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Abstract iii

Abstract
Brain disorders involving dysfunctions in neurotransmission
constitute one of the most prevalent health problems. Subtle
disruptions in human neurotransmission can result in signi�cant
dysfunction of cognition, locomotion, or practically any facet of
human behaviour. In turn, homeostasis of a speci�c neurotrans-
mitter system can often be retrieved through pharmacological
or lifestyle interventions. At present, human neurotransmission
can be best assayed using positron emission tomography (PET).
To date, neurotransmitter-PET (nt-PET) has been employed
to investigate neuroreceptor level phenomenon in human be-
havior/cognition as well as in treatment development. In the
current work the goal was to explore and enhance the temporal
capabilities of nt-PET, to allow better characterization of the
temporal facets of neurotransmission.
Main obstacles limiting temporal characterization stem from

the poor signal-to-noise-ratio of the PET measurement. In
particular, the limitations related to image reconstruction al-
gorithms and in turn the bene�ts obtained through regional
analysis were in the focus of the investigations in this work. The
main �nding was that the best temporal resolution achieved us-
ing a commonly recommended iterative reconstruction method
was insu�cient for temporal characterization, while a newly
developed algorithm allowing analytical reconstruction showed
better temporal resolution without decreasing signal-to-noise-
ratio. Furthermore, a novel atlas-based regional analysis method
was found superior to the currently employed manual region-of-
interest de�nition.
The �ndings made through this work will directly assist the

planning of future neurotransmission studies, and it is wished
that the observations in this work would spark new, more wide-
spread interest on the application of nt-PET in e.g. cognitive
stimulation studies.
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Overview of Publications
This thesis work consists of �ve publications reporting original
research. Throughout the thesis the Publications are referred by
the roman numeral in List of Publications. Firstly, Publications
I-II report the experiments made with iterative reconstruction
and a prede�ned noise equivalent counts (NEC)-threshold to
guarantee the quantitative accuracy in HRRT image reconstruc-
tion. Secondly, Publications III-IV report the further exper-
iments made with modi�ed iterative algorithms and using a
novel gap-�lling approach in tandem with three-dimensional
reprojection FBP (3DRP) algorithm for analytical image re-
construction. And �nally, Publication V reports the results
obtained in an optimization study to enhance the methodology
for striatal and cerebellar region of interest (ROI)-delineation
in high-resolution dopamine studies.
In Publications I, III and V the author of this thesis was

the �rst author and made the main contributions. In these
publications the author of this thesis had the main respon-
sibility of designing the experiments, implementing the new
methods, analysing the results, and drafting the reports. While
in Publication II the author of this thesis was responsible in
designing the experiments related to reconstruction methods
and writing the article in that part, assisted in all the analysis
and reviewed the article. Thus, in Publication II the role of the
author of this thesis was central in the parts involved with image
reconstruction, highlighting the distinct roles of the authors
in this particular study. In Publication IV the author of this
thesis participated in the design of the experiments directed for
assessing the reconstruction algorithms with real human data,
assisted in the analysis and in the drafting of the report. The
role of the author of this thesis was pivotal in the design phase
when inclusion of the human data was discussed and decided.



1 Introduction

At present, positron emission tomography (PET) o�ers the
best approach to assess human neuroreceptor binding in vivo.
PET can be employed in the assessment of brain blood-�ow
and metabolism as well, but the current work focuses on the
employment of neuroreceptor-binding radioligands, referred to
as neurotransmitter-PET (nt-PET) throughout this work. In
nt-PET a neuroreceptor binding assay can be employed in
the investigation of e.g. pathophysiology of a brain disorder
involving perturbations in speci�c neurotransmitter system.
It is hypothesized that relatively subtle alterations in human

neurotransmission can result in signi�cant dysfunction of cogni-
tion, locomotion, or practically any facet of human behaviour.
The human brain contains approximately 86 billion neurons

[6] each connected through 1000-10000 synapses creating a huge
neuronal network. Synapse is the connection point between
neurons typically encompassing the axon terminal (pre-synaptic
terminus), a small gap (20-40 nanometers across), and the adja-
cent axon or dendrite membrane (post-synaptic terminus) with
appropriate receptor molecules. Neuronal signal travels from
the axon hillock to the axon terminal electrically but synaptical
signal transfer is achieved through chemical neurotransmission.
Arrival of the electrical signal (action potential) to the pre-

synaptic terminus results in di�usion of neurotransmitter molecules
into synaptic cleft and subsequently binding with the appropri-
ate post-synaptic receptor molecule. Neurotransmitter binding

1
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activates the receptor molecules in the post-synaptic membrane
resulting in excitatory or inhibitory e�ect depending on re-
ceptor type and neurotransmitter. Excitatory couplings cause
depolarization of the post-synaptic membrane resulting in ac-
tion potential propagation, while the inhibitory couplings cause
hyperpolarization and action potential is prevented from propa-
gation.
There are currently over hundred neurotransmitters identi�ed

of which glutamate is the most prevalent followed by gamma-
aminobutyric acid (GABA). Approximately 90% of neurons
are glutamatergic, and 90% of those that are not glutamatergic
are GABAergic. Glutamate is the major excitatory and GABA
the main inhibitory neurotransmitter in the brain. Albeit the
scarcity of the other neurotransmitters such as acetylcholine,
dopamine, serotonin, norepinephrine and epinephrine, they have
important roles in the normal brain function. Neurons express-
ing the rare neurotransmitters have been shown to form distinct
neurotransmitter systems that regulate various important psy-
chological and behavioural processes.
For instance dopaminergic neurons in the substantia nigra and

their terminals in the striatum form the nigrostriatal pathway
that has a major role in motor control, while dopaminergic
neurons in the ventral tegmental area (VTA) that terminate
in the ventral striatum form the mesolimbic pathway that is
part of the limbic system and has a particularly important role
in the human reward system. While the serotonergic neurons
in the raphe nuclei and their terminals almost throughout the
brain form the serotonergic pathways that have been associated
with e.g. mood disorders.
Albeit neurotransmitter systems work together, and as a whole

the brain circuits are heavily inter-connected it is often that
brain disorders are associated with speci�c neurotransmitter
systems. For instance Parkinson’s disease has been convinc-
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ingly connected with the cell death of dopaminergic neurons
in the substantia nigra thus explaining the movement-related
symptoms. Symptoms of Parkinson’s disease can subsequently
be treated using exogenous dopamine precursors (levodopa),
dopamine agonists, or dopamine reuptake pathway inhibitors
that aim to counteract the de�ciency of dopamine induced by
the loss of dopaminergic cells in the subtantia nigra.
Schizophrenia on the other hand has been associated with

hyperactive dopaminergic signalling in the mesolimbic pathway
[62] and its symptoms have thus been treated with dopamine
antagonists.
While, depression, identi�ed as a risk to public health by the

Finnish Medical Society DUODECIM in their Current Care
Guidelines, has been suggested to be caused by down-regulated
serotonergic signalling and the �rst-line treatment recommenda-
tions include medication with antidepressant drugs, often acting
via selective serotonin reuptake inhibition (SSRI).
Thus, several brain disorders are associated with disorders in

speci�c neurotransmitter systems, and, consequently the molec-
ular pathways are readily available for targeting treatments
using e.g. psychoactive drugs. At present, nt-PET holds the
greatest potential to provide insight into changes related to
speci�c disorders and subsequently to pharmacological response
to drugs.
Formulation of the concept of "receptive substances" to explain

the pharmacological response to drugs dates back to the end
of the 19th and beginning of the 20th century when Ramon y
Cajal, Otto Loewi and others unveiled �rst the structure of
a neuron and later the chemical neurotransmission. Receptor
occupancy theory of drug action was coined by John Langley
and Paul Ehrlich in the beginning of the 20th century. The
receptor occupancy theory aims to explain the pharmacological
response via the proportion of receptors occupied directly or
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indirectly by the drug, and it is at the moment used to describe
the pharmacological response of a majority of psychoactive
drugs.
For the �rst decades the receptor theory was employed to ex-

plain the drug actions without accurate knowledge of receptors.
It was simply assumed that the neuron endings contain some
molecular structures that recognize and bind speci�c chemical
compounds named ligands (neurotransmitters or drugs) that
subsequently elicit the e�ects in the receptive synapse.
Now the most abundant receptors are well characterized with

regard to their molecular structure, binding mechanisms, and
subsequent actions in the receptive cell membrane. Nevertheless,
the true in vivo pharmacokinetics and further pharmacodynam-
ics of a drug are best assessed using receptor binding assays
with e.g. nt-PET.
Receptor binding has been extensively studied with in vitro

and in vivo experiments using laboratory animals and radioac-
tive ligands (radioligands) [68]. In the animal experiments
radioligands have been most often radiolabeled using 3H (tri-
tium), a �-emitter. The low energy of �-radiation is however
rapidly absorbed by the tissue, thus permitting its localization
by external detectors. The experiments using tritiated ligands
thus require killing the animals and assaying the radioactivity
distribution using cryonic tissue sections and autoradiography.
The true in vivo radioligand assay can be achieved using PET.

Short-living positron-emitters such as 11C, 18F and 15O have
been used to label radioligands that can be externally detected
via annihilation energy. The annihilation energy arises from
the positron-electron collision resulting in generation of two
opposite-directional 
-rays.
A PET scanner is used in the detection of 
-particles us-

ing opposing detectors and simultaneous photons are thought
to originate from the same annihilation event, thus allowing
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localization of the event to within a hypothetical line of re-
sponse (LOR). Acquisition of a large number of coincidence
events within numerous LORs enable tomographic image for-
mation via image reconstruction similar to X-ray computed
tomography (CT) [52]. The true in vivo assay of radioligand
distribution yields sequential measurement of the time-course of
the ligand in living tissue, thus depicting the pharmacokinetics
of the ligand.
Owing to the mild invasiveness and high number of potential

radioligands PET has become the gold-standard in human in
vivo receptor binding assays. The high speci�c activity of PET
radioligands allow their usage in tracer doses, implying that
they do not interfere with the molecular pathway under inves-
tigation. While single-photon emission tomography (SPECT)
can also measure molecular pathways through radiotracer tech-
nique, it lacks the quantitative accuracy and sensitivity of PET.
Furthermore, the quantitative, dynamic assay using PET al-
lows modelling of the radioligand’s pharmacokinetics yielding
true physiological parameters, in contrast to mere radioactivity
measurement.
Essentially dynamic PET receptor binding assay is sensitive to

instantaneous alterations in the receptor availability [38, 63, 73].
Thus, in principle the receptor binding assay can re�ect rapid
alterations in receptor occupancy, induced by changes in ex-
ogenous drug or endogenous neurotransmitter concentrations.
Neurochemical signaling per se is time sensitive, and the neuro-
transmitter release induced by e.g. prolonged cognitive activa-
tion can blunt relatively soon after the task initiation [5], whilst
temporal characteristics of the activation response may be more
important than the averaged amount of neurotransmitter re-
lease. Temporal characteristics in pharmacological stimulation
may in addition re�ect e.g. pathological state in the receptive
site linked with for instance addictive behavior (c.f. [104]).
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Considering the apparent potential of temporal characteriza-
tion of the neuroreceptor response with PET its application has
been very limited. It is anticipated that the implications from
the stochastic data acquisition process in PET have been the
major limiting factor in the implementation of these studies.
In the signal processing parlance counting process of the rare

nuclear events in PET is termed a Poisson counting process, and
thus the characteristics of Poisson random variables apply to the
PET measurement. In particular the signal-to-noise ratio (SNR)
of a PET measurement is governed by the count statistics,
following from the essential equality between the expected mean
and variance of a Poisson variable. The relative count statistics
in turn are determined by the radioactivity of the source, the
scanning time and the spatial sampling frequency, thus yielding
a tradeo� between the spatial and temporal resolution.
Radioactivity of the source can not be largely increased due

to tissue ionizing properties of the 
-particles, and thus the
tracer doses administered to human subjects are strictly limited
by the radiation safety authorities. In PET these limitations
translate into relatively small radioligand dosing and thus weak
measurable signal, but also to limited number of scannings per
subject.
On the other hand, higher spatial sampling has only fairly

recently become available in human PET imaging, partly due to
the Poisson characteristics of the measurement process. Higher
spatial sampling unavoidably results in relatively poorer count
statistics and extensive development of scintillator materials
and signal processing methodology has taken place before the
�rst human-size high-resolution PET scanner was launched
[108]. Despite the advances made, high-resolution PET imaging
su�ers from inherently poor count statistics to a degree that
may compromize the temporal resolution, thus preventing the
temporal characterization of the neuroreceptor response, while
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the high-spatial sampling may become indispensable in the
experiments probing the small, functionally specialized brain
areas such as the human striatum.
Albeit at current PET provides the gold standard in in vivo

receptor binding assay its relatively poor spatial resolution has
been regarded as a signi�cant hindrance in the study of small
functionally specialized brain areas, while the temporal resolu-
tion of PET is governed by the length of the acquisition frame to
yield su�cient count statistics. In contrast, functional magnetic
resonance imaging (fMRI)-technique which is not dependent on
Poisson characteristics can provide simultaneous spatiotemporal
resolution, which in turn has allowed the implementation of var-
ious, important cognitive activation studies. Current magnetic
resonance imaging (MRI)-based techniques however lack the
molecular speci�city of PET, thus not allowing direct inferences
about the neurotransmitter level actions and consequently do
not allow e.g. treatment targeting using neuroreceptor speci�c
psychoactive drugs nor support their development.
Aim of the current work was to investigate and improve the

prospects of high-resolution PET in the temporal characteriza-
tion of neuroreceptor binding. At current, the potential of PET
binding assay is not fully exploited, albeit a few pioneering stud-
ies on the temporal pro�ling have been made. It is anticipated
that the Poisson characteristics of PET is the main obstacle
on the way to successfully implement a temporally sensitive
receptor binding assay. Thus, in the current work the focus of
the investigations was on the particular implications from the
poor count statistics of high-resolution PET.
In particular, performance of various existing and newly de-

veloped algorithms for high-resolution image reconstruction
were evaluated in light of their quantitative accuracy and SNR
performance. The role of image reconstruction algorithms is
important since they can aggregate the statistical variation in
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the measurement or in the worst case generate biased radioac-
tivity estimates leading to erroneus interpretation of receptor
binding. On the other hand, a commonly employed strategy
in PET to improve the measurement SNR is to average the
signal within functionally homogenous image elements. The
functional region of interest (ROI)-de�nition in e.g. the human
striatum is however prone to errors and the currently employed
manual methodology does not ful�ll the requirements in high-
resolution PET. Thus, it was deemed necessary in the current
work to revise the methodology in the striatal ROI-delineation
and seek for automated approach in order to fully bene�t from
high-resolution PET.



