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Abstract—This paper shows the potential of using a physical
model of gambling die as an input device for multimedia applica-
tions. We present a real-rime method for simulating fair 6-sided
die on the base of loaded model of foam-rubber die equipped
with inertial measurement unit. The method allows avoiding the
negative influence that biased die produces on the final game
result. The technique is based on filtering out duplicated rolls
and building a fair result by accumulating 3 single, unique rolls.
The measurements were done using inertial measurement unit
that transmits data to the mobile device with Android application.
The application processes the data and shows final result on the
screen in real time. Both theoretical and practical sides of the
implementation, including the set of experiments, are shown in
this paper. A full technical description of method and technology
that was used during the implementation is also presented.

I. INTRODUCTION

Today game industry produces many different kinds of mul-
timedia controllers that allow player to manage game process
and naturally interact with media: joysticks, keyboards, remote
controllers, VR helmets etc. This paper aims to show the new
possibilities of using analog random number generator, so-
called gambling die used in non-gambling tabletop games.
Nowadays, all the digital tabletop games use digital random
generator to simulate the die. We suggest to use normal 6-side
plastic die equipped with several sensors for state classification
and game control. Using of real model will make the game
process more interactive and also can decrease the eyestrain.
It assumed to use different dice with different physical pa-
rameters for every player to provide full compatibility with
different dice manufacturers including custom-made dice.

Dice recognition techniques have been researched before
by several authors [1], [2], [3], most solutions are based
on using the camera and pattern recognition algorithms and,
according to author’s knowledge, inertial sensors were not yet
considered. From the practical point of view using the camera
imposes restrictions on the minimum size of die, area lighting
and requires additional action from user since the camera
vision angle is quite limited and resolution properties are

limited too, so playable area is restricted by camera properties.
In [4] authors show that different colors of dice can also affect
on accuracy of detection; during experiments they found that
dice that are less contrast are less amenable to recognition by
2% comparing with more contrast dice. From recognition point
of view, method described in this article is more beneficial
since it guarantees 100% recognition rate on flat surface.

Our initial idea consist of taking the attitude measurements
using accelerometers and gyroscopes and send the result via
existing transmission media to a game device(mobile phone,
TV, etc.). The size of modern MEMS(Microelectromechanical
systems) sensors allows to place it in the die of any shape
and size. In this paper we propose to use IMU(Inertial
Measurement Unit) that includes both types of sensor and
able to communicate with other devices. The most important
problem in this case is presented by bias of the die that will
affect on game result during the long-term period. By default,
every die can be considered as loaded die due to its physical
imperfection. Only the ideal physical model of die with equal
result probability can be considered to be totally unbiased, in
another case any die has some physical issues that provides
higher probability for one of the sides. Moreover, using of
intentionally loaded die, which can be considered as cheating,
is also possible during the game process. To prevent cheating
and equalize the results in general we propose to use the
algorithm that allows to generate fair results out of pseudo-
randomly generated sequence of numbers, meaning to turn
loaded die into unloaded.

Originally, the idea of turning loaded die into unloaded one
belongs to John von Neumann who is famous for research in
statistics and game theory [5]. But in the current research we
used the methods described by Ari Jules in [6] which is also
based on the work of von Neumann. These methods allow
to generate a fair result out of minimum three independent
rolls. The only side effect of this method lies in the increasing
number of rolls that takes more time for a player to get the fair
result. The method doesn’t take much computational power



Fig. 1. Application flowchart

and can be implemented in any modern device with CPU and
data memory.

Another aspect discussed in the article is an upper surface
detection. It can be done in different ways but we present the
method using roll and pitch values of the die. Roll and pitch
values are calculated based on accelerometer and gyroscope
measurements. There are several ways to implement described
in [7], [8], [9]. One of the problems was to detect the moment
when the die is finally stopped since there are situations
possible when the die is balancing on one of the edges and
flips in a second. During this second accelerometer shows that
the die is static but surface detector cannot detect the face
properly. For this purpose we included the countdown timer in
our implementation that waits pre-defined amount of seconds
before calculating the upper surface.

II. ALGORITHM

In this chapter we describe several key points of implemen-
tation from the algorithmic point of view. The implementation
is represented as a simple dice game with main steps shown
on Figure 1. The game starts immediately after user shacked
the dice. The IMU continues transmitting data until die finally
stops. Even if the die stopped moving for a moment it sends
the event that can be detected as a final stop by an application.

