type
and they can perform a wide variety of actions. As a result, in the beginning of the
simulation, when there are not many cells and molecules in the system, due to the
complexity of the model, the NCD will have values around 0:7 � 0:8. These values
correspond to increased similarity. When biological events change the state of the
system in a signi�cant way, the NCD values increase to 0:94� 0:95, indicating that
two consecutive states are very di�erent from one another. The result of the NCD
analysis is displayed in the �gure 2 of [95]. The NCD measure can detect when major
biological events take place and a�ect the state of the wild type system. In addition,
we apply the NCD measure to the state of the system divided into molecular infor-
mation and cellular information. The results are shown in the �gure 4:1. The �gure
4:1 was published as the supplemental �gure 1 of [95], under the Creative Com-
mons Attribution (CC BY) license http://creativecommons.org/licenses/by/
4.0/legalcode, http://journals.plos.org/plosone/s/content-license. We
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found that the molecular features of the system had a greater inuence over the
overall dynamical behaviour of the wild type, than the cellular features did.
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Figure 4.1: This �gure was published as the supplemental �gure 1 in
[95], under the Creative Commons Attribution (CC BY) license http:
//creativecommons.org/licenses/by/4.0/legalcode, http://journals.plos.
org/plosone/s/content-license. The NCD applied to the molecular information
and to the cellular information, separately.
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4.4 MDS analysis of the executable model

Motivation

When the aim is to classify di�erent structural perturbations of the wild type system,
from the dynamical behaviour, the representation of the NCD versus time of each
individual system does not clearly reveal the di�erences between them. The reason
is the complex encoding of system states, which results in the NCD values being
grouped together in a small interval close to 1. In order to solve this problem,
we enhanced the NCD comparison of the dissimilarity of system states with three-
dimensional multidimensional scaling (MDS). In other studies, two dimensional MDS
has been used with an NCD dissimilarity matrix for classi�cation purposes: ordered,
critical and chaotic random Boolean networks were separated into distinct dynamical
regimes, with a combination of a two-dimensional MDS representation of the NCD
data between their trajectories [84]. A two-dimensional MDS visualization of the
NCD dissimilarity matrix of mitochondrial genomes of 24 mammalian species was
used in classi�cation tasks to test hypotheses in mammalian evolution [22].

MDS analysis of the executable model

Our purpose is to analyze, at a global level, models of biological systems that inte-
grate diverse information from multiple scales. The problem we are aiming to solve
with MDS is to detect biological perturbations in an executable model of the human
immune system. Our MDS analysis methods provide a systems’ level description of
how the executable model behaves dynamically, under di�erent structural changes.
The biological conditions under analysis are presented in the section 4.2.2, regarding
the computational model.

The NCD displayed over time problem. The visualizations of the NCD
over time, for each of the four systems separately, does not reveal any signi�cant
di�erences between the systems. The reason for this phenomenon is the large values
of the NCD, which are concentrated in a small interval close to 1, [0:8� 0:95]. After
a few major biological events have taken place, the state of the system becomes
extremely complex, due to the presence of a wide variety of cells and molecules,
together with their actions and states. After the time point of the last signi�cant
event in the execution of the model, the NCD values remain very large, in the interval
0:9 � 0:95. They lie in this interval because the states of the systems have become
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extremely complex and the �les that describe these states encode a great amount of
information. However, if we combine the entire NCD information we have obtained
from the four setups, in a global dissimilarity matrix, we can visualize their dynamical
behaviour in the same �gure, with three-dimensional nonmetric MDS. This MDS
representation enhances the subtle di�erences between the four systems, which were
not identi�able in the displays of the NCD over time.

The MDS solution. By a trajectory, we denote the evolution of a quantity in
time. In our case, the quantity we are observing is the similarity of two consecutive
states. The states can be from the same system or from di�erent systems. This
similarity is measured by the NCD, which is the proximity measure for the MDS
analysis. Our objective is to visualize the trajectories of similarity of states of the
four setups, in one MDS �gure. To this end, we employ the nonmetric version of the
MDS algorithm and we create the NCD dissimilarity matrix for its input. We choose
three-dimensional nonmetric MDS, instead of the two-dimensional version, because
the trajectories are more clearly separated in the �rst case.

In the MDS analyses, we display the mean trajectories of the systems, averaged
over 50 simulations of the executable model. One simulation or run entails executing
the model for 30 time points from an initial random state. This means starting
the model with 100 cells placed at random on the grid (at time point t = 0) and
generating the states of the system for t = 1 : 30 time steps. We create the NCD
dissimilarity matrix using all the runs, which places all the corresponding trajectories
in the MDS �gure. After this step, we compute the mean value of the trajectories for
display and comparison. We denote the NCD dissimilarity matrix as DNCD. Each
element of DNCD represents the NCD value between two system states. The states
can belong to the same system or to two di�erent systems. In the �rst case, the
states can be part of the same run or of distinct runs. In either of the two cases, the
time point of the states can be identical or distinct. Let Ns denote the number of
systems under the MDS analysis, Si denote the ith system, 8i = 1 : Ns, rj denote
the jth run, 8j = 1 : 50, tk the time point, 8k = 0 : 30. Then,