2 Background

2.1 PET receptor binding assay

The PET receptor binding assay exploits radioligands (in tracer
doses radiotracer) that can speci�cally bind to the target recep-
tor of interest, while, the PET scanner can be used to depict
the fate of the radiotracer in living human tissue in a timeline,
thus depicting the tracer’s kinetic pro�le.
Figure 2.1 illustrates typical time activity curve (TAC)-data

from a PET measurement. TAC-data depicts the instantaneous
radioactivity concentration (e.g. becquerel (radioactive decays
per second) (Bq) per millileter) within a single image volume
element (voxel) or within a ROI, representing a mixture of
signals from speci�cally bound, nonspeci�cally bound and free
tracer in brain tissue. Thus the TAC-data does not directly de-
pict the physiological parameter of interest such as the binding
potential (BP) (c.f. [71]), but is associated with nuisance com-
ponent of nondisplaceable binding (free radiotracer in tissue
plus nonspeci�c binding). Nondisplaceable binding can vary
between study subjects and groups and its contribution should
thus be removed from the measurements.
Calculation of the true physiological parameters can be achieved

in various ways often resulting in similar or comparable out-
comes. Often the calculation is based on interpretation of the
tracer’s kinetic pro�le. Analysis of the tracer’s activity pro-
�le, i.e. the TAC-data, proceeds by distinguishing the signal

9
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Figure 2.1: Graphs showing the instantaneous activity concentrations
within a region of interest (ROI) and reference region as a function of time.

originating from the true receptor binding from those originat-
ing from nuisance components, such as tracer that is free or
nonspeci�cally bound in brain tissue.
Often the desired outcome of nt-PET TAC-analysis is the

receptor binding potential relative to the free fraction of the
tracer in the nondisplaceable compartment (fND) and a�nity
(1=KD), thus denoted as BPND [48]. BPND, calculated using
any of the methods, is of particular interest since it is thought
to re�ect the number of available receptors for tracer binding.
The number of available receptors for binding depends on the

total density of the receptors and the amount of endogenous
neurotransmitter or exogenous drug occupying the receptors.
The true receptor occupancy due to intervention is de�ned as

ROtrue = 100%� (1�
Bavail(intervention)
Bavail(baseline)

)

where Bavail(baseline) is the density of available receptors at
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baseline or at control condition, while Bavail(intervention) the
density of available receptors after intervention. The interven-
tion can be pharmacological or non-pharmacological and the
action can be direct receptor blocking by a drug or indirect
blocking due to increased concentration of endogenous neuro-
transmitter.
Under ideal conditions assuming that fND and KD do not

change between the baseline and intervention conditions, the
PET derived BPND can be used to assess the receptor occupancy.
The PET derived receptor occupancy due to intervention is
de�ned as

ROPET = �BPND = 100%� (1�
BPND(intervention)
BPND(baseline)

):

(2.1)
Under the assumptions that the density of receptors (Bmax),
fND and KD do not change between conditions, the ROPET
would be equal to ROtrue.
Most commonly the BPND(intervention/baseline) in Equation

2.1 are assessed in a receptor blocking study, requiring sepa-
rate PET measurements with multiple bolus injections of the
radioligand often taking place on di�erent visits to the imaging
facility. Albeit short- and long-term test-retest repeatability of
BPND with e.g. 11C-raclopride are good [1, 3, 42, 67] it is often
conceivable that additional biological variability is introduced
if the scans are separated in time.
For drug induced alterations, but in particular for those due

to behavioural stimulation a more recommendable approach
would be using a single-injection displacement study. In the
displacement study the control condition is typically initiated
prior to the tracer injection and maintained until a reliable esti-
mate of the BPND(baseline) can be calculated, followed by the
intervention which is ideally maintained until reliable estimate
of the BPND(intervention) can be calculated. Limitations due to
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radiation safety also encourage employment of the displacement
approach.
For a displacement study, binding of the tracer must be dis-

placeable, that is reversible and speci�c. Not all PET tracers
ful�ll these requirements but for instance the 11C-labelled raclo-
pride (11C-raclopride for short) a dopamine D2 and D3 receptor
speci�c antagonist, has been quali�ed for this purpose. In [73]
and [38] Morris, Fisher and colleagues used simulations to inves-
tigate the potential of 11C-raclopride to measure alterations in
the striatal dopamine concentration. First they approximated
that the average synaptic concentration of dopamine is �100 nM
and that it would be doubled during e.g. behavioural activation.
Through consideration of the concentration and a�nity of the
radioligand, and that of the endogenous dopamine for dopamine
receptors they inferred that it is likely that the changes are
detectable using PET. Furthermore, they used mathematical
simulation to seek for optimal ligand features and timing of the
activation [73]. PET with 11C-raclopride for cognitive activa-
tion was successfully employed �rst by Koepp and colleagues
[58], although the �ndings have been partly challenged in later
analysis [32].
Robust and sensitive methodology for the estimation of the

BPND(intervention/baseline) has a crucial role in the success-
ful implementation of the PET receptor binding assay. Thus,
considerable e�ort have been devoted to the methodological
development of PET pharmacokinetic modelling within the last
few decades.

2.1.1 Tissue-ratio analysis
A straightforward approach to remove the nuisance components
from the nt-PET measurement is to extract the TAC repre-
senting the nondisplaceable binding from that of total binding,
resulting in a TAC of speci�cally bound tracer. This approach
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requires that a reference region devoid of target receptors ex-
ists in the brain. In that case the TAC of speci�cally bound
tracer is searched for peak-time and the instantaneous activity
of bound tracer is divided by that of nondisplaceable tracer to
yield BPND.
The peak-time of bound TAC was chosen because it is thought

to de�ne the transient or pseudo-equilibrium time of the tracer
binding [35]. Typically the pseudo-equilibrium time is not easily
determined from the noisy bound TAC data and pre�xed time
intervals around the equilibrium time [78] or late scan times
[81] have been employed instead. In comparison to full kinetic
modelling the straightforward tissue ratio method has been
shown feasible for BPND calculation [49], with some limitations
due to non-steady-state conditions in the tissue and plasma when
rapid bolus administration of the radiotracer was employed.
The non-steady-state conditions can be overcome via adminis-

tration of the radiotracer as a rapid bolus followed by continuous
infusion until the true equilibrium is achieved [21]. A steady-
state of radiotracer concentration in plasma, in target region
and in the reference region can be obtained if the proportion
of bolus (kbol) and infusion can be optimized accurately [21],
in which case the BPND can be calculated as bound over non-
displaceable uptake but now within a longer time-span, e.g. 50
minutes.
The bolus-infusion approach with optimized kbol has been

successfully employed in e.g. measurement of amphetamine-
induced changes in 11C-raclopride binding [22] showing similar
outcome from the displacement study and from the more com-
monly performed blocking study. As a disadvantage, the kbol
parameter may show considerable variation between subjects
[49] yielding non-steady state conditions in some subjects if
global predetermined value is employed.
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2.1.2 Compartmental modelling

Advanced analysis of the tracer’s activity pro�le employ tools
of pharmacokinetic modelling, in particular the mathematical
compartmental model, that do not necessitate equilibrium con-
dition. Figure 2.2 illustrates a compartmental model depicting
transformations of a nt-ligand between free in arterial plasma,
free in brain tissue and bound in brain tissue.

Figure 2.2: Compartmental model of a neurotransmitter ligand. Compart-
ments CP, CT, and CR represent measured radioactivities in arterial plasma
(P), target tissue (T) and reference tissue (R), while compartments CB and
CF represent calculated radioactivies of the free (F) and speci�cally bound
(B) given the transfer constants k. Transfer constants K1 and K’1 depict the
transfer from arterial plasma to the target and reference tissues respectively,
while the k2 and k’2 depict the returning transfer. The in- and outbound
transfer goes through the free compartment (CF) from where the radiotracer
can bind speci�cally at rate k3 or to which it can return at rate k4.

In a compartmental model the compartments are not physical
places but states of the ligand and their unit is radioactivity
concentration (e.g. Bq/mL), while the transfers between com-
partments are described by rate constants (k) that de�ne the
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relative transfer from compartment (C) in unit time, 0 re�ecting
no transfer, and the amount of transfer is kC per unit time.
In compartmental modelling the goal is to determine the values

of the rate constants given the measurements, thus numerical
implementation of the model is needed. Firstly, the appropriate
compartments and transfers between the compartments are
de�ned on the basis of the biochemical properties of the tracer,
i.e. the number of compartments and connections between them
depend on the speci�c characteristics of each tracer.
Secondly, the model is solved to provide equations of the in-

stantaneous concentrations in each compartment. Let us denote
the TAC of the radioactivity in compartment C as C(t), then
using the notation in Figure 2.2 we have the following equations
describing the radioactivity concentrations in compartments CR,
CF and CB

CT (t) = CF (t) + CB(t)
dCF (t)=dt = K1CP (t)� k2CF (t)� k3CF (t) + k4CB(t)
dCB(t)=dt = k3CF (t)� k4CB(t)
dCR(t)=dt = K 01CP (t)� k02CR(t)

where CP is the radioactivity concentration in arterial plasma
depicting the input function.
The solution of the compartmental model includes input func-

tion which can be externally measured from the arterial plasma
samples, unknown concentrations in compartments of free and
bound ligand and unknown rate constants. The solved model is
used to simulate possible tissue TACs given the input function,
and numerical optimization algorithms can subsequently be
used to �nd the rate constants that yield best match with the
measured TAC. Thus calculation of the rate constants requires
de�nition of the model, closed form solution of the model and
�nally numerical optimization of the simulated data to �nd best
�t with the measured data.
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In the working example the rate constants k3 and k4 are of
particular interest. Under certain reasonable assumptions they
re�ect the reaction rate constants kon and ko� in the Michaelis-
Menten equation, and we have

k3 = fNDkonBavail

k4 = koff

where fND is the fraction of the tracer that is free in nondis-
placeable compartment and Bavail is the density of receptors
available to bind the radioligand [48].
Recall that the nondisplaceble compartment consists of the

tracer that is free or nonspeci�cally bound in the brain tissue.
The fraction KD = koff=kon is the dissociation constant in
Michaelis-Menten model. Respectively the ratio of k3 and k4
coincides with the formulation of BPND (c.f. [71] and [48])

BPND =
fNDBavail

KD
=
k3

k4
: (2.2)

2.1.3 Simpli�ed reference tissue model
The compartmental model presented in Figure 2.2, known as
simpli�ed reference tissue model (SRTM)[61], is commonly used
to depict the pharmacokinetics of nt-tracers, e.g. that of 11C-
raclopride. Initially raclopride-PET (i.e. PET measurements
using 11C-raclopride) was modelled using three tissue compart-
ments: free, non-speci�cally bound and receptor-bound [34], but
it was noticed that a steady-state occurs rapidly between free
and non-speci�cally bound tracer and it was hard to distinguish
these two compartments in the model �tting, and they were
thus pooled together [61]. Furthermore, it has been shown that
the arterial input function measurement can be omitted if there
exists a brain region devoid of the target receptors [61]. Mea-
surement of the arterial input function is an invasive process
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that is prone to errors, and it is avoided when possible. For
raclopride a reference region is found in the cerebellum which
is almost completely devoid of dopamine receptors according to
human post mortem data.
Using the notation in Figure 2.2 we can present the solved

SRTM equation in closed form as

CT (t) = R1CR(t) + k2

Z T

0
CR(t)dt� k2a

Z T

0
CT (t)dt (2.3)

where CR(t) and CT(t) are the instantaneous activity concen-
trations in the reference and target tissue, respectively, and

R1 =
K1

K 01
and k2a =

k2

1 + k3
k4

=
k2

1 +BPND
: (2.4)

In Equation 2.3 CT(t) is the outcome of simulation while
CR(t) is the measured activity concentration. Similarly as
for the full compartmental model the SRTM parameters are
estimated via optimization with measured PET data. The BPND
in SRTM formulation corresponds to that obtained through full
compartmental model �t with arterial input (c.f. Equation 2.2),
but it can be assessed non-invasively using reference tissue.
The optimization can be made to the linear formulation of

SRTM in Equation 2.3 and BPND can be solved from Equation
2.4, or k2a can be substituted in Equation 2.4 when optimization
of the non-linear formulation yields the BPND directly.