A good example of it is an edge balancing. To prevent this
unambiguity, we made the IMU to continue sending data
during the next 3 seconds after stop, the states are shown
on Figure 3. After the final stop, application runs unbiasing
algorithm and shows the result depending on the algorithm
output.

One of the most important parts is to separate different
stages of dice game. The whole game process can be divided
onto several parts:

• Player takes the die and holds it in the hand being ready
to roll.

• Player shakes the die in order to start the game. This
functionality was implemented to prevent accidental start
of the game.

• Player has thrown the die and the die is falling or rolling
over the floor.

• The die has stopped rolling.
In our implementation every part is clearly identified by either
IMU itself or an application and both are behave according to
corresponding scenarios.

Next chapters of article describe algorithms that were im-
plemented to provide game functionality, including: state clas-
sifier, upper surface detector, die unbiasing. These algorithms
were combined in one solution but the description is presented
in different subsections below.

A. Unbiased die simulation

In this subsection the process of extracting fair roll values
from a biased die is described. The algorithm is based on a
paper of Ari Juels [6]. For this particular case the algorithm
was adapted to be used exactly with 6-sided die but can be
easily modified for n-sided dice. During research, authors tried
to presume the most typical scenario where biased dice make
the biggest effect on the game result. Suppose there are two
players throwing two different dice with different mass centers:
one in the center of die(suppose to be an almost fair one),
another with the mass displaced to the bottom. Obviously, the
frequency of values for every player is different and unfair.
The algorithm allows to generate a fair random output for
both players by combining several biased rolls

R = {r1, r2 r3 . . . rn} , n ≥ 3 (1)

where R is a representation of a sequence of roll results needed
to generate a single fair roll, n is the minimum possible amount
of rolls. The output is equally random for both players and
the only difference is the amount of rolls that every player
should do to get fair result. Detailed description of the algo-
rithm including rank sequence generating and cumulative roll
computation are given in [6]. The algorithm was implemented
as a real-time application described in Section III. The key
steps are shown on the Figure 1.

B. Classification

In the current research authors successfully reused applied
states of motorcyclist on the states of gambling die. The mo-
tion model of die is quite similar with the motorcycle motion

SMC_2016    003276



model described in [10] and [11]. ”Motion” and ”static” states
of vehicle are fully identical with the corresponding states of
die in the game. And ”motorcycle crash event” is assumed to
mean the initial shake of the die. State classification has been
implemented as a described in [12]. The following states are
recognised by the algorithm implemented in the IMU:

• Static The die is not moving.
• Move The die is in the air or rolling.
• Shake The die was shaken.
For the classification task, we use a supervised Bayesian

maximum a posteriori classifier (MAP). A supervised classi-
fication process starts by collecting a training data set with
known states. This set is used to obtain

zj ∼ N(µj ,Σj), (2)

the distribution of the observed q− by− 1-vector z given that
the observation comes from the class j. At this stage, the mean
vector µj(q×1) and the covariance matrix Σj(q×q) are here
assumed to be perfectly known (learned from a training set).
We also assume that for all classes Σj > 0 (i.e. Σj is positive
definite). If (2) holds, the density function of zj is

fzj (z;µj ,Σj) =
1

(2π)q/2
√
|Σj |

exp[−
(z − µj)

T Σ−1
j (z − µj)

2
]. (3)

A new observed z = zx can then be classified by maximiz-
ing (3) over all the classes j = 1...p. To assign a probability
to the classification result, we need to use unconditional prior
probabilities P (C = j), and assume that all the possible
classes are included. Then the probabilities for all the classes
are obtained from the Bayes’ rule:

P (C = j|zx) =
fzj (zx)P (C = j)

fz(zx)
, (4)

where fz is the unconditional density function for the observa-
tion z. Prior probability can be used to control the false alarms
or false negatives.

C. Die upper surface detection

Upper surface detection plays a key role as a representation
of a roll result. User can visually recognize the amount of
pips on the upper side of die but for the IMU the only
sources of information are acceleration and angle speed from
sensors. Using sensor data IMU calculates and sends the
attitude data in radians, roll and pitch to user device. Next,
using the corresponding information about roll and pitch, the
virtual model of die is being built on the screen and the face
detection algorithm starts. Upper surface detection algorithm
is implemented on the user-side(currently on Android-based
smartphone). It allows to move additional computations from
IMU and decrease power consumption of die. Current software
implementation is done in Unity [13] framework as the most
user-friendly and easy-to-deploy IDE(Integrated development
environment). Another reason of using Unity was to create

universal software that can be used with dice of any amount
of edges (for example, there are two types of 6-side dice exist:
Asian and Western, that differs by mark-up of two sides only).
In the current version user can easily change the skin and
switch between different colors and shapes of die. By using
Unity framework it is significantly easier to change the skin
and change the markup than update the firmware for IMU.