DNCD(l;m) = NCD(Si1(rj1(tk1)); Si2(rj2(tk2)));

8i1; i2 = 1 : Ns;8j1; j2 = 1 : 50;8k1; k2 = 0 : 30: (4.2)

We performed the MDS analysis for the following experimental conditions:

1. In the case of Ns = 4 setups (the wild type, IL-10, IFN- and CTLA-4, all the
perturbations at 100% e�ciency), for each of the systems, we have 50 runs �
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30 time points = 1550 states. So, l;m = 1 : (4� 1550) = 6200 and the size of
the DNCD will be 6200� 6200;

2. In the case of Ns = 5 setups (the wild type and IL-10 at the following e�cien-
cies: 25%, 50%, 75% and 100%), for each of the systems, we have 50 runs �
30 time points = 1550 states. So, l;m = 1 : (5� 1550) = 7750 and the size of
the DNCD will be 7750� 7750;

3. In the case of Ns = 5 setups (the wild type and similar systems, with di�erent
ratios of the initial populations of cells: 30 Tregs to 70 nTh, 50 Tregs to 50
nTh , 70 Tregs to 30 nTh, 90 Tregs to 10 nTh), for each of the systems, we
have 50 runs � 30 time points = 1550 states. So, l;m = 1 : (5� 1550) = 7750
and the size of the DNCD will be 7750� 7750.

The nonmetric MDS results. In the following paragraphs, we will describe
the results of our NCD+MDS analyses as presented in [95]. For the biological con-
dition 1 described above, we show the results in the �gure 4:2. The �gure 4:2 was
published as the �gure 3 of [95], under the Creative Commons Attribution (CC
BY) license http://creativecommons.org/licenses/by/4.0/legalcode, http://
journals.plos.org/plosone/s/content-license. The four trajectories start from
the same point and are approximately identical for a few time points. Then, as
major biological events take place, the trajectories of the systems start to diverge.
This means that our information-theoretic measures can reveal in which way each
perturbed system behaves di�erently, not only that all the knock-out systems are
di�erent from the wild type, but how each of them di�ers from the others.

To show a more quantitative illustration of how these trajectories diverge, we
computed the Euclidean distance between the MDS coordinates of the wild type
trajectory and each one of the perturbations, for all the time points. We can see
that the system with the CTLA-4 knock-out has the most similar dynamics to that
of the wild type, followed by IL-10, and lastly, by IFN-. We can also notice that
IL-10 and CTLA-4 knock-out systems have a similar shape of the trajectory. These
two systems react similarly to the major biological events that take place. But,
IL-10 is signi�cantly more di�erent from the wild type, than CTLA-4 is. As time
progresses, the behaviour of IFN- increases in dissimilarity from that of the other
systems. These �ndings are in agreement with the biological roles of the cytokines.
The cytokines IL-10 and CTLA-4 are secreted by the same population of cells, the
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activated Tregs, and have an inhibitory role on the other population of T cells,
the activated Th1 helper cells. In contrast, the cytokine IFN- is secreted by the
activated Th1 helper cells and has an inammatory role, by activating further this
population of cells.

For the biological condition 2 described above, we show the results in the �gure
4:3. The �gure 4:3 was published as the �gure 5 of [95], under the Creative Com-
mons Attribution (CC BY) license http://creativecommons.org/licenses/by/
4.0/legalcode, http://journals.plos.org/plosone/s/content-license. As in
the previous case, the trajectories are similar for the �rst few time points, until the
point when the two populations of cells proliferate, di�erentiate into new types and
the secretion of new molecules takes place. After that point, the trajectories diverge
signi�cantly for the higher e�ciency cases, while the behaviour of the 25% perturbed
system is approximately identical to that of the wild type. A knock-out e�ciency of
over 50% is necessary to have any signi�cant e�ect on the dynamical behaviour. A
linear increase in the e�ciency of the knock-out of IL-10 produces a nonlinear e�ect
on the dynamics of the perturbed system, compared to that of the wild type.

For the biological condition 3 described above, we show the results in the �gure
4:4. The �gure 4:4 was published as the supplemental �gure 2 of [95], under the
Creative Commons Attribution (CC BY) license http://creativecommons.org/
licenses/by/4.0/legalcode,
http://journals.plos.org/plosone/s/content-license.
As the ratio of the two populations of cells is increasingly di�erent from that of the
wild type of 10 Tregs to 90 nTh, up to 90 Tregs to 10 nTh, the trajectories are
increasingly more divergent. However, the shapes of the trajectories are similar to
each other and to that of the wild type. This indicates that the systems respond
dynamically in a similar manner to the changes that take place.
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Figure 4.2: This �gure was published as the �gure 3 in [95], under the Creative Com-
mons Attribution (CC BY) license http://creativecommons.org/licenses/by/
4.0/legalcode, http://journals.plos.org/plosone/s/content-license. The
MDS representation in three dimensions of the wild type, the IL-10, IFN- and
CTLA-4, all the perturbations at 100% e�ciency.
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