2.1.4 Extended compartmental modelling
Dynamic PET measurement lends itself for the measurement
of instantaneous alterations in Bavail but the compartmental
models discussed thus far do not accommodate the tempo-
ral changes. Instead, the bolus-infusion administration with
tissue-ratio analysis has been almost exclusively employed in
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the displacement studies (see [32] for review). In bolus-infusion
studies the BPND(baseline) is typically estimated during initial
part of the equilibrium condition followed by BPND(intervention)
estimation after a new equilibrium level has been attained [22].
Considerable e�ort has taken place with regard to optimiza-
tion of kbol as well as the optimal timing of the baseline versus
intervention. According to Watabe and colleagues [106] the op-
timal timings for 11C-raclopride would be 0-50 minutes (control
task) and 50-100 minutes (activation task), but there might be
considerable variation in the optimal timings depending on the
tracer and study setup.
A serious limitation of tissue ratio analysis in bolus-infusion

studies is posed by the violation of equilibrium condition. As
was discussed earlier, employment of predetermined kbol may
result in signi�cant under- or over-shoot in the individual’s
TACs resulting in biased outcome in tissue ratio calculation.
Furthermore, pharmacokinetic characteristics of other radiotrac-
ers than 11C-raclopride may completely preclude their analysis
using equilibrium techniques.
Extensions to SRTM have been proposed that can accom-

modate the temporal changes in receptor availability. Zhou
and colleagues have proposed a method they call extended
simpli�ed reference tissue model (ESRTM) [110] that accom-
modates two BPND parameters in Eqs. 2.3-2.4 instead of one,
one depicting BPND at baseline and the other at intervention.
The advantage of ESRTM over tissue ratio method is that the
equilibrium condition is not required. Indeed, they showed in
an 11C-raclopride study that the magnitude of amphetamine-
induced �BPND from ESRTM was larger and more consistent
with amphetamine dosing than that from tissue ratio analysis
[110], and consequently its application was proposed instead of
tissue ratio analysis.
Alpert and colleagues on the other hand have proposed a
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method they call linearized simpli�ed reference region model
(LSRRM) [5], that can more �exibly accommodate the transient
perturbations in radiotracer binding. In their proposal the time
dependence of BPND is modeled via additive time dependent
activation function.
In Equation 2.3 BPND acts through k2a, thus the change

in BPND should a�ect k2a. Let us introduce time dependent
activation function h(t) and enter the activation e�ect linearly
to the model through k2a+
h(t), where 
 is the magnitude of
the activation e�ect while h(t) gets values between 0 and 1.
Now Equation 2.3 becomes

CT (t) = R1CR(t)+k2

Z T

0
CR(t)dt�k2a

Z T

0
CT (t)dt�


Z T

0
h(t)CT (t)dt:

(2.5)
The activation function h(t) can have any shape but it should

re�ect the alterations in radiotracer’s apparent dissociation
constant k2a. Figure 2.3 illustrates few possibilities for the
activation function.
Equation 2.5 o�ers a �exible model for the assessment of

transient perturbations in BPND. The approach has been applied
in analysis of both pharmacological [5] and non-pharmacological
[7�10] stimuli, and recently in generation of dynamic parametric
maps of neurotransmission alterations [74] through optimization
of the activation function peak-time voxel-by-voxel (c.f. Figure
2.3 for activation function peak-time). Furthermore, it has been
suggested [5] that the t-value of the activation parameter 

as obtained through the linear optimization process (t(
) =

=sd(
)) could be utilized to detect neurotransmitter release in
single subject level, that is, to reject the null-hypothesis of no
activation.
In the original model by Alpert and colleagues [5] time-

dependent activation functions were inserted for all of the �t
parameters: R1, k2 and k2a. In their examination it was however
found that model identi�ability was limited to only one time-
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Figure 2.3: Graphs representing possible activation functions depicting
dynamic alterations in radiotracer binding.

dependent parameter, due to the simple shape of the TACs.
Thus only the factor 
 related to the change in BPND was
preserved and the others were omitted from the �nal model.
Furthermore, the ability to identify the time-course of the

activation was acknowledged. In the original model by Alpert
and colleagues [5] time-dependent activation functions had the
shape of exponential function based on earlier studies [33], which
peaks relatively soon after the task initiation and decays more
or less rapidly depending on the decay parameter � . Alpert
and colleagues claimed that � � 0:2 min-1 yielded a good �t
with true human data of spatial planning task, suggesting that
the activation e�ect was nearly abolished after 10 minutes.
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Nevertheless, in the model formulation of Alpert and colleagues
[5] and later in the application of the model by others [8�10]
focus has been on the detection of the activation rather than in
the temporal characterization of the neurotransmitter response.
In a more recent work by Normandin and colleagues [76]

LSRRM was extended to more readily incorporate the temporal
characterization of the neurotransmitter �uctuations, which
they called linear parametric neurotransmitter-PET (lp-ntPET).
In contrast to original LSRRM where the neurotransmitter
response onset coincides with the task initiation and the peak-
time follows immediately, lp-ntPET permits varying onset and
peak-time as well as di�erent shapes for the decaying part.
The model of Normandin and colleagues was implemented

using collections of simpli�ed gamma-variate functions [64] as
the basis activation functions. In their proposal the set of basis
functions consisted of 897 gamma-variate functions depicting
various di�erent onset and peak-times and decay velocities.
Their proposed approach is similar to the basis function method
often employed in parametric image generation with SRTM [40],
but di�ers in the parameter of interest.
The optimal basis function depicting the neurotransmitter

�uctuation within LSRRM is identi�ed as the one that yields
the best �t with the measured data, that is, shows the small-
est weighted least squares in linear optimization. Normandin
and colleagues validated lp-ntPET using 11C-raclopride data
from rat experiments with intra-cranial infusion of metham-
phetamine [76]. Their �nding was that lp-ntPET did not show
any activation in a sham scan while in the true intervention
the dopamine response was signi�cant and agreed well with the
invasive microdialysis measurements, thus the 11C-raclopride
measurement re�ected well the changes in brain dopamine levels
showing robustness of the novel method.
In a recent work by Morris and colleagues [74] lp-ntPET was
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used to generate movies of cigarette smoking induced release of
dopamine, showing feasibility of the novel approach. Through
rigorous statistical treatment of the lp-ntPET data they were
able to identify the voxels with signi�cant dopamine release
during smoking versus a control condition, and furthermore to
represent the temporal characteristics of the activations in each
voxel [74]. Their �nding was that the cigarette smoking induced
�uctuations in dopamine release may have di�erent spatial and
temporal pro�le between male and female smokers [74], thus
indicating the importance of individual temporal pro�ling in
neurotransmitter activation studies.
The LSRRM and lp-ntPET seek to detect the neurotransmit-

ter activation through statistical analysis of the 
 parameter.
Albeit the elegance of the statistical treatment it would often
be desirable to quantify the change in terms of BPND, similarly
as in ESRTM where two di�erent BPND are explicitly sought.
Disadvantage of ESRTM on the other hand is the in�exibility
with regard to the timing of the neurotransmitter �uctuations
that is inherent in LSRRM and lp-ntPET.
BPND of baseline in LSRRM is solved by reorganizing the

parameters in Eq. 2.4:

BPND =
k2

k2a
� 1 (2.6)

similarly the time-dependent BPND(t) is

BPND(t) =
k2

k2a + 
h(t)
� 1: (2.7)

The time-dependent BPND(t) can be extracted at the activation
peak-time or for instance the weighted average can be calcu-
lated to represent the mean BPND(intervention). The mean
BPND(intervention) should coincide with the one calculated
using ESRTM up to the di�erences in the accuracy of model �t.
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The explicit presentation of the BPND(baseline/intervention)
allow calculation of ROPET and comparison with earlier studies.

2.2 Principles of positron emission
tomography

Quantitative accuracy of PET is a unique feature that allows
dynamic measurement of the radioactivity distribution and sub-
sequently kinetic analysis of the data. Often quanti�cation of
the PET frames is attained through calibration measurements
that provide a conversion factor between counts/sec and radioac-
tivity concentration e.g. Bq/mL. Considering the acquisition
and image reconstruction process in PET there must however
exist a lower threshold � 0 of count statistics that is required
for accurate image reconstruction.
Acquisition of a PET frame is ultimately a counting process of

rare nuclear events - in the signal processing parlance a Poisson
counting process. Thus, the probability of detecting an event
approaches zero with decreasing detection time and/or observed
area, and the total number of detections per sample point dictate
the statistical quality of the measurement. The total number
of detections (within a �xed time interval) can be increased to
some degree by optimizing the sensitivity of the detectors. The
total number of positron emissions in turn is intentionally kept
low due to the tissue damaging properties of the annihilation
energy (photons), and the tracer doses with healthy volunteers
are strictly limited by radiation safety authorities. In PET these
limitations translate into relatively small radioactivity doses
and thus poor count statistics of the PET data.
Partial volume e�ect caused by poor spatial resolution of PET

has on the other hand been regarded as a major limiting factor
of PET brain studies [75]. In the classical simulated experiment
by Mazziotta and colleagues [69] signal blurring by a 5 mm
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kernel (full width at half maximum (FWHM)) corresponded
with up to 20% underestimation in a thin high contrast region,
while signal blurring by a 2.5 mm kernel (FWHM) halved the
error to 10%.
The intrinsic spatial resolution of a PET scanner is de�ned

by the surface area of the photon-detectors (detector crystals,
scintillators), while engagement of small crystals to achieve
improved spatial resolution has been hindered by a few obsta-
cles. For instance, production of the small detector crystals is
complicated and the stopping power of a small crystal may be
insu�cient. The scintillation cascade occurs when the arriving
photon interacts with the crystal material resulting in photoe-
mission. If the crystal size is however very small the arriving
photon may pass through many crystals before the scintillation
cascade occurs and the detection will be misplaced by a few
millimeters, a phenomenon called crosstalk of scintillators. Fur-
thermore, the signal from a single crystal is weak and it must be
ampli�ed prior to further processing, and until recently design
and manufacturing of the ampli�ers have signi�cantly limited
the application of small crystals.
The true reconstructed spatial resolution of PET is commonly

measured using the procedures in the National Electrical Man-
ufacturers Association (NEMA) standards. NEMA standards
describe the spatial resolution of PET devices as the FWHM
measured with an in�tesimal point source in air. The purpose
of the measurement is to characterize the point spread func-
tion (PSF) of compact sources in reconstructed image, and it
provides the best-case comparison among scanners. Further-
more, the NEMA standards describe the point source measure-
ments at di�erent locations in the �eld of view (FOV), and the
calculations in axial as well as transaxial directions. Table 2.1
summarizes the NEMA spatial resolution results for a brain-
dedicated and a few whole-body PET scanners according to
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the literature. An approximately 5 mm (FWHM) spatial reso-
lution is achievable using the whole-body PET scanners while
the brain-dedicated PET scanner is characterised by a nearly
isotropic spatial resolution of approximately 2.5 mm (FWHM).

Table 2.1: National Electrical Manufacturers Association (NEMA) spatial
resolution results from literature in full width at half maximum (FWHM).

Transaxial Axial
(mm) (mm)

Scanner 1 cm 10 cm 1 cm 10 cm Avg. Ref.
Siemens HRRT 2.30 2.90 2.50 3.40 2.78 [28]
Siemens HR+ 4.40 5.00 4.00 5.50 4.73 [17]
Philips Ing. 4.70 5.15 4.60 5.00 4.86 [109]
GE D690 4.70 5.07 4.74 5.55 5.01 [13]
GE DVCT 5.12 5.68 5.18 5.86 5.46 [89]

Due to the Poisson characteristics, high-resolution PET is
however associated with poorer statistical quality than whole-
body PET and for e.g. diagnostic purposes visually appealing
appearance of imaging data may be favored. Nevertheless,
considering the experiments of Mazziotta and colleagues [69]
the best achievable spatial resolution may often provide an
indispensable advantage in nt-PET studies. Thus, in the light of
advanced temporal characterization of neuroreceptor occupancy,
using e.g. lp-ntPET derived analysis, careful optimization of
the PET assessment with regard to both the temporal and the
spatial resolution is required.

2.2.1 Data acquisition
PET data acquisition can be initiated after the radiotracer is
transported to blood circulation of the imaged subject. Radio-
tracer travels through the blood stream (also) to the organ of
interest which is positioned within the FOV of the PET scanner.
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PET scanner consists of thousands of (typically) circularly
arranged detectors capable of detecting low energy photons. Low
energy photons arise from the annihilation process following a
positron-electron collision. Annihilation occurs in the immediate
vicinity of the positron-emission location and produces two
opposite-direction gamma-quanta.
Gamma-quanta of known energy (511 kilo electron volt (keV))

travel at the speed of light to opposite directions and sometimes
hit the detectors of the PET scanner (nearly) simultaneously.
These observations are called coincidence events. If simpli�ed,
the coincidence events are assumed to originate from single
positron-electron annihilation that occurred within the LOR
that connects the two detectors.
However, practical electronic implementation of the PET

scanner does not permit measurement of only those events
with the energy of exactly 511 keV or exactly simultaneous
detection; albeit the gamma-quanta travel at the speed of light
a small timing di�erence occurs when the annihilation location
is near the edge of the FOV, and the electronics does not permit
exact timing of detection (within nanoseconds). Thus, the
detector electronics are typically tuned to record events in an
energy window of e.g. 350-650 KeV and timing window of 5-10
nanoseconds. Due to the broad energy and timing windows,
unwanted erroneous observations have signi�cant contribution
in the measured data.
A coincidence event (true or random) is such that no more

than two photons are detected within the time window (opened
at the �rst detection and closed after 5-10 nanoseconds). A
multiple event is such that more than two photons are detected
within the time window, and these are usually ignored automat-
ically. A random event is such that the two detected photons
actually originate from di�erent annihilations. Scattered events
originate from the same annihilation but one of the gamma-
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quanta has been disoriented (scattered) from the original path
while travelling through the medium. The true, multiple, ran-
dom and scattered events together are called prompt events
without distinction.
The amount and distribution of the random and scattered

events can be estimated from the measured data using estab-
lished techniques (see [23] for review). Furthermore, absorption
of the photons within the medium can be estimated using exter-
nal photon transmitting source that travels around the medium
and the non-absorbed energy is measured on the opposite side.
The so-called attenuation correction compensates for the non-
homogeneous contribution of the photon absorption within the
medium.

2.2.2 Image signal-to-noise ratio
Statistical quality of the image data is commonly described by
SNR that relates the true signal to the background noise. In
imaging studies SNR is often de�ned as

SNR =
mean(sig)
std(sig)

;

where mean(sig) depicts the mean and std(sig) the standard
deviation (SD) of the true signal. The mean and SD are prefer-
ably determined from a high number of replicate measurements
rather than more commonly employed voxel-by-voxel mean
and SD within some predetermined region. SNR larger than
some prede�ned threshold designates that the image contrast is
adequate to distinguish an object from the background.
There is a connection between image SNR and so-called noise

equivalent counts (NEC) derived from the PET acquisition
statistics. NEC relates the square of the true counts (coinci-
dences) to the total counts in a PET measurement and it can
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be de�ned as [26]

NEC =
((1� S)(P �R))2

P +R
; (2.8)

where S is the scatter fraction, and P and R the prompt and
random events, respectively. In Equation 2.8 the denominator
P + R = T + S + 2R re�ecting the noise contribution from
random events when they are calculated online during the PET
measurement. Often, if the random events are estimated o�ine
using a noise suppression algorithm the denominator is simply
P . NEC is a commonly applied quantity in scanner performance
evaluations and it has been shown to correlate well with the
square of the reconstructed image SNR in a physical test object
(phantom) measurement[26].