The main principle of upper surface recognition is based on
calculating of dot product between the unit vectors matching
with x,y and z axis in the local frame and a unit vector pointing
up

rn = vn · u, (5)

where rn is an amount of rotation above each of the axis
x,y and z in the interval of [-1;1], vn are the unit vectors
matching with axis x,y,z and u = {0,1,0} is a vector pointing
up in a local frame. rn = 1 means that the corresponding axis is
pointing up in global frame, and down if rn = -1 respectively.

III. IMPLEMENTATION

Real-time implementation is a fully-functional prototype of
game application. Currently it allows to simulate the die on
any Android device and represents the result of unloading
algorithm. Next versions will allow to use several dice in the
same game and support multiple users. Application consists
of the following parts:

• Hardware implementation. Two foam-rubber dice loaded
with an IMU on different distances from the center of
die.

• Software implementation. Android phone with the ap-
plication for the visualization of algorithm data and
automatic detection of states.

A. Inertial measurement unit

Two dice of size 75 mm x 75 mm x 75 mm were slit in dif-
ferent levels to simulate the loaded dice with different center of
mass as it shown on Figure 2. IMUs were placed inside of the
dice and fastened in order to transmit the actual information
about the attitude, dice state and the upper face. We used a unit
based on ARM Cortex M3 microprocessor with the maximum
frequency of 72MHz, 512kB of program memory and 64kB
of data memory. The device is also equipped with Bluetooth
transmitter and memory card module for data transfer and
logging. The size of board is equal to 45 mm x 45 mm x
10 mm.

State classifier and attitude determination algorithm were
implemented as a FreeRTOS tasks. Reading, calibrating of the
measurements from sensors and adding them to a buffer were
implemented using two another tasks. One more task is respon-
sible for inter-task communication and outer communications.
Handling of measurement data and inter-task messaging is
done using thread-safe queues.
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Fig. 2. Position of mass in the dice

B. Android Application

Android application consists of two parts: Unity application
as a front-end and Java Android application for passing the
messages to Unity engine and determining the states of dice
as a back-end. Java application is packed to a JAR file and
pushed to Unity. Such architecture was chosen since Unity is
not able to call the native Android functions and handle the
threads by itself thus the bridge between Unity and Android
is needed.

Initially, Android application opens Bluetooth connection
to the measurement unit and sends a Start measurements
message. After getting the message unit starts analysing ac-
celerometer and gyroscope messages and sends roll, pitch and
the current state of IMU back to the phone(the yaw is not
significant for the current research and more complicated to
compute). Java application receives and handles the messages,
makes a decision about the current state of an application and

Fig. 3. IMU state flowchart

Fig. 4. Application interface

Fig. 5. Results of rolling the die with mass in the center, 100 times

waits until the Unity call. Unity engine calls update functions
implemented in a bridge object after every frame update.

Unity is used due to represent the raw data in appropriate
and understandable way. Application allows to track the roll
and pitch of die, track final result, analyse it and generate
unloaded result, save it to a file and show on the screen. The
interface is shown on Figure 4. Current version uses 6-faced
model of die but potentially can be used to represent die with
N faces, where N ≤ ∞.

IV. RESULTS

The solution described above was tested both with real
models of dice and in MatLab environment. Both dice have
been rolled 100 times in the closed room with a flat floor,
the upper surface of every roll was logged in file by the
application, fair results were also logged and visualized. Figure
5 and Figure 6 show the actual results. The picture shows that
the amount of successes for side number six is slightly lower
than others. This could happen due to the position of mass: it
was lying close to the surface six and could affect on rotation
model of die.

Using the formula of binomial distribution the probability
of getting this amount of successes for surface six can be
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obtained as:

f(k, n, p) =

(
n

k

)
pk(1− p)n−k, (6)

(
n

k

)
=

n!

k!(n− k)!
, (7)

, where n ∈ N0 is a number of trials, p ∈ [0, 1] is a
success probability in each trial, k ∈ {0, ..., n} is a number
of successes. For 10 and 13 successes in a 100 tries the
probability is equal to 0.021 and 0.07 respectively.