2.2.3 Image reconstruction
Analytical image reconstruction

Assuming the observations have been corrected for the unwanted
events, summation of the true events results in quantities that
approximate the line integrals through the radioactivity distribu-
tion. In the following theory is presented in the Cartesian plane
(two-dimensional (2D)) for simplicity although PET is truly
three-dimensional (3D). In the Cartesian plane line integral of
a function can be expressed as

g ,
Z

L
f(x; y) dl . (2.9)

where L is the LOR connecting the two detectors, f(x; y) is the
unknown spatial radioactivity distribution (or emission density)
and g is the observation.
If the LOR is given coordinates (s; �), s being the perpendic-

ular distance from the FOV origin and � the angle to y-axis,
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the line integral is expressed as [50]

R(s;�)f f(x; y) g , g(s; �)

=
Z

L(s;�)
f(x; y) dl

=
1Z

�1

1Z

�1
f(x; y)�(x cos � + y sin � � s) dx dy.

where �() is the Dirac’s delta-function.
Collection of all g(s; �) through the unknown f(x; y) is often

called the Radon transform of object f(x; y), for it was �rst
introduced by Johann Radon (see [80] for English translation).
It was also Johann Radon who �rst showed that the object
f(x; y) can be fully recovered from its projections, that is, the
Radon transform can be inverted.
A simple proof of this analytical inversion algorithm can

be formulated by considering the direct connection of the
two-dimensional Radon transform of an object and its one-
dimensional Fourier transform (central-slice theorem) [54]; if
the two-dimensional Fourier-space can be �lled with the one-
dimensional Fourier transforms of the projections, the original
object can be recovered by inverse two-dimensional Fourier
transform (2DFT).
In X-ray CT-imaging the direct inverse fourier transform

(DIFT) reconstruction is successful since the line integrals can
be collected in a high enough number of angles, and with high
enough X-ray energy the noise contribution in the measurements
is tolerable [54]. In PET however (and in low-dose CT), the
small number of projection angles, low sampling density and
low SNR hamper the usage of DIFT signi�cantly [65], although
improved algorithms for the critical re-sampling step from polar
to Cartesian coordinates have been recently developed. Instead
of DIFT the analytical reconstruction is commonly achieved
using the �ltered backprojection (FBP) algorithm [54] that gen-
erates less artifacts due to limited projections and measurement
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noise. Furthermore, the analytical FBP algorithm has been ex-
tended to 3D data, in particular the so-called three-dimensional
reprojection FBP (3DRP) algorithm that exploits 2D-FBP in
the estimation of missing data in the oblique segments prior to
3D-FBP is widely employed [57].

Iterative image reconstruction

The aim of the analytical image reconstruction algorithm is
to recover the unknown spatial distribution of the object by
mathematically solving the analytical representation of the mea-
surements, in other words assuming deterministic data [79]. In
PET however, this approach is suboptimal since the measure-
ments represent stochastic rather than deterministic data.
A more complete model of the data collection can be crafted

by taking into account the statistical nature of the collection
process. Collection of the coincidence events in a given time
interval can be regarded as a Poisson counting process [83],
thus the measurements represent samples of Poisson random
variables.
Let us �rst de�ne a discrete model of the data collection. In

the computer implementation a 3D object f(x; y; z) is sampled
into N (typically) cubicles (or voxels), let us denote them as
f = (f1; f2; : : : ; fN). Now there are N voxels and the jth voxel
has the value fj. Also the number of LORs is �nite, let us
denote them as g = (g1; g2; : : : ; gM), where gi is the measured
value of coincidence events within LOR i.
In the discrete model a geometric correlation matrix (system

matrix) with N�M elements can be calculated that determines
the contribution of each voxel to the measurement of g. Let us
denote the system matrix by A = fa11; a12; : : : ; aNMg, with each
aij representing the probability that an annihilation occurring
at voxel j will be detected at LOR i. Now the detection process
can be modelled by g = Af .
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Let us denote the independent Poisson random variables
describing the number of decays in voxel j and number of decays
detected in LOR i by F (j) and G(i), respectively. Assuming
that all decays are detected we have for the voxel j and unknown
mean �j a probability that n decays are detected

P�j(F (j) = n) = e��j
�nj
n!

The expected value of the random variable G(i) is thus

�i =
NX

j=1
aij�j; 8i

since the detection probabilities aij are independent.
Similarly as for the voxel data we get for LOR i and unknown

mean �i a probability that the measured data of LOR i gets
the value gi

P�i(G(i) = gi) = e��i
�gii
gi!
:

Let us introduce a random variable xij for the number of
emissions occurred in voxel j and detected in LOR i. It is a
Poisson random variable with a mean �ij = �jaij. Now we have
for the number of detections gi in LOR i

gi =
NX

j=1
xij:

Likelihood function of the measured data is that of the multi-
nomial distribution

l(�) = l(�1; �2; : : : �N) =
MY

i=1
e��i

�gii
gi!
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and the log-likelihood function is

L(�) = ln l(�) =
MX

i=1
ln

0

@e��i
�gii
gi!

1

A

=
MX

i=1
(��i + gi ln (�i)� ln (gi!))

=
MX

i=1

0

@�
NX

j=1
aij�j + gi ln

NX

j=1
aij�j � ln (gi!)

1

A :

Thus the task is to �nd � to maximize the log-likelihood
function but without having the image data to calculate the
log-likelihood function [72]. So instead the expectation of the
log-likelihood function is maximized given the measurements g
and the current estimate of �.
This approach is called maximum likelihood expectation max-

imization (MLEM) and it can be employed to de�ne a PET
image reconstruction algorithm, where the expectation- and
the maximization-steps are combined into one equation [72].
MLEM is an iterative algorithm to �nd the most likely image
given the measurements. Let us denote the initial voxel value
at voxel i as f 0

i , then for iterate fkj we have

fkj = fk�1
j

1
PM
i=1 aij

MX

i=1

giaij
NX

l=1
fk�1
l ail

: (2.10)

The iterative MLEM algorithm has been shown to converge to
the focal point of the log-likelihood function, without decreasing
the likelihood at any iteration [83]. In practice the convergence
can however be very slow [79], and typically the reconstruction
is stopped at some pre�xed number of iterations. This is due to
the computational cost of the MLEM algorithm - each iteration
lasting approximately the same time as FBP reconstruction
- but also due to the ill-conditioned problem of �nding the
maximum likelihood (ML) estimate [85].
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The late iterates of the MLEM are typically very noisy, and
therefore the intermediate images are often visually more ap-
pealing. One way to reduce the voxel-wise noise is to post-
smooth the image using for instance a three-dimensional gaus-
sian smoothing function. A more general approach to limit the
noise contribution is to apply spatially penalized-likelihood ob-
jective function. A good example of penalized-likelihood based
regularization of the MLEM is the median root prior (MRP)
algorithm introduced by Alenius and Ruotsalainen [4].
To speed up the convergence of the iteration in Eq. 2.10

a subsetized version was introduced in [46]. The subsets con-
sist of a number of projections unique in each subset. Often
the projections are chosen to de�ne orthogonal basis [46], and
the resulting algorithm is called ordered subsets expectation
maximization (OSEM). In the OSEM algorithm the image is
updated after completion of each subset, and the convergence
is thus faster, while, the amount of computation of one full
iteration is similar to that of MLEM.

Choice of the reconstruction method

In the light of NEC the choice of image reconstruction algo-
rithm has the greatest impact on image accuracy versus SNR. In
general, the analytical image reconstruction algorithms are re-
garded more accurate while the iterative algorithms are thought
to yield better SNR but may require a higher NEC for accurate
image reconstruction. Application of the iterative reconstruc-
tion algorithms is obstructed by the lack of explicit stopping
rules for the iterative process, while the outcome of analytical
reconstruction depends on the �lter dimensions. Filter in the
FBP reconstruction can be adjusted to yield a smooth appear-
ance, while the iterative reconstruction can be stopped early and
subsequently �ltered using a large kernel size (5-10 mm FWHM)
in the 3D Gaussian post-smoothing step. On the other hand,
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if PET imaging is performed for research purposes to assess
e.g. receptor binding the best achievable spatial and temporal
resolution are often required to protect against partial volume
e�ect (PVE) and to be able to distinguish rapid �uctuations in
neurotransmission, respectively.
In [26] Dahlbom and colleagues showed that FBP reconstruc-

tion yielded inferior SNR2 compared to OSEM reconstruction
at the same NEC levels. However, in [26] the OSEM iterations
were stopped very early although it was anticipated that later
iterates approach SNR2 of FBP. Nevertheless, NEC is a measure
of count statistics that takes into account the variable randoms
proportion at di�erent count rates, and correlates with image
SNR2, thus it is recommended as a measure of count statistics.
In [15] Boellaard and colleagues employed physical phantoms

to explore the relative image accuracy as a function of NEC as
well as to study the acquired image SNR using various image
reconstruction algorithms. Error in the image estimates (recon-
struction bias) was calculated as bias(%) relative to the FBP
reconstruction which is thought to be bias-free in reasonable
count statistics. Among the iteratively reconstructed images
they found biases of up to -15% in high contrast regions and
up to 40% in the low contrast regions [15]. There were how-
ever large di�erences between the tested iterative methods with
regard to the magnitude of bias(%) but all algorithms showed
similar behaviour - there was a sustained steep decline in the
image accuracy following the decline in NEC statistics.
The observed dual faceted bias in the high and low contrast

regions indicates attenuated contrast recovery in the low count
statistics as compared to high count statistics reconstruction.
Thus suggesting a di�erent degree of convergence of the itera-
tive reconstruction at di�erent count statistics. Boellaard and
colleagues [15] did not experiment with di�erent number of it-
erations but their experiments showed at least the risk of using



2.2. Principles of positron emission tomography 35

predetermined number of iterations in varying count statistics.
In their experiments the image SNR of FBP was again inferior
to that by iterative algorithms [15], but again at early iterations
(c.f. [26]).

2.2.4 High resolution PET

The High Resolution Research Tomograph (HRRT) o�ers the
current state-of-the-art human-size high-resolution PET imaging
in the �eld (c.f. Table 2.1). The HRRT scanner di�ers from
conventional scanners for its planar detector design. Typically
the detector modules are small and they are arranged on a ring
around the scanner FOV. In the HRRT, however, a di�erent
approach was chosen to allow quadrant sharing technique of
the photomultiplier tubes on the one hand and to allow the
depth of interaction (DOI) measurement on the other hand
[108]. The HRRT scanner consists of eight planar detector heads
arranged in an octagon around the scanner FOV, which results
in large areas devoid of detectors at the seams of two adjacent
heads. This feature renders the HRRT data discontinuous
with gaps corresponding to the location of the joints between
detector heads [70]. If the gaps are not properly treated the
analytical reconstruction with missing data results in sizeable
artefacts, practically precluding the direct usage of analytical
reconstruction with the HRRT data [70].

2.2.5 Image reconstruction strategies for
the HRRT

Dedicated image reconstruction strategies for the HRRT can
be categorized into

a) gap-�lling plus analytical reconstruction
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b) iterative statistical reconstruction using a system matrix
incorporating the missing data.

In the iterative reconstruction the system matrix can be
easily modi�ed to incorporate the inherent missing data in
the HRRT measurements, while the analytical reconstruction
generates sizeable artefacts in presence of gaps in the sinograms
[29]. However, the early evaluations of analytical reconstruction
su�ered from poor gap-�lling.
The recent advancements in the gap-�lling strategies as well

as the HRRT-speci�c implementation of full 3D analytical recon-
struction using the 3DRP [57] algorithm have helped to alleviate
the reconstruction artefacts considerably. The current more
auspicious gap-�lling methods have been extensively studied by
Tuna and colleagues [92�95] and by van Velden and colleagues
[99�101].
The proposed gap-�lling methods can be categorized into

a) model-based methods that employ forward projection of
the iteratively reconstructed image [28];

b) constrained Fourier space (CFS) methods [55]

c) discrete cosine transform (DCT) domain methods [94, 95]

d) transradial bicubic interpolation method [92, 93].

The CFS, the DCT-domain and the bicubic transradial interpo-
lation gap-�lling methods have all performed well in phantom
studies, but the latter method outperforms the others in com-
putation times; the bicubic transradial interpolation works in
nearly linear time while the others can be as slow as full it-
erative reconstruction. In contrast, the gap-�lling based on
forward projected data would allow consistent estimation of
the data within the gaps but it fails to model the noise in the
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missing parts; thus generating noise dependent artefacts in the
analytical reconstruction.
The most recently proposed method employing a transradial

bicubic interpolation approach has performed well in phantom
studies in comparison to DCT domain method but with much
lesser computational cost. In short, the transradial bicubic inter-
polation approach can be described as follows: the transradial
slice in the sinogram domain is de�ned as the slice in the direc-
tion of the radial samples, as it happens that the missing data in
the transradial slice lie in parallel lines in the sinogram domain
they can be omitted, yielding a shrunk, gap-free sinogram (see
Figure 3 in [92] for illustration). The shrunk sinogram is resized
back to the original dimensions using bicubic interpolation [56],
and rows corresponding to the gaps are inserted to the original
sinogram. Thus the transradial bicubic interpolation method
can provide fast and robust estimation of the gaps.
Iterative statistical reconstruction using the MLEM algorithm

and its variants allow usage of non-complete projections directly.
Therefore - and for the more complete model of the measurement
- the iterative full 3D reconstruction has been preferred for the
HRRT image reconstruction [70]. However, algorithm based on
the Equation 2.10 with pre-corrected measurement data resulted
in considerable bias as was shown in a phantom experiment [24].
The bias was attributable to the non-negativity constraints in
Equation 2.10 and the many negative observations truncated to
zero occurring in the pre-corrected measurements. Albeit the
HRRT is regarded sensitive relative to conventional scanners
[28], the area covered by a single LOR in the HRRT is a small
fraction of that in a conventional scanner, thereby rendering
the number of detections per LOR in the HRRT very low (c.f.
discussions in Chapter 2.2.2).
To avoid the zero-truncation bias a HRRT-speci�c modi�-

cation to the MLEM equation (Eq. 2.10) was presented by
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Comtat and colleagues [24]. The algorithm of Comtat and
colleagues [24] is called ordinary Poisson ordered subsets expec-
tation maximization (OP-OSEM) for it aims to maintain the
Poisson distribution characteristics in measured data, which are
normally violated in the pre-correction process. The modi�ed
equation is expressed as

fkj = fk�1
j

1
PM
i=1

aij
NiAi

MX

i=1

piaij
NX

l=1
fk�1
l ail + (diNi + si)Ai

; (2.11)

where pi represent the prompt coincidences, di the randoms and
multiples estimated from the delayed coincidence window data
[18], Ni the scanner normalization factor, and Ai the attenuation
correction factor, all for LOR i. Formulation in Equation 2.11
removes the need for zero-truncation, thus the bias should be
avoided, but it was also noted that the additive term in the
denominator of 2.11 slows down the convergence [24].
The OP-OSEM algorithm was shown quantitative in a uniform

cylinder phantom experiment which resulted in signi�cant bias
with the conventional OSEM reconstruction [24], and it was
therefore recommended for dynamic brain studies on the HRRT.
However, in an experiment with more realistic anthropomorphic
phantom data the OP-OSEM reconstruction was found to su�er
from remnant bias at very low count statistics, but still realistic
in dynamic human brain studies [98].
Flexibility of the iterative framework has been exploited to

accommodate the signal blurring function, or PSF, in Equation
2.11 [25]. Let us denote the signal blurring kernel in the image
space as h, then the update equation with resolution modeling
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(RM) is expressed as

fkj = fk�1
j

1
PM
i=1

aij
NiAi�h

MX

i=1

piaij
NX

l=1
fk�1
l ail � h+ (diNi + si)Ai

:

(2.12)
The algorithm depicted in Equation 2.12 is called resolution
modeling OP-OSEM (RM-OP-OSEM).
The convolution kernel h for the HRRT has been estimated

using pseudo point-source measurements within the FOV of
three HRRT scanners [25]. In the work of Comtat and colleageus
[25] isotropic convolution kernel was formed on the basis of the
three sets of measurements.
The RM-OP-OSEM showed reduced PVE without noise-

ampli�cation in a human experiment [88]. It has been also
found that the RM-OP-OSEM can signi�cantly reduce the low
count statistics bias as compared to OP-OSEM [105]. On the
other hand the PSF-based resolution modelling has been shown
to su�er from edge artefacts [91].
Other modi�cations to the MLEM equation have been sug-

gested that might be more robust with regard to the low count
statistics, such as the AB-MLEM [19] and the NEG-MLEM [77]
algorithms for sinogram-based reconstruction. Furthermore, the
list-mode-based reconstruction algorithm (MOLAR; [20]) using
the conventional OSEM algorithm have been shown less vulner-
able to low count statistics bias [51]. It can be however regarded
that the list-mode-based reconstruction using the conventional
OSEM algorithm does not provide theoretical advantage with
regard to the low count statistics bias, while the optimization of
the additional parameters introduced in AB-MLEM and NEG-
MLEM algorithms may depend on the imaging conditions and
thus become intractable relative to the expected advantage of
using these methods.
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2.3 Region of interest analysis

A commonplace practice to improve the SNR in brain PET
studies is to pool the signal from functionally similar image
elements. Aggregation of the signals is achieved through region
of interest (ROI) analysis, consisting of the ROI-de�nition and
averaging of the signal cross the image elements within the ROI.
ROI-analysis can be applied either on parametric images or

on the PET frames to represent regional pharmacokinetics of
the tracer. The outcome of the latter approach is a TAC that
represents the tracer pharmacokinetics at improved SNR, which
can then be applied for more robust estimation of the physiolog-
ical parameters e.g. BPND. Topographical organization of the
brain allows the aggregation of adjacent image elements, but
inaccuracies in the ROI-de�nition can easily result in ampli�ed
PVE.
In the present work the focus was on the ROI-delineation

strategies for dopamine (DA) receptor type 2/3 PET-imaging,
although optimization of ROI-delineation strategies is of high
importance in various nt-PET studies targeting di�erent re-
ceptors. The choice is motivated by the facts that DA PET-
imaging, in particular using 11C-raclopride, constitutes a wide-
spread methodology in human neurotransmission research, and
its ROI-analysis has been particularly demanding due to vast
functional repertoire of the striatum, the hub of dopaminergic
transmission.

2.3.1 Implications from the functional
organization of the striatum

An illustrative schematic representation of the striatal connec-
tions can be found in [41] Fig. 12 by Haber and colleagues.
Anatomically striatum is divided into caudate nucleus (CAU),
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putamen (PUT) and nucleus accumbens (NAcc), while the
functional division has ventro-medial to dorso-lateral and ros-
tral to caudal gradients not obeying the anatomical division
[41]. The limbic striatum (LSTR) which includes the NAcc
and the ventral parts of the rostral CAU and PUT receives
its direct frontal input from the orbital and medial prefrontal
cortex (OMPFC) [41], which is thought to have an important
role in the development of reward-guided behaviours [41].
Dopamine has an important role in the neuromodulation of the

striatal signalling. The striatum has the highest concentration
of DA receptors in the human brain, and it mediates most of
the dopamine-related signalling. The role of e.g. LSTR has
been widely studied in di�erent pathological states involving the
reward system using 11C-raclopride and other dopamine D2/3
receptor speci�c tracers, mostly in drug abuse reinforcement
[103] but recently also in connection with pathological gambling
[53]. In contrast, the associative striatum (ASTR) receives its
direct cortical inputs mostly from the dorsolateral prefrontal
cortex (DLPFC) which is thought to be involved in cognitive
functions such as working memory [39], while the sensorimotor
striatum (SMST) receives its direct cortical inputs mostly from
motor and pre-motor cortical regions.
Di�erentiated response to pharmacological as well as cog-

nitive and behavioral activations have been reported in the
functional striatal subregions as measured using 11C-raclopride-
PET [32, 66]. It has been regarded that the functional division
of the striatum would be more relevant in PET imaging stud-
ies investigating alterations in DA levels than the anatomical
division. Furthermore, introduction of the new high-resolution
PET scanners has opened new possibilities in the striatal in-
vestigations highlighting the importance of accurate striatal
subdivision.
For instance, in our recent study we showed signi�cant rostro-
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caudal gradients in the striatal BP as measured using 11C-
raclopride and the HRRT [2]. In the caudate nucleus and limbic
striatum there was a declining trend, while in the putamen
there was an inclining trend of BPND in rostro-caudal axis.
Di�erences between the rostral and caudal BPND were in the
order of 10-20%.
In a recent study Tziortzi and colleagues [97] showed increased

sensitivity to DA level alteration using functional subdivision
as compared to anatomical subdivision as measured with 11C-
raclopride and d-amphetamine challenge. Tziortzi and col-
leagues employed a MRI technique called probabilistic trac-
tography [12], that can be used to explore the connectivity
based (CB) functional subdivision of the striatum.
The process of CB functional subdivision of the striatum

employed in their study is illustrated in [97] Fig. 1. In the �rst
phase they investigated the projections from the striatum to the
frontal, parietal, temporal and occipital cortices. In probabilistic
tractography each striatal voxel was designated probabilities at
which its connections would reach a given cortical region. Then,
the striatum was segmented according to these probabilities by
assigning each voxel to the lobe with highest probability.
The temporal lobe innervates a very small territory in the

ventro-medial striatum, while the frontal lobe was assigned to
approximately 2/3 of the striatal voxels (see Figure 1 in [97]).
In the second phase the frontal lobe was further subdivided
into functional regions of limbic, executive, rostral-motor and
caudal-motor cortex, according to literature not based on indi-
vidual functional-MRI measurements. Tractography analysis
was rerun for the striatal voxels assigned to frontal lobe to �nd
striatal territories associated with the aforementioned frontal
lobe subregions. The CB functional subdivision was in good
concordance with the previous studies in humans and primates
(c.f. Figure 12 in [41]). The individual subdivisions were in
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addition analysed in Montreal Neurological Institute (MNI) nor-
malized coordinates in orded to de�ne probabilistic atlases at
di�erent probability thresholds and voxel sizes.

2.3.2 ROI delineation strategies in the
striatum

Methods for ROI delineation can be categorized into manual
and automated. Manual ROI delineation is typically achieved by
using an anatomical reference image (in the brain studies mostly
T1 weighted MRI images), a dedicated ROI delineation software
and expertise of a trained researcher. In 11C-raclopride studies
the manual ROI delineation in the striatum is typically achieved
according to the guidelines described by Mawlawi and colleagues
yielding the functional ROIs of limbic striatum (LSTR), asso-
ciative striatum (ASTR) and sensorimotor striatum (SMST)
[66, 67].
To date the manual ROI drawing has been regarded as the

gold standard, for the ability to accurately delineate the gray
matter boundaries. However, the manual interaction introduces
a subjective component to the analysis that can produce bi-
ased results between subject groups and between operators [44].
Moreover, the ever-increasing spatial resolution of the PET
images requires more manual labour due to higher sampling
density - in a typical high-resolution 11C-raclopride-PET study
the ROIs are drawn on over thirty coronal slices.
Automated ROI delineation methods can provide operator-

independent and reproducible segmentations that do not require
manual labour of expensive experts [30]. Furthermore, auto-
mated methods might enable more accurate functional subdivi-
sion of the striatum as compared to the manual method. Auto-
mated methods can be categorized into atlas-based methods,
and those that segment the imaging data directly, as depicted
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in Figure 2.4.
Atlas-based methods employ a mapping from the atlas de�n-

ing space to the individual space that is subsequently applied
to individualize the atlas-mask image. The mapping is typi-
cally calculated using non-linear matching between individual
anatomical MRI image and an anatomical template image, but
can be also achieved between individual PET image and a
PET template. Direct segmentation can be obtained from the
anatomical or functional imaging data. Method depicted in Fig-
ure 2.4 employs the known gradients in 11C-raclopride binding
[2] to �nd clusters of functionally homogeneous voxels from the
PET image [90].
Currently, there is a consensus that the functional subdivision

should be favoured over the anatomical division in the ROI
analysis of the 11C-raclopride studies. However, the manual
method based on anatomical landmarks is still regarded as
the gold standard for ROI delineation. The rules for manual
delineation described by Mawlawi and colleagues [66, 67] and
later by Tziortzi and colleagues [96] have served well, but there
is still room for subjective bias, especially in the LSTR, that
might confound the analysis.
Recently, there have been advances in the de�nition of the stri-

atal subdivision [97] as well as in the PET imaging through the
introduction of probabilistic tractography and high-resolution
PET scanners, respectively. Currently, there exists automated
methods that might provide more robust functional ROI delin-
eation than manual ROI drawing. At current the feasibility of
the atlas-individualization approach using the novel CB-atlases
is however unknown, thus, comparison with the current ROI-
methodologies is warranted in order to assess its feasibility.
In addition to the striatal ROIs the pharmacokinetic anal-

ysis of 11C-raclopride studies using reference tissue methods
requires a reference region ROI. The cerebellar cortex (CERC)
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Figure 2.4: Illustration of methods for automated ROI generation that
apply atlas individualization or direct segmentation of the 11C-raclopride
PET BPND image.

is commonly used as a reference region as it is almost devoid
of D2/3 receptors, and its usage has been validated before [61].
Currently, manual drawing is often applied in the reference
region ROI delineation but automated methods based on atlas
individualization exist. In a recent study Schain and colleagues
compared manual delineation, to that of two atlas individual-
ization for the extraction of reference region ROI [82]. Their
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�nding was that manual delineation might be superior to that
of automated methods, but the behaviour is somewhat ligand
dependent. For fully automated analysis of 11C-raclopride stud-
ies it would be highly bene�cial to obtain the reference region
ROI also automatically.

2.4 Summary
Dynamic PET o�ers a versatile tool to assess receptor binding.
Receptor binding assays can be used to probe direct occupation
by exogenous drugs or indirect occupation by endogenous neuro-
transmitter. In particular the rapid �uctuations in endogenous
neurotransmitter release due to cognitive/behavioural stimula-
tion constitute an endeavour that is not easily achieved, but
holds great potential with regard to better understanding the
pathophysiology of various disorders and also the brain function
in health.
The current state-of-the-art PET methodology employs single-

injection measurements and analysis that is claimed to char-
acterize the temporal pro�le of the neurotransmitter release.
The setup has been solely employed with 11C-raclopride but the
theory applies to any tracer that has amenable features.
Temporal characterization of the neurotransmitter response

may permit new kind of analysis on PET data that has not
been available before. In cognitive/behavioural stimulations
the achievable length of neurotransmitter activation is often
short due to learning and habituation, thus implicating need
for more accurate temporal modelling per se, but also some
brain disorders involving neurotransmission may be largely of
temporal nature rather than about magnitude.
The lp-ntPET model contains four explicit parameters (R1,

k2, k2a, 
) and three implicit parameters of the gamma-variate
functions. The concern is whether the statistical quality of the
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dynamic PET data allow robust estimation of all the parame-
ters. Furthermore, the temporal sampling of the PET data must
accommodate with the expected temporal pro�le of the neu-
rotransmitter �uctuations, increasing the statistical variation
as the frame length decreases. In addition, PVE due to poor
spatial resolution of PET or due to head motion or inaccurate
ROI-delineation may mask the subtle localized variations in the
PET signal.
A major concern, however, is the absolute quantitative accu-

racy of the dynamic PET data. It is apparent from the lp-ntPET
formulation that the risk of type I error in the statistical hy-
pothesis testing is considerable. Considering the re-analysis
of Egerton and colleagues [32] of the famous battle�eld-game
experiment of Koepp and colleagues [58] it is anticipated that
rigorous error recognition and compensation is required in order
to implement a cognitive/behavioural stimulation experiment
to study neurotransmitter release.
At current, HRRT provides the best achievable spatial res-

olution in human brain PET studies but it is associated with
considerable risk of quanti�cation bias due to reconstruction
inaccuracies. The so-called low count statistics bias in the iter-
ative reconstruction is correlated with the measurement SNR
and its impact should be carefully addressed in particular in
lp-ntPET analysis. It is also unclear at which circumstances
the HRRT quanti�cation can be considered accurate.
ROI-based analysis of PET imaging data can in turn provide

signi�cant improvement in measurement SNR, but erroneous
ROI-delineation may introduce additional bias. The most recent
automated methods for striatal ROI-delineation show potential
to improve the outcome but their feasibility has not yet been
fully addressed.