But it is hard to make any statistical assessment due to
relatively small amount of experiments. 20000 rolls would
be acceptable amount of rolls as it shown by experiments of
Rudolph Wolf [14] but it takes significant amount of time.
In the future research one could use dice-shaking machine to
automate process.

After getting statistics from real rolls, a virtual simulation
of loaded die was implemented using MatLab rand function.
During research authors tried to create fully unfair physical
die by placing IMU in different areas inside of die but
couldn’t get even a 30% probability of some selected face. This
happened due to a soft material of dice that adds some extra
”randomness” into physical motion. Thus, authors simulated
a highly biased die that showed side with one dot with 50%
probability and compared results with real rolls. The total
amount of rolls that showed surface 1 is equal to 2503. By
using the MatLab function of binomial probability density,
authors checked a chance of getting the same result when
using a fair die. Distribution is illustrated on Figure 8. The
plot shows distribution of the most likely amount of showings
for one single surface provided that probability of showing
is equally likely for every face. Probability of getting 2503
showings of one single face is equal to

f(k, n, p) =

(
n

k

)
pk(1− p)n−k ≤ 2.220446 ∗ 10−16, (8)

which means that our MatLab simulation represents a totally
unfair die.

There were totally 4 experiments done:

Fig. 6. Results of rolling the die with mass in the bottom, 100 times

Fig. 7. Randomly generated sequence of 1000 numbers(top) and 5000
numbers(bottom)

Fig. 8. Binomial distribution for 5000 rolls

• Experiment 1 Real die. Mass in the bottom. Rolled 100
times.

• Experiment 2 Real die. Mass in the middle. Rolled 100
times.

• Experiment 3 Simulation. 1000 of random numbers were
generated.

• Experiment 4 Simulation. 5000 of random numbers were
generated.

The goal of virtual tests is to show the average amount of
rolls that every user should do to get a fair result if he uses
biased and unbiased die. The results are represented in Table
I. It shows that in the worst case every user should make the
maximum of 6 rolls to get a fair result.

TABLE I
EXPERIMENTAL RESULTS

Exp. Amnt. of unbi-
ased rolls

Avg. amnt. of
rolls per unbiased
roll

Longest seq. of
rolls

1 27 3,70 6
2 28 3,57 6
3 199 5,02 16
4 1062 4,70 19
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V. CONCLUSION

In this paper authors presented a real-time application for
unloading the loaded die. The outcome of the experiments
shows that technology is quite reliable and can be implemented
in different applications on different platforms. The application
created during research can be used for both scientific and
entertainment purposes: for collecting and processing roll
statistics and representing game content. The method described
in [6] is proved as working in real conditions and also can be
used in other applications. The largest problem is an increased
amount of rolls that player need to do before getting a fair
result. As a possible solution we suggest to disable unloading
algorithm in the application by the default and use it only if
the drop rate of some specific side of die is significantly high.
As an extra outcome we also show a new concept of using
inertial measurement unit: as an input device for multimedia
applications. The concept can also be used as a groundwork
for a future research: inertial dice were never used before and
got a huge potential in a field of statistics.

A good research topic would be a topic related to upper
surface prediction i.e. prediction of upper face before die
actually stops. It can be done by using simulation software
but in case of finite faced die, physical model can be a subject
to influence of many external conditions such as surface
friction and air resistance. M. Kapitaniak in [15] shows that
friction between table and die can affect significantly on the
die motion. Moreover, in real-case scenario dice are rolling
on non-perfect surface. In this case simulation will not be
beneficial at all since surface information is not available for
sensors and the only way we can use face prediction, will be
prediction of die attitude in the air before it hits the ground.
Similar research was done by Michael Small in [16] for the
game roulette.

Another potential research could be done for the die with
infinite amount of edges. The easiest way would be to build a
spherical die model(infinite amount of edges can be considered
as a sphere) and compute attitude of this ball during rolling. In
this case surface friction and air resistance can be neglected.
But another problem of infinite faced die could be stop
detection: if the die is a well-balanced sphere, it can take
significant amount of time to stop on flat surface. Here the
problem of infinite faced die simulation smoothly turns into
classical ball simulation.
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