3 Objectives

The purpose of the present work was to investigate the recon-
struction strategies for high-resolution PET and the feasibility
of the novel ROI-delineation strategies in DA receptor type 2/3
studies using 11C-raclopride. The particular aim was to �nd and
develop optimal methodologies to allow more accurate temporal
characterization in nt-PET studies. The work is divided into
three parts with the following objectives:

a) To investigate the quantitative accuracy of OP-OSEM
algorithm for high-resolution PET image reconstruction,
and further, to set the minimum NEC-statistics yielding a
tolerable error, and translate the minimum NEC-statistics
into temporal resolution. (Publications I and II)

b) To investigate the quantitative accuracy of RM-OP-OSEM
and 3DRP with transradial bicubic interpolation gap-
�lling algorithms for high-resolution PET image recon-
struction. (Publications III and IV)

c) To evaluate the feasibility of novel automated ROI-delineation
methods in the human striatum in comparison to current
manual ROI-delineation. (Publication V)
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4 Experiments

The PET experiments presented in Publications I-V (referred to
as studies I-V) were implemented using antropomorphic brain
phantoms as well as real human test-retest measurements. Real
high-resolution PET experiments presented in this work were
all acquired using the HRRT-scanner.

Phantom experiments
Three di�erent anthropomorphic brain phantoms were scanned
for the reconstruction experiments:

a) the Ho�man phantom [43] (study I);

b) the Striatum phantom [60] (study I); and

c) the Iida phantom [47] (study III).

All the phantom scans were made in list-mode format, allow-
ing retrospective framing of the data, and transmission scans
were performed for �-map calculation. All sinograms were
generated from the list-mode data using span 9 and max-
imum ring di�erence of 67, while the reconstructions were
made using 256 � 256 � 207 image matrix with voxel-size of
1:21875 mm� 1:21875 mm� 1:21875 mm.
The Ho�man 3D brain phantom provides accurate anatomical

simulation of the radioactive distribution in the human brain
[43]. The phantom consist of 95 thin plastic slices that are
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carved to simulate a 4:1 ratio of radioactivity between grey and
white matter. The slices are packed in a plastic cylinder and
�lled with the radioactive solution. Thus the Ho�man phantom
does not provide a realistic head contour nor attenuation e�ect
of the skull, but it provides realistic contrast between the grey
and white matter, and it is widely applied in the performance
evaluation of PET scanners and reconstruction algorithms. In
study I the Ho�man phantom was �lled with 18F-FDG in water
solution, having a starting activity of 35 MBq. The relatively
low starting activity resulted in a reasonable scanner dead-time
(range 6.5%-5.8%) and randoms-to-trues ratio (range 0.147-
0.132), during the 70 minutes scanning time.
The Striatum phantom provides realistic simulation of the

anatomy of the striatum [60]. The phantom consists of two
main parts, the head and the brain. The head part provides
a realistic head contour and attenuation from the skull, and
it can be opened through a calvarial cut to place the brain
part inside. The brain part has �ve compartments that can
be �lled separately; left and right nucleus caudate, left and
right putamen, and the remainder of the brain. In study I the
striatum to background ratio was approximately 5:1, while the
total amount of activity in the 18F-FDG solution was 21 MBq
at scan start. The scan duration was 57 minutes (corresponding
to a typical 11C-raclopride bolus scan).
The Iida phantom provides accurate anatomical simulation of

the radioactivity distribution in the human brain, that is based
on digital model of a real human MRI scan [47]. The digital
model was realized using a 3D-printing technique. 3D-printing
technique allowed generation of separate compartments for the
radioactivity, skull and air cavities within the head region.
The skull compartment was �lled with K2HPO4 solution to
simulate the attenuation e�ect of the skull, while in study III
the radioactivity compartment was �lled with 18F-FDG solution
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with approximately 69 MBq of activity at the scan start. The
scan duration was 20 minutes.
Purpose of study I was to investigate the linearity of the

radioactivity measurement at varying count statistics using
the OP-OSEM reconstruction. For this, the state-of-the-art
correction algorithms were employed for scatter, randoms and
attenuation correction, while the varying count statistics were
simulated using increasing number of NEC in overlapping frames
(c.f. Chapter 2.2.2).
The list-mode data sub-sampling resulted in NEC range of

6�104 to 3�108 in the Ho�man phantom experiment and 1�105

to 3� 108 NEC range in the Striatum phantom experiment.
Reconstructions at varying count statistics were made using

the speed-optimized version of the OP-OSEM algorithm [45],
with 16 subsets, and 11 full iterations, based on the initial
convergence experiment with high count statistics data and
literature [24].
Evaluation of the reconstruction accuracy was made within

anatomically determined ROIs using remainder relative to the
internal reference as a �gure-of-merit (FOM):

REMk =
mean(ROIk; F̂ )=TF̂
mean(ROIk; F )=TF

; (4.1)

where F̂ is any estimate image, F is the reference (high statistics)
image and TF is the total trues in frame F . Furthermore,
regional contrast factors were calculated as

Qk(F ) =
mean(ROIk; F )
mean(@ROIk; F )

; (4.2)

where mean(R;F ) is the mean pixel value inside region R and
@ROIk is a two to three pixels wide edge of the region ROIk.
Threshold of jREMk � 1j < 0:025 was used to determine the

minimum NEC to obtain reasonably low bias. The possible
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correlation between regional contrast and bias was explored
using Pearson product moment correlation coe�cient between
the miminum NEC and Qk over the regions.
In study III the full Iida phantom acquisition of 20 minutes

(2:3 � 108 NEC) was subdivided into 28 samples of pre�xed
NEC (8:1 � 106). Image reconstructions were obtained using
OP-OSEM, RM-OP-OSEM and 3DRP with bicubic transradial
interpolation gap-�lling algorithms as described in Chapter 2.2.4.
Input to the iterative reconstruction was separate prompts,
randoms and scatter sinograms, whereas, input to the analytical
reconstruction was a precorrected, gap-�lled trues sinogram.
Analytical 3DRP reconstruction was made with Hamming �lter
with a transaxial and axial cuf-o� frequency of 1 cycle per voxel.
For iterative methods the number of iterations were 1-50 when
16 subsets were employed, and 1-250 without subsets. All image
data were post-smoothed using a 2.5 mm FWHM 3D Gaussian
kernel size.
Evaluation of the reconstructions were made within anatomi-

cally determined ROIs using either internal reference or the
analytical reconstruction as a reference. The voxel values
were scaled with the total counts in each image prior to ROI
evaluation, and the bias was expressed as 100% � (ROIcur �
ROIref)=ROIref . Furthermore, the replicate design allowed
determination of the true SNR through

SNR =
mean(AC)
std(AC)

; (4.3)

where mean(AC) is the activity concentration average and
std(AC) the standard deviation over the replicates.

Human experiments
The human data were collected for evaluation of the short-term
repeatability and reliability of 11C-Raclopride measurement
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using the HRRT. The dataset consisted of two 11C-Raclopride
scans of each subject during the same day at least 2.5 hours apart.
Seven healthy male subjects free of any somatic or psychiatric
illness were recruited for the study. All were right handed and
non-smokers. To exclude any structural brain abnormalities
and to obtain anatomic reference, all subjects underwent 1.5T
MRI. The age, height, and weight of the subjects were 24.5–3.5
years, 185.5–12.5cm, and 74–14kg, respectively (mean–s.d.).
Each PET scan was preceded by a transmission scan with a

moving 137Cs point source for attenuation correction calculation.
PET scanning and motion tracking (MT) were started at the
time of injection, and continued for 55 minutes. PET data were
collected in event-by-event list-mode format, and the MT data
was collected using an external infra-red position sensor, the
Polaris Vicra system (NDI Medical, Waterloo, Canada).
Each subject was accommodated with an individually shaped

thermoplastic mask to minimize the head motion during PET
scanning. With regard to the head motion the data were of high
quality, as indicated by small within and between frame motion,
c.f. publication II. In addition, the injected doses and masses
did not show any statistically signi�cant di�erences between
the scans.
Purpose of study II was to compare the image reconstructions

obtained using the OP-OSEM and conventional framing to those
obtained using RM-OP-OSEM algorithm and those obtained
with �xed NEC statistics framing.
The OP-OSEM reconstructions were made using 16 subsets

and 8 iterations, while the RM-OP-OSEM reconstruction were
made using 16 subsets and 10 iterations.
The conventional framing from the literature was based on

the kinetic pro�le of the 11C-Raclopride TAC, that is, there was
more dense framing in the initial part of the scan to depict the
peak in radiotracer uptake, while the decaying part had more
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sparse framing to accommodate for decline of the radioactivity.
The conventional framing was 2�30, 9�60, 3�120, 3�180, and
6�300 seconds, resulting in altogether 23 frames.
The NEC-based framing was introduced in study II for retro-

spective sampling of the emission list-mode data according to
a prede�ned NEC-threshold. In the conventional framing the
time points were �xed while the NEC was let to vary, while in
the NEC-based framing the count statistics were constant but
the time points may vary. It was conceived that variability in
the framing sequence may introduce bias in the SRTM-based
kinetic analysis, whence, it was deemed necessary to validate
the NEC-based framing through the test-retest performance
evaluation.
The NEC-threshold was set at 7� 106 on the basis of experi-

ments in study I, yielding 10 to 17 frames per scan, depending
on the injected dose and subject weight. Furthermore, parts
of each scan were sampled into short duration frames yielding
5� 105 to 2� 106 NECs in 268 frames. The purpose of the low
statistics framing was to explore the low statistics bias in real
human data.
Reconstructions were evaluated using manually delineated

anatomical ROIs as described in publication II. Primary eval-
uation was made with regard to the test-retest performance
regionally. The test-retest performance was quanti�ed using
test-retest variability (TRV) for intra-subject variability and
intraclass-correlation coe�cient (ICC) for reliability, calculated
as:

TRV =
2jBPt �BPrtj
BPt +BPrt

(4.4)

where BPt=rt stand for the test and retest estimate of the mea-
surement outcome within subject;

ICC =
MSB �MSW

MSB + (k � 1)MSW
(4.5)
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where MSW indicates the within, and MSB the between sub-
jects sum of squares of the di�erence in the outcome measure
and k = 2 [84]. Moreover, the range of �BP = 100%� (BPrt�
BPt)=BPt and the arithmetic mean of the outcome measures
in test and retest � SD were reported.
In the secondary analysis the reconstructions were evaluated

according to the area-under the curve (AUC) of the TAC data,
relative to the AUC of an internal reference. The relative
di�erence in the AUC was de�ned as

�AUC(%) = 100%
R t2
t1 f(t)dt� R t2

t1 f0(t)dt
R t2
t1 f0(t)dt

where f0(t) is the TAC of the internal reference method, in this
case the OP-OSEM reconstruction of the conventional framing.
Aim in study IV was to evaluate the transradial bicubic

interpolation method and the analytical 3DRP reconstruction
relative to the iterative reconstruction methods using real human
data.
To investigate the impact of low count statistics in study

IV, the conventional framing de�ned above was employed as
a reference, and additional framing was obtained using short-
duration frames by splitting each frame in the conventional
framing into two, thus the short-duration framing included 46
time points.
The iterative reconstructions employed 16 subsets, with 12 full

iterations for OP-OSEM and 16 full iterations for RM-OP-OSEM.
In study IV reconstructions were evaluated using the same

manually delineated ROIs as in publication II. Primary eval-
uation was made with regard to the �AUC(%), where the
internal reference was obtained from the conventional framing
using each of the reconstruction methods. In addition, the
impact of framing to the BPND was investigated using

�BPframing(%) = 100%
BPshort �BPlong

BPlong
(4.6)
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The test-retest reliability was reported using ICC for long- and
short-duration framings.
Purpose of study V was to evaluate the manual and automated

methods for ROI-delineation in 11C-raclopride studies. The
human test-retest data �rstly presented in study II was re-
processed to maintain the best achievable spatial resolution,
with regard to the image reconstruction as well as motion
correction. Manual segmentation of the striatum was performed
by two operators, one with more experience and other with less
experience but instructed by the �rst; a T1-weighted MRI fused
to PET sum image was used as a reference. The anatomical
landmarks described by Mawlawi and colleagues [66, 67] were
applied in the ROI delineation.
The individualizing mappings required in the atlas individu-

alization were obtained using the FSL (version 5.0.8, FMRIB,
Oxford, UK) and SPM (version 8, Wellcome Trust Centre for
Neuroimaging, London, UK) software packages. The atlas of
Fischl and colleagues was individualized within the FreeSurfer
software (version 5.3.0, Martinos Center for Biomedical Imaging,
Charlestown, Massachusetts, USA). The direct PET image clus-
tering algorithm previously described in e.g. [36] was revised
for this work through inclusion of Markov random �eld (MRF)-
based resolution modelling in the initial striatum extraction
step and inclusion of geometrically de�ned initialization of the
clusters.
Primary analysis of the method performance was made on the

basis of the test-retest characteristics. Test-retest characteristics
of the ROI methods were assessed using SRTM kinetic analysis
yielding the BPND, where the CERC TAC was used as a refer-
ence. To limit the number of comparisons, one of the CERC de-
lineation methods was chosen as reference method. In addition
to the ICC and TRV the standard error of measurement (SEM)
was reported. SEM was calculated as SEM = SD

p
1� ICC,
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where SD was the standard deviation of all samples.
A secondary, more descriptive analysis was made relative to

manual segmentation. That is, the manual delineations made
by the �rst operator were used as a reference to which the other
ROI-methods were compared. Comparisons were made at the
voxel-level by measuring the similarity of the voxel-sets within
the striatum (whole) (STR), LSTR, ASTR and SMST ROIs
using the Jaccard coe�cient:

J(A;B) =
jA \Bj
jA [Bj

; (4.7)

where A denotes the voxel-set of manual segmentation and B
the voxel-set of the other method. Furthermore, agreement
between the binding parameters was assessed using the limits
of agreement (LOA) [14]. LOA is closely related to the Bland-
Altman plot which can be used to assess the outcome of two
methods that both contain methodological errors. The LOA
was expressed as �d � 1:96SD, where �d is the average of the
di�erences between the two methods and SD is their standard
deviation.





5 Results and discussion

Quantitative accuracy of OP-OSEM algorithm for
high-resolution PET image reconstruction

Graphs in Figure 5.1 illustrate the relative regional accuracy
(REMk) as a function of NEC in Ho�man and Striatum phan-
tom experiments (study I), in chosen brain regions. The graphs
illustrate a two-way pattern; in the high activity (’hot’) regions
the activity was underestimated and in the low activity (’cold’)
regions it was overestimated. There was a nearly linear correla-
tion between log(NEC) and REMk, indicating a strong impact
of the count statistics in the quantitative accuracy of the OP-
OSEM reconstruction, and limit of jREMk � 1j < 0:025 was
subsequently used to �nd minimum NEC statistics to obtain
an endurable error level of 2.5%.
In the Ho�man phantom experiment there was some vari-

ance in the minimum NEC requirements in the gray matter
ROIs, including one outlier observation: the caudate nucleus.
For the other gray matter ROIs the average requirement was
4:6� 106 NECs. In the Striatum phantom experiment the av-
erage mimimum NEC requirement in the gray matter regions
was somewhat higher (7:4� 106) as compared to the Ho�man
phantom experiment, while the cold background region showed
rather low NEC requirement.

61



62 Chapter 5. Results and discussion

Figure 5.1: Phantom experiments (study I). Graphs represent the bias
relative to the complete data (REMk) as a function of the count statistics
in chosen regions. Vertical lines correspond to minimum NEC statistics to
obtain jREMk � 1j < 0:1; 0:075; 0:05; 0:025.
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To further investigate the relation between reconstruction bias
and the image contrast the regional contrast factors Qk(F ) were
calculated and correlated with the minimum NEC requirements
regionally. After removing the outlying observation of the
caudate nucleus the contrast factors and the minimum NEC
requirements in the gray matter regions showed a signi�cant
positive linear correlation in the Ho�man phantom experiment
(Pearson’s product moment correlation R=0.73, p=0.005), thus
suggesting a strong dependence between the local image contrast
and susceptibility to reconstruction bias.
The main �ndings in study I were that the previously recom-

mended OP-OSEM algorithm for low count statistics HRRT
reconstruction was not completely bias-free and that the low
count statistics bias was related to the local image contrast.
The bias seen in study I was of similar magnitude with that
seen by van Velden and colleagues in [98].
In contrast to previous studies the NEC-based analysis pre-

sented in study I provided applicable threshold for retrospective
framing of the HRRT PET data that can be e�ectively used
to protect against the reconstruction bias. Furthermore, the
contrast analysis implicated a problem in the convergence of
the iterative reconstruction in low count statistics that may
be reversible through modi�cation of e.g. the number of itera-
tions and/or subsets. These two implications were investigated
further in studies II and III.
Firstly the impact of using �xed NEC-statistics to the out-

come of pharmacokinetic modelling was explored using the
11C-raclopride test-retest human dataset in study II. Safe NEC-
statistics of 7� 106 was estimated from the Striatum phantom
experiment in study I that better resembles the activity dis-
tribution in 11C-raclopride scans. The detrimental impact of
�xed NEC-statistics framing to the temporal resolution in 11C-
raclopride scans was illustrated in study I, whence it was deemed
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necessary to explore the e�ect of the proposed framing method
to the outcome of pharmacokinetic modelling in real human
data. In addition, the low count statistics bias was explored
further using real human data in study II.
Figure 5.2 illustrates typical TAC-data obtained from a hu-

man scan using the tested reconstruction schemes. The �xed
NEC high statistics framing yielded almost identical AUC
in comparison with the conventional framing with the mean
�AUC(%)<1.5% in all regions, implying a tolerable impact from
degenerated temporal resolution. Whereas, the low statistics
framing showed smaller values in all striatal regions, while the
cerebellar values were similar, indicating a similar reconstruc-
tion bias in real human data as predicted from the phantom
experiments.

Figure 5.2: Human test-retest data (study II). A typical example of regional
TAC data in the putamen and in the cerebellum estimated by the di�erent
framings and the OP-OSEM and RM-OP-OSEM reconstruction. Solid line
is for original framing with OP-OSEM reconstruction, dash-dot line is for
high statistics framing and OP-OSEM, dashed line is for RM-OP-OSEM
reconstruction, and circles are for low statistics framing and OP-OSEM.

According to the analysis in study II there was a good agree-
ment of the average BPND obtained from the OP-OSEM recon-
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struction with conventional or NEC-based framings, and the
TRV(%) and ICC were in the same rank.
Good agreement between the conventional and NEC-based

framing was interpreted to provide cross-validation of the meth-
ods; the results suggested that the conventional framing was not
associated with signi�cant reconstruction bias with regard to
BPND calculation and conversely the poorer temporal resolution
due to �xed NEC-statistics framing did not yield signi�cant
reduction in the accuracy of the pharmacokinetic modelling. On
the basis of these �ndings a novel, less dense framing scheme
was proposed for the 11C-raclopride HRRT studies that better
accommodate the varying count statistics during the PET scan-
ning without interfering with the pharmacokinetic modelling.
Quantitative accuracy of RM-OP-OSEM and 3DRP
with transradial bicubic interpolation gap-�lling
algorithms for high-resolution PET image
reconstruction

The solution of less dense framing was regarded applicable in
resting state 11C-raclopride PET, but in order to allow more
temporal �exibility to accommodate for instance lp-ntPET mod-
elling a bias-free reconstruction algorithm was required.
The contrast dependence of the reconstruction bias using

OP-OSEM seen in study I suggested restricted convergence
in low count statistics that may have been due to too early
suspension of the iterations or due to divergence of the iterations
in the presence of noise. These two implications were further
investigated in studies III and IV.
Firstly, convergence of the OP-OSEM algorithm in high and

low count statistics was further investigated in study III. Ex-
periments in study III showed that the convergence in low
statistics stopped much earlier as compared to high statistics
in the OP-OSEM iteration and the activity concentrations re-
mained at a lower level in high contrast regions as the iterations
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proceeded (c.f. Figure 5.3 top). Furthermore, the behaviour was
the same independent of the number of subsets, thus modifying
the number of iterations or subsets did not help to alleviate the
reconstruction bias. In basal ganglio ROI the bias to cerebel-
lar ROI was approximately -3%, in medial frontal cortex ROI
approximately -4% and in cingulate cortex ROI approximately
-5%, thus implying a sizeable quanti�cation non-linearity de-
pending on the count statistics. The NEC-level employed in
study III was not extraordinary low, indicating a risk of biased
outcome in a neurotransmitter release assessment if OP-OSEM
algorithm was applied.

Figure 5.3: Bias in OP-OSEM and RM-OP-OSEM reconstruction with
high and low statistics data. The graphs show regional di�erence relative to
the high statistics 3DRP reconstruction as a function of iterations. The low
statistics data are presented as mean�SD over the replicates.
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A common shortcoming of generic MLEM-based iterative re-
construction is the lack of spatial connectivity between the
neighbouring voxels, while in the living tissue the radioac-
tivity concentration can be assumed fairly homogeneous in a
millimeter-scale neighbourhood. In the case of the HRRT data
this caveat has a stronger impact as compared to conventional
scanners due to smaller volume of the LORs and image voxels,
and thus less signal per measurement and image element. It is a
viable supposition that the iterative reconstruction diverges in
low count statistics due to poor SNR per voxel, but increasing
the true covariation between voxels might help to reverse this
unwanted behaviour.
Covariation between neighbouring voxels can be achieved by

introduction of explicit or implicit spatial penalization. An
example of explicit spatial penalization is the median root
prior (MRP)-algorithm introduced by Alenius and Ruotsalainen
[4], that might serve well for the current task, but was not
included in the experiments due to lack of HRRT-speci�c im-
plementation. In contrast, the HRRT-speci�c PSF-kernel im-
plemented in the RM-OP-OSEM algorithm can be regarded as
an implicit spatial penalization. The RM-OP-OSEM algorithm
was primarily developed to alleviate the PVE in the HRRT
measurement, but while doing so it also increases the voxel-wise
covariation.
The bene�t of using the RM-OP-OSEM algorithm as com-

pared to OP-OSEM algorithm in low count statistics have been
earlier shown by Walker and colleagues [105], but some bias was
still visible. Thus, it was regarded that further investigation of
the RM-OP-OSEM algorithm was required with regard to its
performance in low count statistics as well as its noise charac-
teristics. Feasibility of the RM-OP-OSEM algorithm in human
studies was earlier shown by Sureau and colleagues [88] and
Varrone and colleagues [102] using two HRRT scanners, but its
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impact on the repeatability and reliability of the 11C-raclopride
assessment had not been reported.
In study II the test-retest characteristics of RM-OP-OSEM

were investigated using the conventional framing. In study II
we observed increased image contrast with RM-OP-OSEM that
was associated with higher BPND estimates in the striatum, but
not necessarily improved test-retest repeatability or reliability.
In contrast, the test-retest characteristics of RM-OP-OSEM al-
gorithm were mainly inferior to those obtained using OP-OSEM.
On the other hand, in study IV the same human data was

employed to investigate the impact of low count statistics and it
was found that the bias in RM-OP-OSEM was approximately
one-third of that in the OP-OSEM reconstruction, indicating
a bene�t of using RM, similar to that seen by Walker and
colleagues [105].
The characteristics of the RM-OP-OSEM algorithm were fur-

ther investigated in a phantom experiment in study III. The
phantom experiment showed non-linearities in the RM-OP-OSEM
reconstruction with regard to the count statistics, but in slightly
smaller magnitude as compared to the OP-OSEM, in good con-
cordance with the earlier �ndings by others [88, 105].
A possibly more intriguing facet of the �ndings in study III was

the non-negligible change of the iterates between a commonly
suggested 15 iterations [88] and 50 iterations, with a non-zero
slope of the tangent of the bias curve (c.f. Figure 5.3 bottom).
It is commonly acknowledged that the RM-OP-OSEM re-

quires more iterations to converge [88], but our �ndings suggest
that convergence might not be reached even after 50 iterations
(with 16 subsets). On the other hand there was a regime close
to 15 iterations where the high and low count statistics data
showed smallest di�erence between each other (c.f. Figure 5.3
bottom), but the regime might be dependent on the phantom
design and the tested NEC-levels. The NEC-level employed in



69

study III was not extraordinary low.
Over-correction in thin high contrast territories with RM-OP-OSEM

(see Figure 2 column C in Publication III for edge artefact) have
been observed by other researchers too. Stute and Comtat
[87] have suggested employment of high number of iterations
followed by spatial smoothing with a 3D Gaussian kernel size
matching with the scanner intrinsic resolution to solve the edge
artefact without loosing the high frequency information. In
their experiments they employed the method for simulated data
with known PSF, while in study III we employed true HRRT
data and estimated PSF.
In our experiments post-smoothing using a 2.5 mm FWHM 3D

Gaussian kernel did not change the behaviour of RM-OP-OSEM
within 50 iterations, although the magnitude of bias decreased
from approximately 11% to approximately 8% in the basal gan-
glia ROI (data not shown). Thus, albeit the RM-OP-OSEM
algorithm might provide relative alleviation to the low count
statistics bias issue, it did not improve the test-retest characteris-
tics of 11C-Raclopride assessment (study II) and its convergence
can not be guaranteed, in contrary, there was a sizeable edge
artefact e�ect in a phantom study (study III).
Thus, despite the relative advantage of RM-OP-OSEM over

OP-OSEM in low count statistics its usage in lp-ntPET studies
can not be recommended without caution.
In contrast, the analytical reconstruction implemented using

transradial bicubic interpolation method for gap-�lling and
3DRP algorithm showed virtually no bias in our experiments.
In study III the low count statistics replicates yielded identical

outcome in average relative to the high count statistics reference
and the experiments in study IV with half duration frames
showed zero bias in 3DRP reconstruction, while the iterative
methods showed biases of up to 3% in BPND estimates. Thus
within the tested NEC-statistics analytical reconstruction was
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bias-free while the iterative methods showed signi�cant over- and
underestimations of the activity concentrations, indicating that
with regard to reconstruction bias usage of analytical algorithm
is recommended over the iterative algorithms, and should thus
be recommended in lp-ntPET studies.
Signal-to-noise ratio considerations

Quantitative accuracy is an essential prerequisite in pharmacoki-
netic modelling but the temporal resolution may be expendable
on behalf of enhanced SNR. In particular, in the lp-ntPET
analysis the SNR plays a central role in order to robustly detect
the subtle changes in the PET signal. On the other hand, with-
out prior knowledge about the time course of the �uctuations
due to e.g. cognitive stimulation the best achievable temporal
resolution should usually be pursued.
It is commonly thought that the iterative reconstruction al-

gorithms would yield signi�cantly better SNR as compared to
analytical reconstruction due to more accurate modelling of the
statistical variation in PET data.
For the HRRT van Velden and colleagues have employed

homogeneous cylinder phantom and Ho�man phantom in a
replicate design to assess the true variation in the ROI mean,
and found that the 3DRP reconstruction was associated with
approximately two-fold higher noise level than the OP-OSEM
reconstruction [100]. However, the high noise level might be
at least partly attributed to the CFS gap-�lling method that
has been shown more sensitive to noise than the DCT-domain
and bicubic transradial interpolation gap-�lling methods (c.f.
phantom experiment in study IV).
We tested the SNR behaviour of iterative and analytical

reconstructions in study III using the Iida phantom in a replicate
design. In our experiments the analytical reconstruction with
3DRP was preceded by bicubic transradial interpolation gap-
�lling instead of CFS gap-�lling.
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Results from the SNR experiment are shown in Figure 5.4.
Graphs in Figure 5.4 indicate that the SNR decreases while
the iterations proceed, although the initial peak in SNR should
be ignored, as it mostly re�ects the uniformity of the initial
guess. It can be seen that the iterative algorithms do not
necessarily produce better SNR as compared to the analyti-
cal algorithm if convergence of the iterative reconstruction is
required. There were also di�erences between the iterative meth-
ods; RM-OP-OSEM yielded systematically lowest SNR while
the OP-OSEM reconstruction yielded slightly higher SNR with 1
subset than with 16 subsets. Visualization of the voxel-by-voxel
SNR can be found in Figure 2 last row in Publication III.

Figure 5.4: Iida phantom (study III). Graphs represent the SNR be-
haviour of various HRRT reconstruction schemes as calculated over the
count-corrected samples. See legend for the applied reconstruction meth-
ods. Iteration number was scaled between 0 and convergence, to allow
simultaneous presentation of the di�erent methods.



72 Chapter 5. Results and discussion

Thus, according to the phantom experiments in study III
the 3DRP reconstruction with transradial bicubic interpolation
based gap-�lling can provide comparable SNR with iterative
reconstruction at a NEC-level that may introduce bias in the
iterative reconstruction. Furthermore, experiments in study
IV with half duration frames showed zero bias in 3DRP re-
construction, while the iterative methods showed biases up to
3% in BPND estimates. While, the regional ICCs of the 3DRP
reconstruction were slightly superior to those of the iterative
reconstruction algorithms.
Based on the current experiments usage of 3DRP and transra-

dial bicubic interpolation for gap-�lling can be recommended in
nt-PET studies with high requirements for temporal resolution.
In the current work employment of a small apodization �lter
size in 3DRP reconstruction resulted in similar reconstructed
spatial resolutions (in particular after matched post-smoothing
using 2.5 mm 3D Gaussian �lter kernel) between analytical and
iterative reconstructions, with only slight underestimation as
compared to OP-OSEM outcome (c.f. Fig. 5.3).

Feasibility of novel automated ROI-delineation
methods in the human striatum in comparison to
current manual ROI-delineation

Experiments in study V using various ROI-delineation methods
in the human striatum and cerebellum showed feasibility of all
the tested methods but also important di�erences. The manual
ROI method was associated with considerable inter-operator
variability while the automated methods su�ered from increased
PVE of varying degree. It was however deemed that some of the
automated methods were associated with lesser methodological
variation as compared to manual method, suggesting a bene�t
in e.g. group level comparisons if automated methods were used.
Furthermore, �exibility with regard to image normalization
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procedure in the atlas-based approach was shown.
High inter-operator variability in the manual ROI-delineation

was indicated at the voxel-by-voxel level by low Jaccard co-
e�cient (0.46-0.61). Furthermore, there was a statistically
signi�cant di�erence between the outcome measures (BPND)
as indicated by LOA range in ASTR and SMST ROIs, impli-
cating that the ROI-delineations from many operators can not
be employed without a risk of exaggerated variability and/or
systematic bias in individual BPND estimates. Moreover, the
manual ROIs were associated with systematically higher CoV(%)
of both the ROI volume and BPND as compared to some auto-
mated methods suggesting a possibly exaggerated variability
between subjects (or attenuated variability using automated
methods).
Among the atlas-based methods the structural atlases were

lacking the subdivision between the anterior and posterior parts
of caudate and putamen, thus lacking speci�city between the
associative and sensorimotor striatum. Considering the dis-
parate functionalities of ASTR and SMST the de�nition in
structural atlases was deemed inadequate for high-resolution
11C-raclopride PET studies.
In contrast, the novel CB atlas contained 7 functional subre-

gions in both striata instead of three conventionally described
in manual ROI-delineation. For direct comparison with manual
delineation a combination strategy was employed to yield 3
subregions while the original subregions were analysed indepen-
dently.
With regard to the test-retest characteristics the combined

CB-atlas ROIs showed best performance. In particular, the
ROIs generated using PET-based normalization showed smallest
average TRV(%) (4.47%) and average SEM (0.15), somewhat su-
perior to those obtained using MRI-based normalization. These
di�erences may be attributed to the limitations of MRI-based
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normalization speci�cally in the striatum, and others have also
suggested PET-based normalization in the striatum [59].
In turn, the direct PET image clustering algorithm showed

poor performance in the presence of noise despite good over-
all performance. The algorithm failed in a single scan with
extraordinarily low SNR, thus in case the image SNR can be
guaranteed through for instance averaging of many BPND im-
ages the direct PET clustering method may provide a viable
alternative.
Albeit the unwanted methodological variation can not be

fully dissected from the true biological variation it was deemed
likely that the larger between subject variability in manual ROI-
delineation was more due to random di�erences in the manual
ROIs between subjects than due to increased PVE associated
with the automated methods.
At least according to statistical power calculations that takes

into account the mean�SD of BPND showed bene�t of using
CB-atlas with PET-based normalization over the manual ROI-
delineation. A power calculation software G*Power (version
3.1.9.2, Universität Kiel, Germany) was used to calculate the
minimum sample sizes to detect a 10% change in BPND in a
one-tailed paired t-test (with � = 0:05 and power=0.95). The
results showed that in the LSTR the minimum sample size using
CB-atlas was 10 while using manual ROI-delineation it was as
much as 25. Thus, showing a remarkable improvement in the
sensitivity by using the automated method.
Furthermore, the CB subdivision has been shown to provide

more functionally relevant ROI-delineation than the structure
based delineation using e.g. manual drawing [97]. Smallest
of the 7 subregions from CB-atlas approach however showed
markedly poorer test-retest characteristics and their indepen-
dent usage in ROI-analysis may be critisized. Nevertheless, the
most important ROIs may be better protected from nuisance
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components if the 7 subregions are segmented independently.
The reference region ROI-delineations in the cerebellum were

evaluated using the test-retest characteristics of the resulting
BPND estimates, but also of cerebellar distribution volume (DV)
derived with the help of arterial plasma input. DV provided an
independent and quantitative assessment of the ROI-method
accuracy. The DV estimates from all the tested methods were
within 5% from each other showing good agreement, while the
TRV(%) and SEM were slightly superior using the automated
methods in comparison to manual drawings.
ROI volumes from automated methods were markedly larger

as compared to manual drawings suggesting a bene�t with re-
gard to SNR in the reference region TAC when using automated
methods. Improvement in SNR may have contributed to the
improved test-retest characteristics of DV using the automated
methods. Moreover, the test-retest characteristics of BPND were
slightly superior using automated methods further establishing
a bene�t from improved SNR.
In conclusion, the automated methods based on atlas in-

dividualizing approach using either PET- or MRI-based nor-
malization can provide operator-independent and replicable
ROI-delineations with improved test-retest characteristics and
sensitivity to detect group-level changes in BPND. Thus usage
of fully automated ROI-generation can be recommended in the
analysis of high-resolution 11C-raclopride data.





6 Implications

In this work high-resolution PET image reconstruction and
ROI-delineation strategies were evaluated with regard to re-
quirements in PET neuroreceptor binding assay. The particular
demands in the implementation of cognitive/behavioral activa-
tion studies have set the basis for this work.
Depiction and subsequent pharmacokinetic modelling of rapid

�uctuations in PET signal due to e.g. cognitive stimulation
require high temporal sampling. On the other hand, stimulation
of the neurotransmitter system may induce the relevant alter-
ations within small functionally specialized brain regions that
are beyond the spatial resolution of conventional PET scanners.
Thus the best achievable temporal and spatial resolution are
simultaneously required to be able to detect the most subtle
alterations in the PET signal.
Poisson characteristics of the PET signal sets serious limita-

tions with regard to spatiotemporal resolution of PET. In par-
ticular, the current state-of-the-art high-resolution human PET
imaging provided by the HRRT-scanner has been associated
with signi�cant limitations with regard to temporal resolution.
In this work it was repeatedly shown that the best tempo-

ral resolution achievable using the commonly recommended
iterative reconstruction method was relatively poor, and the
performance was not signi�cantly improved through modi�ca-
tions of the algorithm. In turn, a recently introduced gap-�lling
strategy based on transradial bicubic interpolation in tandem
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with 3D analytical reconstruction showed markedly improved
performance with regard to quantitative accuracy and similar
performance with regard to noise contribution, suggesting a true
bene�t from using this novel approach in neurotransmission
PET studies.
Due to the long time-span of this work the initial solution

using the iterative reconstruction algorithm and a prede�ned
noise equivalent counts (NEC)-threshold to guarantee quantita-
tive accuracy have been employed in the analysis of a cognitive
stimulation PET study at Turku PET Centre. Despite the poor
temporal resolution of the approach a signi�cant stimulation
e�ect was detected from the PET signal using lp-ntPET type
modelling and the �ndings related to training e�ect were pub-
lished in the prestige Science-journal in 2011 [7]. In this study
the late onset of the activation task relative to the 11C-raclopride
injection (55 minutes), however, resulted in temporal resolution
of approximately 9 minutes.
According to literature temporal resolution of 9 minutes is

clearly suboptimal in case of cognitive stimulation that is as-
sociated with learning and habituation e�ects. Thus it can be
regarded that the assessments achieved in [7] may have been
somewhat attenuated although statistically signi�cant changes
were found. A viable supposition is that the improved temporal
resolution as provided by the analytical reconstruction algorithm
provide signi�cant advantage in the measurement of the rapid
�uctuations in the PET signal in the future high-resolution PET
studies.
Nevertheless, higher temporal resolution is always associated

with deteriorated image SNR in PET. The commonly employed
approach of ROI-analysis to improve SNR was optimized in this
work for high-resolution DA PET studies. It was found that
automated method based on atlas individualization can pro-
vide improved repeatability as compared to currently employed
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manual ROI-delineation. In particular, in cognitive activation
studies where the alteration in PET signal can be spatially very
narrow the higher accuracy of atlas-based approach may prove
bene�cial, and even provide an alternative to voxel-by-voxel sta-
tistical analysis such as Statistical Parametric Mapping (SPM).
Feasibility of neurotransmission PET was improved through

the achievements in this work. To date, PET o�ers the best
approach for human in vivo neurotransmission assessment and
demands for higher accuracy are ever-increasing. Neurotrans-
mission PET holds great potential in the investigation of the
pathophysiology of various brain disorders that is not currently
fully exploited. Important obstacle on the way of more wide-
spread usage of neurotransmission PET is its methodological
complexity, and all improvements in its accessibility have a great
impact in the investigation of human neurotransmission. It is
wished that the observations made in this work would spark
new more widespread interest in the application of neurotrans-
mission PET in e.g. cognitive/behavioral stimulation studies,
but also in pharmacological stimulations where the temporal
drug response is of interest.
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Abstract—Specialized methods to overcome limitations in low
count statistics HRRT brain imaging have been developed and
implemented recently. Combination of ordinary Poisson (OP)
OSEM-3D reconstruction with advanced randoms calculation has
been shown to decrease quanti�cation bias in low count statistics,
but a residual bias is however seen.

In the present study the extent and origin of the quan-
ti�cation bias in the histogram-mode iterative reconstruction
(OP-OSEM-3D) scheme was further investigated. Aim of the
study was to assess the minimum emission measurement signal
strength, to express the minimum signal strength in noise-
equivalent-counts (NEC) and to identify the origin of the residual
bias.

To assess the minimum count statistics anthropomorphic brain
phantoms were scanned in the scanners dynamic range. Dynamic
range was simulated by histogramming the coincidence data
into overlapping variable length frames. True distribution was
estimated from a high statistics frame and ROI analysis was
applied to observe biases in the quanti�cation.

ROI analysis showed signi�cant quanti�cation errors in low
count statistics. Moreover, regional sensitivity to bias was shown
to correlate with image features. Our conclusion is that the
residual quanti�cation bias is originated in the iterative recon-
struction, and that it needs to be taken into consideration in
dynamic HRRT imaging when OP-OSEM-3D is used.

Index Terms—positron emission tomography, image recon-
struction, dynamic imaging, high resolution tomograph.

I. I NTRODUCTION

T HE ECAT High Resolution Research Tomograph (HRRT)
is a dedicated human brain PET scanner with nearly

isotropic and shift invariant reconstructed resolution of
2.5 mm (FWHM) [1]. High spatial resolution is obtained with
high number (119808) of small-size (2.1 × 2.1 × 10 mm3)
LSO/LYSO crystals. Due to high number of small crystals
HRRT sinograms are substantially larger and typically have
less counts per bin than conventional PET sinograms. More-
over, HRRT planar detector head design with gaps introduces
zero bins in the sinogram data. These missing data hinders
usage of the analytical reconstruction methods with the HRRT.

Alternative to analytical reconstruction is the statistical
iterative OSEM reconstruction, where missing data is easily
incorporated into the system model [2]. It has, however, been
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reported that OSEM reconstruction is a source of quanti�-
cation biases in limited count statistics in general [3], and
especially in the case of the HRRT [4].

To overcome low count statistics limitations in the HRRT,
specialized methods have been developed and implemented.
Firstly, implementation of ordinary Poisson (OP) weighting
scheme in the OSEM-3D reconstruction [5] has been shown
to decrease the bias due to negatives truncation at a price
of slower convergence in comparison to ANW-OSEM-3D
scheme. Secondly, usage of variance reduction on random
(VRR) coincidences algorithm [6] in combination with OP-
OSEM-3D has been shown to further reduce the bias in
low statistics [4]. Thirdly, speed optimized version of the
OSEM-3D algorithm [7] increases feasibility of continued
reconstructions.

According to a previous study the above described, opti-
mized histogram-mode reconstruction still suffers from resid-
ual bias and further re�nement is requested. However, speci�c
re�nement strategies or practicable limit for count statistics
was not presented.

Therefore, in the present study the extent and origin of the
quanti�cation bias in the histogram-mode iterative reconstruc-
tion (OP-OSEM-3D) scheme was further investigated. Aim of
the study was to assess the minimum emission signal strength,
to express the minimum signal strength in noise-equivalent-
counts (NEC) and to identify the origin of the bias.

II. M ATERIALS AND METHODS

A. Positron emission tomograph

All emission and transmission data was acquired using
the HRRT PET scanner. This 3D only scanner has approx-
imately 4.5 × 109 lines-of-response (LOR) are detected, in
the �eld-of-view (FOV) of 252 mm in axial and312 mm
in transaxial directions. Emission acquisitions were made in
list-mode using 400-650 keV energy window.

B. Phantom measurements

Hoffman phantom was �lled with18F-FDG in water so-
lution so that the activity concentration at start was 35
MBq and emission data was acquired for 70 mins. Countrate
was such that dead time and randoms ratio as assessed
from the head-curve were negligible (DT= 6 .5%Š 5.8% and
RTR = 0 .147Š 0.132).

Striatal phantom was �lled with 21 MBq of18F-FDG in
water solution and emission data was acquired for 57 mins.
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